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Abstract

The computational procedure of the so-called truncated indirect boundary-element method
is derived. The latter, which is non-local in space and time, represents a rigorous generally
applicable procedure for taking into account a layered halfspace in a nonlinear soil-structure
interaction analysis. As an example, the nonlinear soil-structure interaction analysis of a
structure embedded in a halfspace with partial uplift of the basemat and separation of the

side wall is investigated.

1. Introduction
Nonlinear soil-structure interaction analysis is presented in detail in Reference 1. For
a surface foundation, the so-called indirect boundary-element method is described in Refer-
ence 2, where Green's functions in the time domain are used for the layered halfspace. In the
present paper the formulation is expanded to an embedded foundation. As discussed in Refer-
ence 1, the calculation is based on the free-field motion determined for the Tinear soil. The
free field consists of the continuous layered halfspace without any excavation. The motion
has to be determined only on the surface which later on will form the structure-soil inter-
face. In contrast, in the system ground (which actually represents the subsystem of the soil),
the excavated part is not present. The corresponding motion is referred to as scattered mo-
tion.

2. Truncated Indirect Boundary-Element Method

The structure-soil interface S of the embedded foundation is discretised using boundary
elements compatible with the adjacent finite-element model of the structure. The nodes lo-
cated on S are denoted as b. In Figure 1, the nomenclature used is illustrated for the in-
plane motion, i.e. for two dimensions. It is straightforwardly extended to three dimensions.

The formulation for the nth step leading from time (n-1)At, where all variables are
known, to time nAt proceeds as follows. The displacements {u(s,t')}n on S containing the
three elements u(s,t')n, v(s,t')n and w(s,t')n in the directions of the co-ordinate axes x,
¥, z (Figure 1b) are introduced first. In the expressions above, the subscript n denotes the
nth time step, t' indicates the time measured from the start of this time step (0 < t' < At)

and s represents symbolically a location on S. Introducing the shape functions [N(s)],
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{u(s,t')}, isformulated as
{u(s,t")h, = [N(s)] Lu (t')}, (1)
where {ub(t')}n denotes the displacements of the nodes b relative to the specified scattered
i g
motion (ub(t')}n
1 t 1 )
fug(t)3, = Qup(t9)), - (ud(t")} (2)

The superscripts t and g refer to the total and scattered motions, respectively. In an ex-

n

plicit algorithm, {ub(t')}n can be calculated from the known motion at (n-1)At (central-dif-
ference operator).

In the indirect formulation, a fictitious loading pattern acting on that part of the
free field which does not form the system ground is introduced. These loads {p(s',t')}n with
the three components p(s‘,t')n, q(s‘,t')n and r(s',t')n are assumed to act on the source sur-
face S' (see Figure 1). S' is always offset towards the soil region to be excavated, in the
limiting case by an infinitesimal amount. The loads act on the dynamic system of the free
field consisting of the continuous soil, i.e. on the layered halfspace without excavation.
The source loads assumed to be constant over each time step (see Figure 2a) are specified as

{p(s'>t")}, = [L(s")] {pd, (3)
{p}n are the loads of the nth time step acting in nodes on S', which are, in principle, in-

dependent of those on the structure-soil interface, and [L(s')] represents the selected inter-
polation functions, with s' denoting a location on S'. The number of parameters in {p}n has
to be larger than or equal to that in {ub}n. Discontinuities can be introduced as shown in
Figure lc, and time variations other than the selected constant one could be used in equation
(3) (see Reference 2 for a linear time variation).

In the indirect formulation, the displacements and tractions caused by the source loads
have to be calculated at any time t on the surface S, which subsequently will form the struc-

ture-soil interface. For t = (j-1)At+1'(j<n) the displacements {up(s,t‘)}j are written as

J
{u(s,7); = I [g(s5,T")] {p}; (4)

p J i=1 J-1

where [gu(s,T')] represents the Green's functions for the displacements caused by unit

J=i
nodal source loads acting during the ith time step. The time variation of one component of
(g, (s, )]J'
tractions {tp(s,T')}j with the components tpx(s,r')

5 is schematically shown in Figure 2b. Analogously, the corresponding surface

St LT, ,1'). (Fi
P py(s )J and tpz(s T )J (Figure 1b)
are formulated as
J
t (s, T'")}., = I LT Y], .
(st Dy = T lag(s,m0]y 4

{p}i (5)
As only a finite number of load intensities can be introduced at distinct time steps,

the displacement boundary condition on the structure-soil interface S cannot be satisfied

exactly by the displacements caused by the source Toads (i.e. in every point on S for every

t), but only in an average sense as

n At T
oS ] Ms,t) ] (lu(s,t')}. - {u(s,1)}.) ds dt* = 0 (6)
i=1 0§ n-j P J J
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The matrix [w(s,f')]n_j denotes the weighting functions applicable to the jth time step.
Various choices are possible for [W(S,T')]n_j. In the truncated indirect boundary-element
method, it is selected as non-zero for the nth time step only (i.e. for j = n) and equal to
the matrix of the Green's functions for the surface tractions

[H(s,t')], = [g(ssbt-t')], (7)
Then, equation (6) is transformed to

At

g é [gt(s,At—t')]Z ({up(s,t')}n - {u(s,t")} )ds dt' = 0 (8)

which represents an integral over the nth time step only. Substituting equations (4) (formu-
lated for j = n) and (1) in equation (8) Teads to

n
5[6), {0} = () "
where1=
At T
(615 = [ Laglst=t))]g [9,(5:)]y 5 s ot o0
at°
Gy, = J [ [oy(ssnt-t')]] [N(s)) ds fu(t')}, dt' i

0
[G]n-i is the generalised flexibility matrix. Moving the known values to the right-hand side
equation (9) is rewritten as

(6], (P}, = (U}, - (D}, (12)
with =
0y = . [61,_; {p3; (13)

From virtual work considerations, the concentrated Toads at time nAt are obtained as

T 1
{Rb}n = é [N(s)] {tp(s,t = At)}n ds (14)
Substituting equation (5) formulated for j=n in equation (14) results in
n
- i 15
Ry}, = L} [T),; (P} (15)
where
, T
[Tyeq = ] Laylsst! = 8611 g (MS)] 08 (16)

In contrast to a surface foundation (Reference 2), the source loads of all previous time
steps contribute to the concentrated loads at time nAt for an embedded foundation. Solving
equation (12) for {p}n and substituting in equation (15) finally results in

-1
LIRS P T (11 " T
(Ryyy = [T1g (815, = [Tl (615" 0%, + [Tl (9}, (17)
To gain further physical insight, {ub(t')}n is expressed, as an example, as
{ug (t1)},, = Fo(t") ugdy + £1(81) ah, + ft) i, (18)

with known functions fi(tl) (i = 0,1,2). Substituting equation (18) in equation (11) then
leads to
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{Ul, = U], fud, + (U] {Gb}n + [U1, {H), (19)

where
At T

(U1 = [ Lasaat-t)] IhGs)] ds fy(e1) dt (20)
0]

Equation (19) transforms equation (17) to
T

T (ay-1 . T -1 N -
Ryl = ISy, pdy + [T1) 18151 [u, Ciyd, + [Thg (6131 1U], Gighy, - [TIg(61 0
n-1 T
+ Z [T]n—i {p}1 (21)
i=1
with the instantaneous stiffness matrix [Sbb]0 defined as
-1
[Spplo = [T10 161511V, (22)

This formulation should be compared to the ones for the computational procedure of a
surface foundation in the time domain (Reference 2) and of an embedded foundation in the fre-
quency domain (Figure 11 of Reference 3).

3. Embedded Foundation with Separation of Side Wall and Uplift of Basemat
As an example, the simple structure shown in Figure 3 having a cylindrical foundation

embedded in an elastic halfspace, is examined for a vertical earthquake. In the area of con-

tact between the structure and the soil, it is assumed that no tension can arise. This leads

to a local nonlinearity consisting of the partial separation of the side wall and of the par-
tial uplift of the basemat.

The structure, which represents a typical nuclear-reactor building, is modelled by a
single degree of freedom in the vertical direction with a fixed-base frequency of 10 Hz. The
mass m_ of the structure equals 50-106 kg and that of the base, s 25-106 kg. The ratio of
the viscous damping of the structure equals .05. The rigid cylindrical base of depth h = 10 m
and radius a = 20 m is embedded in the visco-elastic halfspace having a shear-wave velocity
¢, = 500 m/sec, a mass density p = 2.4.10° kg/m* (which results in a shear modulus G= .6-109
N/m?), Poisson's ratio v = .33 and a hysteretic damping ratio ¢z = .05. The control motion of
the vertically propagating waves is defined at the free surface and consists of an artificial
time history of 10 sec duration with a response spectrum which closely follows that of the
US-NRC Regulatory Guide 1.60 normalised to .27g.

The equations of motion in the time domain are formulated as (Figure 3)

t t t

m. 0 Wo(t) ¢ -c wo(t) k -k w_(t) 0
N e O I e D D
0 g Wo(t) -c c wo(t) -k k wo(t) —Ro(t)

where wz(t) and wz(t) are the total vertical displacements of the mass point and the base,

respectively. Ro(t) is the interaction force of the soil. The structure's spring and dashpot
coefficients are denoted as k and c.
The structure-soil interface is discretised with 10 boundary elements: the side wall

with 5 cylinders of equal height and the basemat with 5 annular rings of equal area. The
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nodes b are selected in the centres of the boundary elements, where the radial and vertical
components of the displacements {ub(t)} are introduced. The shape functions [N(s)] applicable
to the boundary elements are selected as piecewise constant over each element.

The truncated indirect boundary-element method is used. To calculate Ro(t) from the
interaction forces {Rb(t)} equilibrium is formulated as

Ry(t) = (AT (R, ()} (24)
where the vector of kinematic transformation {A} contains only zeroes and ones. The source
line S' is offset from the structure-soil interface S by an infinitesimal amount, and the
nodes associated with the Toading coincide with those of the boundary elements. Over each
source with the same dimension as the adjacent boundary element, the two components of the
loads are constant, and thereby [L(s')] is defined.

As the soil is assumed to remain elastic, the scattered motion {ug(t)} can be calculated
from that of the free field {ug(t)} working in the frequency domain (Reference 4). While only
vertical components will arise in {ug(t)}, {ug(t)} contains, in general, radial and vertical
components.

The computational procedure for the nth time step (from (n-1)At to nAt) proceeds as fol-
lows. The discussion can be restricted to the analysis of the base and the adjacent soil. All
variables are known up to time (n-1)At. From the total motion at the centre of the basemat at
time (n-1)At, the vertical displacement in the same point at time nAt (w;)n is calculated.
The displacements of the nodes b relative to the scattered motion are thus determined as

{ugd, = (A - W (25)

where {A} is discussed in connection with equation (24). The interaction forces, formulated
according to the truncated indirect boundary-element method, follow from equation (17). If
tension arises for the components of {Rb}n in the direction normalt to the structure-soil in-
terface, the corresponding boundary elements of the soil lose contact with the adjacent base
of the structure. For the corresponding nodes, the normal and tangential components of the
forces are then set equal to zero, which modifies {Rb}n. This also affects the source-Toad
parameters {p}n. Solving equation (15) for {p}n leads to

n-1
o}, = (M7 (- I
i=

T
n-1i

Pl + Ry (26)
This modified {p}n is used in all subsequent time steps, while the modified {Rb}n is used to
calculate (RO)n (equation (24)), which represents the resulting contribution of the soil's
interaction forces to the equilibrium equation of the centre of the basemat. This completes
the calculation of the nth time step when an explicit integration scheme is used. The use of
an implicit scheme requires iterations before proceeding to the next time step.

In all calculations using the boundary-element approach, an implicit scheme with a time
step At = .001 sec is chosen.

To be able to make comparisons, a linear analysis in the frequency domain based on the
indirect boundary-element method is performed (Reference 3), using the same spatial discreti-
sation. As an example of an intermediate result, the dynamic-stiffness coefficient in the
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vertical direction of the rigid foundation is presented in Figure 4. This coefficient Sgo
refers to the system free field, i.e. to the continuous soil. It is equal to the sum of the
coefficients of the system ground Sgo and of the excavated part of the soil Sgo

f _ <9 e
S00 = soo + Soo (e7)
Sgo is nondimensionalised as
f .
Seo = Klk+i ac) (28)

where the static-stiffness coefficient K is equal to 7.64 Ga, and where a, denotes the dimen-
sionless frequency defined as

a, = w a/cs (29)
and k and c are the spring and damping coefficients. The high-frequency behaviour can easily
be determined under the assumption of waves radiating normal to the structure-soil interface.
This asymptotic behaviour, obtained by substituting Hankel's asymptotic expansions valid for
large arguments, is plotted as a dashed 1ine in Figure 4. The agreement is good.

For purpose of checking, a linear analysis is also performed working exclusively in the
time domain using the truncated indirect boundary-element formulation. The results agree ex-
tremely well with those obtained in the frequency domain (within 3%). The computational ef-
fort is, however, increased by two orders of magnitude.

As an example of the temporal variations of Green's functions the vertical displacement
gu(E) and the vertical surface traction gt(f) in the upper of the two Gauss points of inte-
gration of the 3rd boundary element indicated in Figure 3 are plotted in Figure 5. They are
due to a vertical unit source lToad acting on the same source element. The dimensionless time
t is introduced as

t=t cs/a (30)
The initial value and the initial slope in the time domain (%t = 0+) can be checked by using
the corresponding asymptotic values in the frequency domain (a0 + «) (Reference 5). The in-
fluence of the arrival of the shear wave travelling across the foundation is clearly visible
at © = 2.

The displacements of the scattered motion {ug(t)} in the vertical and radial directions
in the centre of element 1 shown in Figure 3 are presented in Figure 6. The radial component
is, as expected, small.

The final results of the nonlinear analysis are addressed next. The first 2.5 sec of the
time histories of the total acceleration w:(t) of the mass point representing the structure
and of the spring force of the structure are shown in Figures 7 and 8. Compared to the re-
sults of the linear analysis, the calculation taking uplift and separation into account re-
sults in a slightly larger response and exhibits somewhat higher frequencies. As can be seen
from the time history of the number of boundary elements which Tose contact as presented in
Figure 9, a strong nonlinear behaviour occurs.

Finally, the stability of the algorithm is briefly discussed. To reduce the computation-
al effort, it is tempting, in the truncated indirect boundary-element method, to retain only
a limited number of terms in the two discretised convolution integrals on the right-hand side

of equation (21). Besides decreasing the accuracy, this also affects the stability behaviour.

— 446 — BK 1/1*



This is verified in Figure 10, where the time history of the interaction force Ro(t) is

examined. The smaller the number of retained terms, the earlier the algorithm becomes un-
stable.
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