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Nonlinear soil-pile interaction induced by ground settlements:

pile displacements and internal forces

A. FRANZA∗, A. M. MARSHALL† and R. JIMENEZ‡

In urban areas, the construction of tunnels and deep-excavations beneath and near to pile foundations

can be detrimental for the superstructure and the foundation. A two-stage continuum-based nonlinear

soil-pile interaction model is presented in this paper for predicting the axial and flexural response of piles

affected by ground movements. The model accounts for the effects of near-pile non-linear (hyperbolic)

soil stiffness degradation and unloading effects. The approach is used to analyse the relationship between

the pile axial response (both displacements and internal forces) and greenfield ground settlements for

purely-frictional and floating piles in uniform ground. Both displacement and non-displacement piles are

analysed by applying appropriate pre-excavation loading sequences. Results demonstrate the influence

of initial safety factor, installation method, and capacity distribution (between shaft and base) on pile

settlements and on critical tensile axial forces (both in terms of magnitude and depth). Dimensionless

design charts are provided to estimate pile settlements and critical axial forces for the case of greenfield

settlements that either increase or decrease linearly with depth. These charts provide a rational and

more general framework to describe excavation-induced effects on piles than empirical methods.
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INTRODUCTION

Engineers need to estimate the effects of ground movements resulting from tunnelling and deep-excavations (collectively1

referred to as excavations in this paper) on pile foundations. Previous research has extensively investigated the flexural2

response of piles to horizontal ground movements caused by urban excavations (among others, Chen et al. (1999); Mu3

et al. (2012); Poulos & Chen (1997); Loganathan et al. (2001); Zhang et al. (2018)) and has provided design charts for4

estimating lateral deflections and internal moments. On the other hand, the pile response for problems dominated by ground5

settlements (e.g. tunnelling beneath piles, excavations deeper than pile base level) has not yet been fully characterised (Dias6

& Bezuijen, 2015; Mair & Williamson, 2014).7

The soil-pile interaction problem is generally studied in terms of both pile settlements (associated with distortions and8

damage of buildings and infrastructure) and pile axial forces (linked with potential for pile cracking). Pile settlements are9

related to greenfield settlements uz,gf (when no pile is present) using the interaction level depth, zi, which defines the soil10

depth where greenfield soil settlement (along the pile axis) matches that of the pile. Note that the interaction level is close11

(but not always identical) to the neutral level, which is the depth at which the pile shaft friction changes from negative to12

positive (Korff et al., 2016). In addition, the critical level depth, zc, is defined as the depth at which the pile experiences the13

critical axial force, Nc, which is the maximum tensile or minimum compressive force along the pile after excavation (i.e. the14

combined result of pre-excavation pile head loading and excavation-induced ground movements). Note that, in this paper,15

a positive sign convention is used for tensile axial forces (e.g. Nc > 0 for a tensile force).16

As a first approximation, when dealing with a piled structure affected by excavation-induced ground settlements, a soil-17

single pile interaction scenario is generally considered. This approach neglects the effects of pile-pile interactions and of18

pile load redistribution due to superstructure stiffness (i.e. it assumes a constant pile head load, P ). For the case of urban19

excavations, studies have investigated qualitatively the relationship between interaction level zi, initial pile safety factor20
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2 NONLINEAR SOIL-PILE INTERACTION INDUCED BY GROUND SETTLEMENTS

SF0 = Qtot/P (where Qtot = Qb + Qs is the ultimate pile capacity given by the resistance of the shaft Qs and base Qb),21

and subsurface greenfield settlements (among others, Basile (2014); Bel et al. (2015); Dias & Bezuijen (2018); Franza &22

Marshall (2019); Williamson et al. (2017b); Zhang et al. (2011b)). The interaction level is affected by the distribution of23

the ultimate pile capacity, which also defines the type of deep foundation: a purely-frictional pile with little base resistance,24

a floating pile with both shaft and base resistance, and an end-bearing pile with little shaft resistance (Mair & Williamson,25

2014; Korff et al., 2016). In practice, engineers commonly use design charts that relate pile head settlement to greenfield26

surface settlement depending on the location of the pile base (Kaalberg et al., 2005; Selemetas, 2005; Selemetas & Standing,27

2017), as shown in Figure 1. Alternatively, an empirical method can be used where pile settlement is taken as the greenfield28

settlement at (i) the surface, (ii) two-thirds the pile depth, and (iii) the pile base (i.e. zi/Lp =0, 2/3, 1) for (i) purely-29

frictional, (ii) floating, and (iii) end-bearing piles, respectively (Devriendt & Williamson, 2011; Jacobsz et al., 2005). This30

method was used during the preliminary design stages of the Crossrail project (Williamson, 2014). Both of these approaches31

neglect the influence of SF0. In fact, increased service loads P (i.e. for a reduced SF0) as well as soil non-linearity were32

found to increase excavation-induced pile settlements and, thus, zi (Basile, 2014; Dias & Bezuijen, 2018; Williamson et al.,33

2017b; Zhang et al., 2011b). Korff et al. (2016) proposed a dimensionless framework to predict zi that accounted for the34

effect of SFo but was limited to the case of non-displacement single piles subjected to deep-excavation settlement profiles35

that decrease with depth. Tunnelling, however, is characterised by zones where both increasing and decreasing greenfield36

settlement profiles occur, as summarised in Figure 2.37

The soil-pile interaction caused by ground movements also impacts pile internal forces. The main mechanisms relating38

to pile axial forces caused by excavation-induced ground movements have been studied (among others, Hong et al. (2015);39

Huang & Mu (2012); Kitiyodom et al. (2005); Loganathan et al. (2001); Lee & Chiang (2007); Soomro et al. (2015, 2017,40

2019)). The excavation-induced variation of internal pile forces decreases with the magnitude of ground movements (Basile,41

2014); in addition, piles with service loads approaching pile capacity with low initial safety factors suffer smaller additional42

excavation-induced axial forces than lightly loaded piles with high initial safety factors (Williamson et al., 2017a,b; Zhang43

et al., 2011b). In particular, there is the potential for tensile forces to develop within a pile located in the zone directly44

above a newly constructed tunnel (i.e. for linearly increasing greenfield ground movements), which was not considered by45

Korff et al. (2016). As discussed by Williamson (2014), pile cracking due to these tensile forces was a source of uncertainty46

for the field monitoring of piles affected by Crossrail tunnelling.47

Finally, the construction/installation method (displacement or non-displacement piles) could impact the tunnel-pile48

interaction by influencing the pre-tunnelling distribution of mobilised soil reaction forces (in both undrained and drained49

conditions) as well as the effective stress level of the soil (in drained conditions). In particular, while displacement piles50

can have, prior to tunnelling, negative (downwards) friction along portions of their shaft (due to post-installation residual51

stresses in the soil and pile), and a base reaction force greater than the vertical service load (Qb > P ), non-displacement52

piles have positive (upwards) shaft friction mobilised throughout and a base reaction force lower than the applied service53

load (P > Qb). Previous analytical studies mostly focused on non-displacement piles while this paper deals with both cases54

of displacement and non-displacement piles (referred to as DP and NP, respectively).55

SCOPE

A single pile with constant head load is studied using a nonlinear-elastoplastic continuum-based model to predict the56

response of piles to excavation-induced ground movements (where the term excavation refers to both tunnelling and deep-57

excavations). A parametric study is carried out for greenfield settlements with linearly increasing or decreasing profiles with58

depth, as shown in Figure 2. Dimensionless design charts are provided for preliminary interaction assessments, describing59

the main parameters affecting the settlements and post-tunnelling internal forces of displacement and non-displacement60

piles in uniform soil.61

MODEL

In this paper, a nonlinear continuum-based two-stage analysis method is adopted. The excavation is considered only in62

terms of induced greenfield ground movements with no change in the effective stress profile. The soil response to loading is63

not affected by the presence of the excavation. This is consistent with previous tunnel- and deep excavation-pile interaction64

analyses carried out using boundary element (BEM), finite element (FEM), and finite difference (FDM) methods adopting65

either continuum or Winkler mechanical models for the soil (Basile, 2014; Chen et al., 1999; Franza et al., 2019a; Loganathan66

et al., 2001; Williamson et al., 2017b; Korff et al., 2016; Zhang et al., 2011b, 2013). The soil is modelled as a homogeneous67

and isotropic half-space (referred to as a continuum) in which perfectly-plastic behaviour (e.g. due to slippage or soil failure)68

can occur at the pile-soil interface. Soil nonlinearity is assumed to be confined to the area near the pile shaft and base69
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A. FRANZA ET AL. 3

(referred to as near-pile), while the response describing interactions between different nodes along the pile (referred to as70

far-pile) is assumed linear elastic. The initial near-pile and far-pile response of the soil to loading depends on the soil’s elastic71

parameters (i.e. initial Young’s modulus, Es,0, and Poisson’s ratio, νs). These are described, respectively, by the diagonal72

and off-diagonal terms of the flexibility matrix obtained by integrating Mindlin’s solutions along the pile boundary. The73

near-pile response is assumed either linear-elastic perfectly-plastic (EP solution) or nonlinear elastoplastic (NEP solution),74

as illustrated in Figures 3a and 3b.75

To achieve the EP perfectly-plastic local soil behaviour shown in Figure 3a, sliders with limit forces were added at the76

pile-soil interface, while a near-pile soil stiffness of Es,0 was assumed for both loading an unloading. In the NEP method,77

in addition to sliders, the dependency of soil stiffness on the loading path (i.e. different stiffness for loading and unloading)78

and the soil stiffness degradation with relative soil-pile displacements was also considered, as displayed by Figure 3b. For79

loading and reverse loading, the tangent Young’s modulus of the near-pile soil Es is decreased according to the Duncan-80

Chang hyperbolic law for which Es = Es,0 ×
(

1 − Rf f/ff

)2

, which depends on the ratio between local soil reaction forces81

f and the ultimate forces ff , as well as the coefficient of hyperbolic stiffness reduction Rf , ranging between 0.8 − 1 (Castelli82

& Maugeri, 2002). This law is commonly adopted to predict pile response to external loading (Castelli & Maugeri, 2002;83

Chow, 1986; Poulos, 1989) and has been used within other soil-pile interaction analyses (Basile, 2014; Zhang et al., 2011b,84

2013). For unloading-reloading (paths AB’ and C’D’ in Figure 3b; i.e. for load increments causing a soil stress that is less85

than the largest positive or negative value experienced during its history), the local stiffness is assumed equal to the initial86

Young’s modulus Es,0.87

The effect of the hyperbolic coefficient Rf on the stiffness degradation is shown schematically in Figure 3c. As a result88

of the plastic sliders, the elastic perfectly-plastic behaviour EP is given by Rf = 0. For the NEP behaviour, an asymptotic89

trend associated with a negligible tangent stiffness is obtained at large deformations when Rf = 1, whereas a more gradual90

stiffness degradation is given for Rf < 1 up to the triggering of the slider limit force.91

Finally, EP and NEP behaviour was only implemented in the vertical direction, whereas a linear elastic response (EL)92

was considered in the horizontal direction; this assumption has been shown to be reasonable based on the analysis of93

tunnelling problems (Basile, 2014). The proposed finite element (FEM) model was developed for groups of vertical piles of94

length Lp, diameter dp, and Young’s modulus E with piles being modelled as Euler-Bernoulli beams embedded in a uniform95

continuum. This paper limits itself to excavation-single pile interaction; elevated caps, raft foundations, and superstructure96

contribution are neglected by assuming constant pile head loads during excavations. All these aspects can be accommodated97

within the proposed formulation following Franza et al. (2017); Leung et al. (2010) and Leung et al. (2017).98

Considering the above assumptions, starting from the framework of Leung et al. (2010) and Franza & DeJong (2019),99

the FEM model was developed by solving the set of expressions given in Equations (1)-(3). Equation (1) is the equilibrium100

equation; Equation (2) describes the near-pile stiffness; Equation (3) accounts for the sliders. The fully linear elastic solution101

(EL) is obtained from Equations (1) and (2) while assuming Rf = 0; the elastic perfectly-plastic solution (EP) results from102

Equations (1)-(3) imposing Rf = 0 ; and the nonlinear elastoplastic solution (NEP) is given by Equations (1)-(3) for Rf 6= 0.103

(S + K∗) u = p + K∗ucat + K∗Λ∗ 〈f〉 + K∗uip; f = (p − Su) (1)

K∗ = R (Λ − Λ∗)
−1

; Rii =































1, for unloading
(

1 − Rf

fi

ff,i,down

)2

, for loading

(

1 − Rf

fi

ff,i,up

)2

, for reverse loading

(2)

〈f〉i = ff,i,up < (P − Su)i < ff,i,down (3)

where u is the displacement vector of the pile (consisting of three translational and three rotational degrees of freedom),104

p is the external loading vector at the pile head, f is the vector of forces applied by the foundation nodes to the soil105

(i.e. a vector containing the forces acting on the soil medium), S is the stiffness matrix of the pile foundation, uip is the106

plastic slider displacement vector, ucat is the greenfield ground displacement vector, Λ is the linear elastic soil flexibility107

matrix relating the soil displacement field to the point of application of a force, Λ∗ is the non-diagonal term of Λ (i.e. soil108

flexibility matrix without the main diagonal), and K∗ is the local (near-pile) stiffness matrix of the soil (i.e. for no stiffness109

degradation, it is the inverse matrix of the diagonal term of Λ for the linear elastic behaviour in the near-pile soil). The110

terms ff,i,up (negative) and ff,i,down (positive) are the nodal limit forces for pile uplift and down-drag relative to the soil,111

which are given by the integration of the ultimate base, qb,f , and shaft, τf , stresses while considering no tensile capacity at112
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4 NONLINEAR SOIL-PILE INTERACTION INDUCED BY GROUND SETTLEMENTS

the pile base. R is the near-pile stiffness reduction matrix, resulting in the initial linear elastic stiffness during unloading113

and hyperbolic stiffness degradation for loading and reverse loading. In the NEP solutions, unless stated otherwise, the114

values Rf = 1 for the coefficient of hyperbolic near-pile soil stiffness degradation was used to be consistent with Korff et al.115

(2016).116

The EL equations can be solved directly, whereas the EP and NEP expressions require an incremental and iterative117

procedure. Firstly, the equilibrium equation is solved for incremental variations of the load vector p while ucat = 0. Secondly,118

for a constant load p, greenfield settlements ucat are incrementally applied. Excavation-induced effects (movements and119

forces) are given by the difference between the variables measured at the end of the first and second stage.120

MODEL VALIDATION

To verify the developed EP model, results are compared against data from Basile (2014) for tunnelling adjacent to a single121

pile, which were obtained using the BEM PGROUPN program for perfectly-plastic soil behaviour with Rf = 0. A pile122

with Lp = 25m, dp = 0.5m, and E = 30GPa was affected by vertical and horizontal ground movements induced by a 6m123

diameter tunnel with a depth to axis level of 20m and a horizontal offset from the tunnel centreline to the pile axis of124

4.5m. In this validation section, greenfield movements were estimated using the semi-analytical expressions of Loganathan125

& Poulos (1998), with no external loads applied at the pile head, similar to Basile (2014). The considered soil was clay with126

Es,0 = 24MPa and νs = 0.5, while the ultimate base and shaft resistances were given by qb,f = 540kPa and τf = 48kPa127

(assumed constant along the pile), respectively.128

Figure 4 compares the results from the developed EP analysis method (tunnelling-induced pile displacements, deflections,129

axial forces, and bending moments) with the elastoplastic BEM PGROUPN results from Basile (2014); these outcomes are130

for an unloaded pile at low and high values of tunnel volume loss, Vl,t=1 and 5%, respectively. For comparison, greenfield131

(GF) input movements are also shown; and results using the developed elastic EL model are also included for reference132

(validated in Franza et al. (2019b)). The agreement is satisfactory and, importantly, results show that by limiting the shaft133

friction in the EP solution significantly changes the EL results (i.e. tunnelling-induced settlements increased and axial forces134

decreased).135

TUNNELLING BENEATH PILES - INFLUENCE OF PARAMETERS

To investigate the combined effects of the pile working conditions and the hyperbolic coefficient of stiffness degradation, the136

pile and soil considered in the previous section (Lp = 25m, dp = 0.5m, Qtot = 1.99MN) was subjected to tunnelling from a137

6m diameter tunnel at a depth to axis level of 30m. The tunnel is assumed to be located either directly beneath the pile or138

at tunnel-pile offset of 15m. The greenfield inputs were again computed using Loganathan & Poulos (1998).139

Results of tunnelling-induced (Tun.ind.) settlements and forces as well as post-tunnelling (Post-tun.; i.e. the combined140

effects of initial pile loading and tunnelling-induced actions) pile axial force profiles are reported in Figures 5 and 6 for141

SF0 = 2; 100 and Rf = 0; 0.75; 1. Figure 5 shows outcomes for the offset pile for which greenfield settlements mostly decrease142

with depth, whereas Figure 6 displays the response of the pile directly above the tunnel where greenfield movements increase143

with depth. Note that pre-tunnelling axial forces are negligible for SF0 = 100, hence post-tunnelling and tunnelling-induced144

forces match for this case. In addition, consider than tensile pile axial forces are positive in this paper.145

For both tunnel offsets, the reduction in initial pile safety factor SF0, associated with a greater pile head load, resulted in146

a slight increase in pile settlement, a reduction of the magnitude of tunnelling-induced forces, and a change in the shape of147

the axial force profile; these trends agree with conclusions of Williamson et al. (2017b). Figures 5 and 6 illustrate that the148

impact of the hyperbolic coefficient Rf on tunnelling-induced displacements is minor, though higher values of Rf tend to149

slightly reduce tunnelling-induced forces; this latter trend is reasonable considering the near-pile soil stiffness degradation150

associated with Rf .151

Most of the tunnelling-induced forces in Figure 5 are compressive because the offset pile was subjected to greenfield152

settlements that decrease with depth. On the other hand, greenfield settlements that increase with depth can result in153

tensile forces due to tunnelling, as shown in Figure 6. However, Figure 6 indicates that the entire pile undergoes tensile154

post-tunnelling forces for SF0 = 100 (see Figure 6d), whereas only the bottom part of the pile is under tension when SF0 = 2155

(see Figure 6c). Interestingly, the largest tensile critical force Nc decreases in magnitude with the pile load P (i.e. when156

SF0 is reduced), whereas its location is closer to the pile tip for the highly loaded pile (SF0 = 2) than the lightly loaded157

pile (SF0 = 100).158

In the following section, pile settlements and post-tunnelling tensile forces are investigated by assuming linearly159

increasing/decreasing settlements with depth.160
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PARAMETRIC RESULTS

Studied scenarios161

The NEP analyses in this section consider single piles of length Lp = 5; 20m, diameter dp = 0.5m, and Young’s modulus E162

sufficiently large to simulate a rigid pile in a homogeneous soil with a Young’s modulus Es,0 = 24MPa and a Poisson’s ratio163

νs = 0.5. The effect of pile compressibility on the considered interaction problem is minor for most practical scenarios, and164

the hyperbolic coefficient may be set to Rf = 1 (Korff et al., 2016). Analyses were conducted using greenfield settlements165

that linearly increase or decrease with depth z, as shown in Figure 2, which can approximate excavation-induced settlements166

(e.g. Williamson et al. (2017b); Korff et al. (2016)).167

Both purely-frictional and floating piles (labelled FR and FL, respectively) were considered with qb,f either null or168

proportional to τf at the pile base. In this way, purely-frictional and floating piles are defined with respect to the mobilised169

reaction stresses for extremely large pile settlements. Two possible τf profiles along the pile axis were modelled: a constant170

(e.g. FR.con) and linearly increasing (e.g. FR.inc) profile of τf with z. In addition, to consider low shaft capacity piles due171

to interface disturbance or shaft coating, an additional analysis was performed for a coated pile with a reduced constant172

τf (CO.con). A summary of the considered cases is given in Table 1, where the first three scenarios are used as the ‘main173

analyses’ to demonstrate the salient features of the analysis results, and the outcomes of the remaining scenarios are included174

as supplemental data.175

In this work, the ultimate capacity Qtot and the pile safety factor SF0 are defined based on the very large pile settlements,176

potentially greater than 10%dp, needed to fully mobilise both τf and qb,f , as shown in Figure 7a. Engineering judgement177

should be applied in specific scenarios to assess Qtot. Therefore, use of the proposed design charts presented later is predicated178

on the existence of data which enables estimation of Qtot and SF0 for very large pile settlements (i.e. pile settlement of at179

least 10%dp). Furthermore, Figures 7b and 7c sketch the pre-excavation loading sequence for non-displacement (NP; path180

A→B) and displacement (DP; path A→D) piles.181

In the parametric study presented here, uz,gf is modelled only in terms of ∆S, which is the differential greenfield182

settlement between the surface and pile base. The surface greenfield settlement (uz,gf,0, labelled S0 here for consistency183

with Korff et al. (2016)) is S0 = 0 in the performed analyses because a) the tunnel-pile interaction problem only depends184

on ∆S, and b) a uniform greenfield settlement profile due to S0 results in a pile settlement that is simply equal to the soil185

settlement, with no variation in the pile axial forces. For instance, from the definition of the interaction level depth, the186

excavation-induced pile settlement is upile = S0 − zi/Lp × ∆S, whereas zc and Nc are not dependent on S0.187

Similar to Korff et al. (2016), low and high levels of greenfield settlements were considered by analysing uz,gf characterised188

by a ratio ∆S/Dz = −10, −1, 1, 10, where ∆S is the difference between greenfield displacement at the pile head and base189

(defined in Figure 2) and Dz = Qtot/K0 is the ratio between the total pile capacity and the initial stiffness of the load-190

settlement curve (illustrated in Figure 7a). For instance, a negative value of ∆S relates to piles above the tunnel where191

greenfield settlements increase with depth, whereas a positive ∆S relates to piles relatively far from the tunnel or adjacent192

to deep excavations, where greenfield settlements decrease with depth. On the other hand, the parameter Dz is defined193

for the non-linear analysis (NEP) as the displacement obtained from the pile load-settlement curve P − uz (for no ground194

movements) by the intersection between the ultimate capacity Qtot and the tangent to the initial portion of the curve with195

a slope equal to K0. Alternatively, Dz would be the settlement corresponding to the full mobilisation of pile capacity from196

pile loading results in an elastic-perfectly plastic (EP) analysis.197

To generalise the outcomes from this work, results are presented using the dimensionless groups in Equation (4) used by198

Korff et al. (2016).199

SF0 =
Qtot

P
,

∆S

Dz

,
τf,Lp

τf,0

, Qr =
Qb

Qtot

,
Es

Ep

,
L

dp

,
Dz

dp

(4)

However, similar to Korff et al. (2016), the impact of Dz/dp was neglected (analyses for floating piles indicated that it200

had a minor impact on results), while the ratio Es/Ep ≈ 0 for the considered case of a relatively rigid pile. Because of201

the limited impact of the pile length-to-diameter ratio L/dp, results presented here focus on the response of relatively202

long floating piles with L/dp = 40. Within this dimensionless representation, results for the floating piles FL (labelled as203

Qr05.con, Qr08.inc, and Qr40.con, where the numbers refer to the value of Qr, i.e. the base capacity as a percentage of the204

total capacity) provide a description of the variability of all considered cases. Outcomes of the analyses for the remaining205

scenarios considering both L/dp = 10 and 40 are given in the supplemental data, where the ‘supplemental label’ in Table 1206

is used to refer to each scenario.207

Parametric study and dimensionless charts208

Firstly, pile settlements relative to the greenfield movements are considered. The normalised interaction level zi/Lp is209

plotted against safety factor SF0 in Figure 8. Engineers are familiar with analysing the relationship between pile and210

Prepared using GeotechAuth.cls



6 NONLINEAR SOIL-PILE INTERACTION INDUCED BY GROUND SETTLEMENTS

surface greenfield movements (see Figure 1); thus, the ratios upile/ugf,0 inferred from the data in Figure 8 are plotted in211

Figure 9 by assuming that S0 = ugf,0 = 10Dz. Subsequently, using the same layout, the normalised critical depth zc/Lp and212

the ratio between critical axial forces and pull-out pile capacity Nc/Qt (positive sign assumed for tensile axial forces) are213

shown in Figures 10 and 11, respectively. Qt is mobilised by the reverse loading at the pile shaft, as illustrated in Figure 3;214

in this paper, identical values of τf are used for both loading and reverse loading and, thus, the magnitude of Qt and Qs215

are identical. Dashed and solid lines are used for decreasing (positive ∆S; piles far from the tunnel or adjacent to deep216

excavations) and increasing (negative ∆S; piles above the tunnel) values of uz,gf with z, respectively. Markers are used to217

distinguish between the pile installation methods: displacement (DP) and non-displacement (NP).218

Results for both DP and NP piles in Figure 8 illustrate some general trends: [a] the variation of interaction level is within219

zi/Lp = 0.4 − 0.8 for both increasing and decreasing greenfield settlement profiles at high SF0 (e.g. unloaded piles with220

SF0 ≥ 4); [b] zi/Lp tends to zero (greenfield surface settlement) and unity (greenfield settlement at pile base level) for low221

SF0 for decreasing and increasing greenfield settlements, respectively; and [c] the sensitivity of zi/Lp to the variation of222

safety factor is considerable within the range of SF0 = 1 − 3. These trends agree qualitatively with the results of Korff223

et al. (2016) for non-displacement piles and a linearly decreasing uz,gf . Importantly, because the largest tunnelling-induced224

values of uz,gf are generally at the location of the pile base and head for piles with their bases within and outside of the225

tunnel influence zone, respectively, the data in Figure 8 allow for a rational description of the empirical influence zones226

given by Selemetas (2005) and Kaalberg et al. (2005) (see Figure 1) while also accounting for soil and pile properties, pile227

load condition, and pile installation method.228

The ratio upile/ugf,0 shown in Figure 9 highlights that pile settlements, normalised by the constant greenfield surface229

movement, increases with the pile service load P (i.e. for decreasing SF0) for both linearly increasing and decreasing230

greenfield movements. This agrees with centrifuge test outcomes of tunnelling beneath piles in clays, which indicated that231

the lower the value of SF0, the greater the pile settlement, regardless of the offset of the pile from the tunnel (Williamson232

et al., 2017b). However, Figure 9 illustrates that the influence of SF0 on upile/ugf,0 is significant only for steep greenfield233

movements with ∆So ≈ S0, whereas the ratio upile/ugf,0 is about unity when ∆So << S0. For the cases of |∆S| = 10, the234

variation of upile/ugf,0 is most significant within the range of SF0 ≤ 3, as was the case for the interaction level zi/Lp.235

In Figure 8, the linearly increasing τf resulting in τf,Lp
/τf,0 = 3 (QR08.inc) contributed to a slight increase in the value236

of zi/Lp (i.e. towards the pile base) compared to a constant τf associated with τf,Lp
/τf,0 = 1 (Qr05.con). Similarly, the237

effects of τf,Lp
/τf,0 on upile/ugf,0, normalised critical depth zc/Lp, and axial force Nc/Qt is shown to be minor in Figures 9,238

10, and 11. Thus, the overall impact of τf,Lp
/τf,0 is secondary compared to the other dimensionless parameters within the239

investigated ranges.240

With respect to the base capacity of the DP and NP piles with varying Qr = Qb/Qtot (Qr05.con and Qr40.con), the241

impact of the increase in the relative base capacity is notable: increasing Qr from 5% to 40% generally shifted zi/Lp towards242

the pile base (Figure 9), while it shifted the normalised force Nc/Qt towards negative (compressive) values for SF0 < 3243

(Figure 11). In particular, all considered piles with Qr = 40% in Figure 11c are under compression along their entire length244

for SF0 < 2 (Nc/Qc < 0), hence they would be at a low risk of cracking. This is not the case for the piles in Figure 11a245

and b subjected to increasing settlement with depth (∆S < 0), which have low values of Qr and may undergo tensile246

values of Nc/Qt for most values of SF0. Furthermore, as confirmed by Figures S1-S4 in the supplemental data, results for247

purely-frictional FR and floating FL piles with Qr < 10% are similar, hence the charts for Qr05.con and Qr08.inc are also248

applicable to purely-frictional FR piles when Qb/Qtot < 10%.249

The location of the critical axial force along the pile is shown in Figure 10 using the normalised critical level depth zc/Lp.250

Note that Figure 11 demonstrated that post-excavation tensile forces (Nc/Qt > 0) are limited to the case of increasing251

greenfield settlements with depth (∆S < 0); decreasing settlements with depth (∆S > 0) result in compressive excavation-252

induced axial forces for all cases (Nc/Qt < 0). Consequently, a critical level depth zc is not presented for ∆S > 0. Figure 10253

shows that zc moves towards the base of the pile for decreasing SF0 and reaches zc/Lp = 1 at SF0 ≈ 1.5 for all cases (the254

rate of change is notable between SF0 = 1.5 and 3). Also, in general, the DP values of zc/Lp are lower (towards the pile255

head) than for NP for a given value of ∆S/Dz. This is due to the presence of residual (post-loading and pre-excavation)256

compressive axial forces near the pile mid-depth region for DP piles.257

Focusing again on the critical case of ∆S < 0 which can produce tensile axial forces, Figure 11 shows that, as a general258

trend, the pile critical axial forces Nc/Qt increase with the settlement rate ∆S/Dz = -1 → -10, particularly for SF0 > 2.259

For typical design values of SF0 = 2 − 3, Nc/Qt ≈ 25%, whereas for extremely large values of SF0, the upper-bound of260

Nc/Qt approaches 40%. For low safety factors (SF0 < 1.5), Nc/Qt values are either close to zero (when Qr ≈ 0) or negative261

(when Qr > 0), while zc/Lp = 1 in these cases. The fact that the pile undergoes no tensile axial forces for low safety factors262

is in agreement with previous research that indicated negligible variation in pile axial forces due to tunnelling when the263

service load is close to the total capacity (e.g. Zhang et al. (2011a)). This phenomenon occurs because, prior to the ground264
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movements, the application of a service load P of magnitude approaching the total capacity Qtot mobilises most of the265

soil capacity and causes a degradation of the near-pile tangent soil stiffness (i.e. the reduction factor Rii is close to zero).266

Therefore, excavation-induced forces K∗ucat, which relate to Rii, are negligible in magnitude for very low safety factors,267

while Nc/Qt depends mostly on the head load P .268

Results in Figures 8, 10, and 11 show that the normalised settlement magnitude ∆S/Dz affects the relative response, in269

terms of pile settlement and axial behaviour, of displacement (DP) and non-displacement (NP) piles. The difference between270

DP and NP outcomes is particularly obvious for |∆S/Dz| = 1 (except for SF0 = 1.1, which is the lowest considered safety271

factor), while the response of DP and NP piles is similar for |∆S/Dz| = 10. The reasons for these trends are summarised272

as follows.273

• Prior to ground movements ∆S, displacement piles DP have an unloading soil stiffness as well as residual stresses. For274

DP with SF0 > 1.5, the final loading step D is far from the intermediate step B (that mobilised the ultimate capacity)275

in Figure 7c. For small ground movements (|∆S/Dz| = 1) the pile responds with its tangent re-loading stiffness equal276

to Es,0 (along the segment B’-A in Figure 3b). Thus, the value of zi/Lp of the DP pile does not vary much from the277

average settlement zi/Lp ≈ 0.5 that is typical for an elastic EL analysis. However, zi/Lp shifts towards the pile head278

or base for greater greenfield movements (see |∆S/Dz| = 10) because the soil transitions from the re-loading stiffness279

to the further loading stiffness (A-B in Figure 3b, where tangent stiffness E is given by Es reduced by Rii) and pile280

settlements approach maximum greenfield settlements (zi/Lp tends to 0 or 1) rather than the average settlement281

(zi/Lp ≈ 0.5).282

• For DP piles with SF0 = 1.1 (the lowest considered safety factor), the response is close to NP behaviour because the283

final loading step D is close to the intermediate step B that mobilised the ultimate capacity. Thus, the range of high284

re-loading stiffness (along the segment B’-A in Figure 3b) is rather small and the state of further loading (A-B in285

Figure 3b) is reached for low values of greenfield ground movements.286

• For both NP and DP piles with large values of |∆S/Dz| = 10, the excavation-induced relative soil-pile displacements287

dominate and, thus, the pile loading path prior to excavation has little effect.288

Example application of design charts289

To illustrate the use of the proposed design charts, the case Qr05.con of a floating non-displacement pile (dp = 0.5m,290

L = 20m) embedded in a uniform ground with a representative initial stiffness Es,0 = 24MPa and undrained shear strength291

of 60kPa is considered. From the geometry and soil strength parameters it is estimated that τf = 60kPa, qb,f = 540kPa,292

Qb = 0.11MN, Qt ≈ Qs = 1.88MN, and Qtot = 1.99MN. The value of Dz = 9mm is inferred from Qtot, L/dp and Es. If293

an elastic soil-pile interaction model is not available, engineers may estimate Dz from the load Qtot and the displacement294

influence factor charts of Poulos & Davis (1968).295

The pile is subjected to a linearly increasing profile of greenfield settlements where settlement at the pile head and tip296

are, respectively, 12 and 21mm; therefore, S0 = 12mm and ∆S = −9mm. The main dimensionless groups representative of297

the given scenario are Qr = 5%, SF0, τf,Lp
/τf,0 = 1, ∆S/Dz = −1.298

To estimate pile settlement, depth, and magnitude of post-tunnelling critical tensile forces, the solid red (lighter299

shade in greyscale) curves with no markers in Figures 8-11 are used. First, consider a pile head load of P = 664kN,300

for which SF0 = 3. Using this, the charts give zi/Lp = 0.65, zc/Lp = 0.83, and Nc/Qt = 0.025. Thus, the pile settlement301

is upile = S0 − zi/Lp × ∆S = 17.9mm; the normalised critical depth is zc = 0.83 × Lp = 16.6m; and the maximum post-302

tunnelling tensile force is Nc = 0.025 × Qt = 47kN. Second, consider an unloaded pile (SF0 ≈ 100) for which zi/Lp = 0.53,303

zc/Lp = 0.55, Nc/Qt = 0.145. It follows that pile settlement is upile = 16.8mm, normalised critical depth is zc = 11m, and304

maximum post-tunnelling tensile force is Nc = 273kN.305
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CONCLUSIONS

In this paper, a nonlinear two-stage continuum-based finite element model was proposed to study the problem of tunnel-306

and deep excavation-pile interaction. A hyperbolic soil model for the near-pile stiffness degradation was incorporated that307

also considers the effects of pile unloading. The model was validated against boundary element method results based on an308

assumed elastic perfectly-plastic soil behaviour. Pile ultimate capacity was defined based on predicted loads required for309

extremely large pile settlements.310

Analyses were carried out to evaluate the settlements and internal forces of purely-frictional and floating piles in a uniform311

ground for different levels of greenfield ground settlements. Greenfield settlements that increase linearly with depth were312

used to replicate piles located above tunnels, whereas linearly decreasing greenfield settlements were used for piles more313

distant from the tunnel or adjacent to a deep excavation. The following provides a summary of the main outcomes of the314

research, where the term excavation is used to imply both tunnels and deep excavations.315

• Results illustrated the way in which pile safety factor can increase or decrease excavation-induced pile settlements316

and tensile forces (the latter only for the case of greenfield settlements increasing with depth), confirming the results317

of previous works characterised by nonlinear trends due to the interaction mechanisms. On the other hand, for this318

nonlinear soil-pile interaction model, it was shown that the installation method can significantly affect the axial pile319

response to ground movements, but only for low levels of excavation-induced settlements.320

• The obtained variability of the interaction level (depth at which the affected pile settlement matches the greenfield321

value) and critical level (depth at which the maximum post-tunnelling tensile axial force occurs) was extremely wide322

for both purely-frictional and floating piles. For standard design working loads and unloaded piles, the computed323

maximum values of tensile post-tunnelling axial forces were 25% and 40% of the pull-out (shaft) pile capacity,324

respectively.325

• The nonlinear soil-pile interaction model results are suggested for preliminary design evaluations. Dimensionless charts326

were provided to allow designers to estimate both settlements and critical (tensile) axial forces of piles affected by327

excavations, hence providing the first attempt to provide a rational framework that characterises both displacements328

and internal forces for piles affected by tunnels and deep excavations. The charts account for the normalised greenfield329

settlement level (high and low); relative base capacity (between zero and 40% of the total capacity); ultimate shaft330

friction (constant and linearly increasing with depth); pile safety factor (between 1 and 100), and installation method331

(displacement and non-displacement piles). In particular, the proposed charts are more comprehensive than empirical332

influence zones available in the literature (Kaalberg et al., 2005; Selemetas, 2005), which relate only to the pile base-to-333

tunnel relative location and do not provide quantitative insights as to the effect of excavations on piles. Furthermore,334

in agreement with Korff et al. (2016), results demonstrate that available empirical methods which assume that the335

interaction level occurs at the surface or at two-thirds of the pile length (for purely-frictional and floating piles,336

respectively) may be misleading. Finally, note that these design charts are applicable only for elastic pile behaviour;337

if a pile is susceptible to cracking and softening, then the charts can only be applied up to a state associated with338

pile cracking.339

Finally, the proposed simplified model has limitations, particularly for predicting the response of displacement piles. Note340

that this paper dealt with the effects of ground movements while neglecting the impact of effective stress variations (due to341

the excavations or from pile installation), which can alter the tunnel-pile interactions, particularly for displacement piles in342

sand (Marshall & Mair, 2011). Further work is also needed to better characterise the effects of tunnelling while considering343

installation processes (e.g. driven, jacked, screwed piles), and pile tip geometry (e.g. open/closed-ended).344
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NOTATION
dp pile diameter

ff,i,down limit force in relative down-drag

ff,i,up limit force in relative uplift

νs Poisson’s ratio for soil

qb,f base ultimate stress

τf shaft ultimate stress

uz vertical displacement

uz,max maximum vertical displacement

uz,gf greenfield settlement

uz,gf,0 greenfield surface settlement

upile pile settlement

zc critical level depth

z depth, measured from ground surface

zi interaction level depth

zt depth of tunnel axis

∆S differential greenfield settlement between surface and pile base

Dz relative displacement between soil and pile at failure for an elastic perfectly-plastic soil behaviour

Ep Young’s modulus of pile

Es Young’s modulus of soil

Es,0 initial Young’s modulus of soil

K0 initial stiffness of the load-settlement curve

Lp pile length

Nc critical axial force

P service head load of pile

Qb ultimate capacity of pile base

Qr pile base capacity as a percentage of total capacity

Qs ultimate capacity of pile shaft

Qt ultimate pull-out pile capacity

Qtot maximum capacity of pile;

Rf coefficient of hyperbolic stiffness reduction

S0 greenfield surface settlement

SF0 safety factor

Vl,t volume loss of tunnel

NP non-displacement pile

DP displacement pile

f vector of forces acting on the soil

p external loading vector

u pile displacement vector

uip slider displacement vector

ucat greenfield ground displacement vector

R near-pile stiffness reduction matrix

S pile stiffness matrix

Λ elastic soil flexibility matrix

Λ∗ non-diagonal term of Λ

K∗ soil near-pile stiffness matrix

348
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823–836, doi:10.1680/jgeot.SIP17.P.126.417

Soomro, M. A., Hong, Y., Ng, C. W. W., Lu, H. & Peng, S. (2015). Load transfer mechanism in pile group due to single tunnel418

advancement in stiff clay. Tunnelling and Underground Space Technology 45, No. January, 63–72, doi:10.1016/j.tust.2014.08.001.419

Soomro, M. A., Mangnejo, D. A., Bhanbhro, R., Memon, N. A. & Memon, M. A. (2019). 3D finite element analysis of pile responses to420

adjacent excavation in soft clay: Effects of different excavation depths systems relative to a floating pile. Tunnelling and Underground421

Space Technology 86, No. April, 138–155, doi:10.1016/j.tust.2019.01.012.422

Soomro, M. A., Ng, C. W., Liu, K. & Memon, N. A. (2017). Pile responses to side-by-side twin tunnelling in stiff clay: Effects of423

different tunnel depths relative to pile. Computers and Geotechnics 84, 101–116, doi:10.1016/j.compgeo.2016.11.011.424

Williamson, M. G. (2014). Tunnelling effects on bored piles in clay. Ph.D. Thesis, Cambridge University .425

Williamson, M. G., Elshafie, M. Z. E. B., Mair, R. J. & Devriendt, M. D. (2017a). Open-face tunnelling effects on non-displacement426
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Fig. 1. Relationships between pile and greenfield surface settlements depending on the pile base location (Selemetas,
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Fig. 4. Tunnelling-induced axial and flexural response of an unloaded single pile.
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Fig. 5. Axial response for tunnel-pile offset of 15m: (a)-(b)
tunnelling-induced settlements; (c)-(d) tunnelling-induced
and post-tunnelling force profiles.
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Fig. 6. Axial response for tunnel-pile offset of zero: (a)-(b)
tunnelling-induced settlements; (c)-(d) tunnelling-induced
and post-tunnelling force profiles.
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the settlement Dz; pre-excavation loading sequence of (b) non-displacement and (c) displacement piles.
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Fig. 8. Normalised interaction level depth (zi/Lp) for
varying pile safety factor and greenfield profiles.
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Fig. 9. Ratio between pile and greenfield surface
settlements: inferred from Figure 8 by assuming S0 = 10Dz.
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Fig. 10. Critical level depth (zc/Lp).
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Fig. 11. Post-tunnelling critical axial force (Nc/Qt).
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TABLES 19

Table 1. Considered scenarios: main analyses (top half) and supplemental analyses (bottom half).

Label dp L/dp τf (0) τf (Lp) qb,f Dz

τf (Lp)

τf (0)
Qr =

Qb

Qtot
Supplemental

(m) (−) (kPa) (kPa) (kPa) (mm) (−) (−) Label
Qr05.con 0.5 40 60 60 9×60 9.0 1 5% FL.LD40.con
Qr08.inc 0.5 40 30 90 9×90 9.7 3 8% FL.LD40.inc
Qr40.con 0.5 40 5 5 9×60 1.3 1 40% CO.LD40.con

0.5 40 60 60 0 9.0 1 0% FR.LD40.con
0.5 40 30 90 0 9.4 3 0% FR.LD40.inc
0.5 10 60 60 9×60 6.0 1 0% FR.LD10.con
0.5 10 60 60 9×60 7.4 1 18% FL.LD10.con
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Fig. S1. [Supplemental data] Normalised interaction level
depth (zi/Lp).
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Fig. S2. [Supplemental data] Ratio between pile and
greenfield surface settlements.
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Fig. S3. [Supplemental data] Critical level depth (zc/Lp).
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Fig. S4. [Supplemental data] Post-tunnelling critical axial
force (Nc/Qt).
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