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A direct numerical simulation approach is used to investigate the effective non-linear viscoelastic stress

response of non-gap-spanning magnetic chains suspended in a Newtonian fluid. The suspension is

confined in a channel and the suspended clusters are formed under the influence of a constant external

magnetic field. Large amplitude oscillatory shear (LAOS) tests are conducted to study the non-linear

rheology of the system. The effect of inertia on the intensity of non-linearities is discussed for both

magnetic and non-magnetic cases. By conducting magnetic sweep tests, the intensity and quality of the

non-linear stress response are studied as a function of the strength of the external magnetic field. The

Chebyshev expansion of the stress response is used to quantify the non-linear intra-cycle behaviour

of the suspension. It is demonstrated that the system shows a strain-softening behaviour while the

variation of the dynamic viscosity is highly sensitive to the external magnetic field. In a series of strain

sweep tests, the overall non-linear viscoelastic behaviour of the system is also investigated for both a

constant frequency and a constant strain-rate amplitude. It is shown that the intra-cycle behaviour of

the system is different from its inter-cycle behaviour under LAOS tests. Published by AIP Publishing.

https://doi.org/10.1063/1.5009360

I. INTRODUCTION

The bulk rheology of electrorheological (ER) and magne-

torheological (MR) fluids can be readily adjusted by applying

an external electric and magnetic field, respectively.1,2 This

makes these fluids suitable choices for active control mech-

anisms, e.g., dampers and actuators.3–5 Under the influence

of an external field, a micro-structure is formed by particle

aggregates aligned with the direction of the field. This micro-

structure can lead to either a significant viscosity enhance-

ment or a solid-like behaviour depending on the strength of

the induced bonds and the concentration of the solid parti-

cles.6 Generally, magnetic bonds are stronger in a conventional

magnetorheological (MR) fluid than electric bonds in an elec-

trorheological (ER) fluid;7 therefore, MR fluids have become

more attractive in recent years.

Under a steady shear test, as long as the static yield

stress8 of an MR fluid is not exceeded, there will not be any

flow. Above this static yield stress threshold, the static fric-

tional force exerted by ending particles in the micro-structure

is overcome9 and an infinite strain is possible.10 By further

increasing the shear strain, a strain-softening behaviour is

observed due to breakdown of the magnetic clusters. When a

field-induced (chain-like) structure is strained to a rather large

extent, it becomes unstable and eventually breaks apart.11 At

this point, the MR fluid flows with a finite strain-rate and the

a)E-mail: mtmanzari@sharif.edu

associated stress is the so-called dynamic (or Bingham10) yield

stress.12 Both the static and dynamic yield stresses are func-

tions of intensity of the magnetic field, particle concentration,

and particle size distribution.6,13,14 In the post-yield state, the

behaviour of MR fluids is generally shear-thinning.15,16

Under an oscillatory shear test, MR fluids exhibit a vis-

coelastic behaviour with moduli that primarily depend on

their micro-structure.17 The linear viscoelastic behaviour of

MR fluids has been thoroughly investigated especially for

the pre-yield state.18,19 Nevertheless, MR fluids exhibit a lin-

ear behaviour only in a very narrow range of strain ampli-

tude.8,20 Large Amplitude Oscillatory Shear (LAOS) tests can

be utilized to investigate the nonlinear rheological behaviour

of MR fluids. The LAOS test reveals that MR fluids can

be classified as type III (complex fluids) which exhibits a

strain-softening/shear-thinning behaviour with a slight over-

shoot in the loss modulus.8,21 The nonlinear behaviour of field

responsive (ER and MR) fluids is commonly attributed to the

breakdown20,22 and rearrangement23 of the particle clusters.

As discussed in Ref. 24, an MR fluid behaves as an

elasto-visco-plastic material25 whose micro-structure has the

principal role in determining its bulk rheology. This role can

be explored using a particle-level numerical simulation.26,27 In

the literature, numerical simulation has been widely employed

to investigate various aspects of the MR fluids, e.g., time

scales associated with magnetic chain formation,28 parti-

cle aggregation in a poly-disperse magnetic suspension,12

micro-structural evolution in a Poiseuille flow,29 and magnetic
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clusters exposed to an oscillatory shear test.19 Theoretical

models7,30,31 are also useful for evaluating the storage modu-

lus in the linear region17,19 and estimating the dynamic yield

stress.16

In the majority of previous particle-level simulations and

theoretical models addressing the effective rheology of a field-

responsive fluid, the field-induced chains were considered to

be gap-spanning with ending particles stuck to the channel

walls.19,32 For a rather large strain amplitude, these gap-

spanning clusters undergo progressive rearrangements33 and

eventually break up into smaller non-gap-spanning chains by

further increase in the strain amplitude. Since a magnetic chain

would most probably break from its tip,34 the blockage ratio

associated with the shortened clusters is still large enough to

significantly affect rheology of the system. However, the indi-

vidual contribution of these clusters to the bulk rheology has

been rarely addressed in the literature. A successful model-

ing of these broken non-gap-spanning magnetic chains needs

a two-way coupling between the suspending fluid flow and the

suspended solid particles, which necessitates utilization of a

direct numerical simulation (DNS) approach.35

Recently, using the DNS approach, it has been shown that

non-gap-spanning chains can also contribute to the storage of

energy36 as well as enhance the effective viscosity.37,38 In that

work,36 a confined periodic array of non-gap-spanning mag-

netic chains was suspended in a Newtonian fluid exposed to a

small amplitude oscillatory shear (SAOS). It was shown that

the system behaves as a viscoelastic fluid. It was also discussed

how inertia could hinder elasticity, an effect which can be con-

trolled by adjusting the intensity of the external magnetic field.

The main goal of the present work is to qualitatively investi-

gate the non-linear stress response of the non-gap-spanning

magnetic clusters. To this end, an array of suspended mag-

netic clusters similar to the systems presented in the previous

studies36,37 is simulated under LAOS and the effective stress

response is studied following the methodology introduced in

the literature.39–41 In the following, first the physical model

and the governing equations are briefly described. Then, the

results of the LAOS tests are presented and the non-linearities

in the intra-cycle and overall rheology of the system are dis-

cussed. The methodologies used to characterize the results of

the LAOS tests are also briefly surveyed during discussions.

II. PHYSICAL MODELING

A direct numerical simulation (DNS) approach is used

to investigate the behaviour of a suspension of paramagnetic

solid particles forming non-gap-spanning chain-like clusters.

Here, the physical system consists of a Newtonian fluid and

a number of (para-)magnetic solid particles confined between

two parallel walls. The system is subjected to a large ampli-

tude oscillatory shear (LAOS) test as schematically shown in

Fig. 1(a). In order to avoid a prohibitive computational cost,

the study is performed on a two-dimensional periodic domain

as shown in Fig. 1(b). The computational domain contains N

neutrally buoyant circular cylinders initially arranged in a ver-

tical row with the middle one being placed at the center. These

solid particles are magnetized under the influence of an exter-

nal magnetic field with a flux density of B0. For the current

setup, in order to study the shear rheology of the system, the

spatially averaged stress response is measured as

σ̄xy =
1

L

∫
y=0

σxy(x)dx, (1)

whereσxy is the local value of the shear stress. In the following,

the over-bar sign is omitted for brevity.

In the present work, the smoothed particle hydrodynamics

(SPH) method38 is used to solve the governing equations for

both the fluid flow and the magnetostatics. For fluid flows, in

the Lagrangian framework of the weakly compressible SPH

method,42 the governing equations are the conservation of

momentum

ρ
dv

dt
= −∇p + η0∇

2
v (2)

and the continuity
dρ

dt
= −ρ∇ · v, (3)

where a simple equation of state, p − p0 = c2
0
(ρ − ρ0), relates

density and pressure. Here, the velocity vector v is subject

to the no-slip boundary condition at a solid surface. In these

equations, ρ is the density, p is the pressure, and η0 denotes

the dynamic viscosity of the suspending fluid. Also, c0 is the

artificial speed of sound and subscript 0 denotes the initial state

in the fluid domain.

For a two-dimensional magnetic field, in the absence of

a free current, the Maxwell equations43 can be combined into

the Poisson equation for the magnetic potential, φ, as

∇ · (µ∇φ) = 0. (4)

In this way, the magnetic field intensity is calculated as

H = ∇φ. Far below the magnetic saturation limit,44 constant

magnetic permeabilities are considered for the solid bodies

(µs) and the fluid domain (µ0). The magnetic flux density is

calculated as

B = µH. (5)

FIG. 1. Schematic of (a) the suspension

of magnetic solid particles shearing in

a channel with oscillating solid walls

and (b) the initial configuration of the

particles in the computational domain.

The computational domain is marked by

dashed lines in (a).
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The magnetic field is subject to the conservation of B at the

fluid-solid interface. It must be noted that the external mag-

netic field is imposed by setting φ at the solid walls so that

B0 = µ0∇φ as explained in the literature.35,38,45

Solid bodies are moved using Newton’s law of motion as

Ms

dvs

dt
= F

m
s + F

h
s + F

r
s (6)

and

Is

dΩs

dt
=M

m
s + M

h
s , (7)

where Ms and Is are the total mass and moment of inertia

of solid body s, respectively. Also, vs and Ωs are the lin-

ear and angular velocities of s, respectively. The terms on

the right-hand side of Eq. (6) are the magnetic force, F
m,

the hydrodynamic force, F
h, and the repulsive force due to

solid-solid collisions, F
r . In a similar way, the terms on the

right-hand side of Eq. (7) correspond to the magnetic and

hydrodynamic effects. The full description of the numerical

method and boundary conditions was presented in an earlier

article.38

A. Simulation details

In all test cases solved in this paper, circular cylinders

are of the same radius (a); the number of solid particles ini-

tially arranged in a chain, N = 9, the non-dimensionalized

channel height, H/a = 20, and the non-dimensionalized peri-

odicity length, L/a = 8, are kept constant. This gives a solid

volume fraction of Nπa2/LH ≈ 0.177. In order to facilitate

the numerical simulation, solid bodies are initially arranged

with a vertical spacing equal to the discretization length,

δp. Here, using a rather small ratio for the magnetic perme-

abilities (µs/µ0 = 1.1), converged solutions are obtained for

a/δp = 18.75. As discussed previously, when exposed to an

external magnetic field, this system exhibits a viscoelastic

behaviour. The shear rheology of such a system can be investi-

gated using an oscillatory shear test. This study aims to extend

the results obtained in the previous work36 to LAOS.

In this work, inertia is quantified at the particle scale by

defining the particle Reynolds number as Rep = ργ̇0a2/η0.

Also, as discussed in the literature,15,46 for a steady shear

flow, the viscous force can be non-dimensionalized against

the magnetic force using the Mason number defined as

Mn =
γ̇0η0

µ0 β2H2
0

, (8)

where γ̇0 = 2U0/H, β = χ/(3 + χ) is the effective polarization,

and χ = (µs ☞ µ0)/µ0 is the magnetic susceptivity. On the other

hand, for an oscillatory shear test, since the time scale can be

properly determined by the frequency of oscillations (ω), a

modified non-dimensional group is defined and used in the

present work,

Mn∗ = Mn
ω

γ̇0

. (9)

It must be noted that in Sec. III B, since H0 is the variable

andω is constant, (Mn∗)☞1 is used as a measure of the external

magnetic field. Also, in Sec. III C, whereω is the variable and

γ̇0 is constant, Mn as defined in Eq. (8) is used as a measure

of the external magnetic field.

B. LAOS theory

The stress response of a viscoelastic material to an oscil-

latory shear strain, γ(t) = γ0 sin(ωt), is harmonic with the

same frequency,ω, only for a rather small strain amplitude. In

a more general representation which is also valid for a LAOS

test, the stress response can be described using the Fourier

series as47,48

σxy = γ0

∑

n:odd

|G∗n |(ω, γ0) sin(nωt + Ψn). (10)

Here, G∗n and Ψn are the complex modulus and phase angle

corresponding to the nth harmonic, respectively. For a SAOS

test, only the first harmonic is important, while for a LAOS test,

higher harmonics are also significant. In this work, using the

subroutines provided in the MITlaos40,49 program, the stress

response is calculated using only the first, third, and fifth har-

monics. Normally, amplitudes of the higher harmonics are

either negligible or an order of magnitude smaller than the

third harmonic. It should be noted that for an odd-symmetric

stress response, even harmonics are all negligible.50

The stress response can be decomposed using its sym-

metry properties,40 and considering the fact that elasticity and

viscosity are related to the storage and loss of energy, respec-

tively, the elastic stress, σ′, and the viscous stress, σ′′, are

obtained as50

σ′xy =
σxy(γ, γ̇) − σxy(−γ, γ̇)

2
(11)

and

σ′′xy =
σxy(γ, γ̇) − σxy(γ,−γ̇)

2
. (12)

In this way, dσ′/dγ and dσ′′/dγ̇ are measures of the

local (tangent) elastic modulus and dynamic viscosity, res-

pectively.

In order to quantify the non-linear properties of the (intra-

cycle) rheology of the system, it is more appropriate to express

the elastic (and viscous) stress as a polynomial series40,50

rather than using the above mentioned Fourier Transform (FT)

rheology.39 To this end, a framework has been introduced by

Ewoldt et al.48 that facilitates the physical interpretation of the

non-linear rheology of a material under LAOS.51 The idea is

to expand σ′xy and σ′′xy in series of the Chebyshev polynomials

of the first kind, Tn, as48

σ′xy(γ) = γ0

∑

n:odd

en(ω, γ0)Tn(
γ

γ0

) (13)

and

σ′′xy(γ̇) = γ̇0

∑

n:odd

vn(ω, γ0)Tn(
γ̇

γ̇0

), (14)

where en = G′n(−1)(n−1)/2 and vn = η
′
n. Considering only the

first and third harmonics in the stress response, the resulting

polynomials are

σ′xy(γ) ≈ (e1 − 3e3) γ + 4e3

γ3

γ2
0

(15)

and

σ′′xy(γ̇) ≈ (v1 − 3v3) γ̇ + 4v3
γ̇3

γ̇2
0

. (16)
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According to Eqs. (15) and (16), e3 and 33 determine the vari-

ation of the tangent elastic modulus (dσ′/dγ) and the tangent

dynamic viscosity (dσ′′/dγ̇) in a strain-cycle; a positive e3

leads to an intra-cycle strain-stiffening behaviour and an intra-

cycle shear-thickening behaviour is associated with a posi-

tive 33. Negative e3 and 33 also correspond to the intra-cycle

strain-softening and shear-thinning behaviours, respectively.

III. RESULTS

In the following, first, the effect of inertia on the non-linear

rheology of the system is investigated for both non-magnetic

and paramagnetic solid particles. In Secs. III B and III C,

the results of magnetic sweep tests (changing the intensity of

the external magnetic field while keeping all other parameters

constant) and strain sweep tests are presented, respectively.

A. Non-linearity and the effects of inertia

It is easy to show that for a linear stress response, the

Lissajous-Bowditch curve,52 a plot of stress versus strain

(-rate), is of an elliptical shape. By increasing the strain ampli-

tude in a LAOS test, higher harmonics become more significant

and non-elliptical Lissajous-Bowditch curves are obtained.

These curves are helpful for a qualitative interpretation of the

results by investigating the variation of the stress response in a

complete strain(-rate) cycle.50,52 In Fig. 2, Lissajous-Bowditch

curves are shown for γ0 = 1.2/πwithω = 2π rad/s and different

particle Reynolds numbers. Here, 0.0015 ≤ Rep ≤ 0.0188 is

changed by altering density while all other parameters are kept

constant. Results are presented for both the non-magnetic case

and the magnetic case with Mn∗ = 0.419.

Previously,36 it was discussed that for a purely viscous

system (or a viscoelastic system with weak elasticity) with

finite inertia, an obtuse phase angle, i.e.,Ψ1 > π/2, is obtained.

The larger the Reynolds number, the larger the phase angle

is. The effect of inertia on the orientation of the Lissajous-

Bowditch curve is schematically shown in Fig. 3(a). For the

present test cases in the absence of an external magnetic field,

the stress response is almost purely viscous and a similar

behaviour is observed in Fig. 2(a). Also for a viscoelastic

system, by increasing inertia, the phase angle increases and

consequently the effective elasticity (G′) is decreased36 and

the Lissajous-Bowditch curve rotates in the clockwise direc-

tion as schematically shown in Fig. 3(b). For the present test

cases with Mn∗ = 0.419, the stress response is viscoelastic and

a similar behaviour is observed in Fig. 2(c). It is also worth

FIG. 2. Lissajous-Bowditch curves obtained for γ̇0 = 2.4 s−1, ω = 2π rad/s, and different Reynolds numbers, with B0 = 0 for (a) and (b) and Mn∗ = 0.419

for (c) and (d).
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FIG. 3. Schematic representation of the Lissajous-

Bowditch curves showing the effect of inertia for

purely viscous (a) and viscoelastic (b) cases and the

graphical definition of elastic moduli (c) and dynamic

viscosities (d).

noting that for the non-magnetic case, by increasing inertia,

the shape of the Lissajous-Bowditch curves becomes more

like an ellipse. This is a sign of reduction in the intensity of

the non-linearities.

Also using the Lissajous-Bowditch curves, the variation of

σxy in a complete LAOS strain(-rate) cycle can be studied and

the non-linear response of a system can be understood.40 The

geometrical representation of the elastic modulus at zero strain,

G′
M
= (dσ/dγ)|γ=0, the elastic modulus at maximum strain,

G′
L
= (σ/γ)|γ=γ0

, the dynamic viscosity at zero strain-rate,

η ′
M
= (dσ/dγ̇)|γ̇=0, and the dynamic viscosity at maximum

strain-rate, η ′
L
= (σ/γ̇)|γ̇=γ̇0

, are shown in Figs. 3(c) and 3(d).

The value of average elastic modulus, G′, is always between

G′
M

and G′
L

and can be calculated from the area enclosed by the

viscous Lissajous-Bowditch curve (plot ofσ versus γ̇). A sim-

ilar statement is also valid for η ′, η ′
M

, and η ′
L
.50,53 As shown in

Fig. 2(c) for Mn∗ = 0.419, G′
L

is smaller than G′
M

and therefore

the non-linear viscoelastic stress response exhibits a strain-

softening behaviour in a LAOS cycle. Also in a LAOS cycle,

the stress response appears to be shear-thinning (η ′
L
< η ′

M
)

for both the non-magnetic case and the magnetic case with

Mn∗ = 0.419 as observed in Figs. 2(b) and 2(d). As seen in

Fig. 2(b), the area enclosed by σxy ☞ γ̇, which is a measure of

|G′ |, increases by increasing Rep, while this trend is reversed

for Mn∗ = 0.419. As shown in the previous work,36 the rea-

son is that for a non-magnetic case (or cases with a weak

magnetic field intensity in which inertial effects are dominant

and Ψ1 > π/2), the measured value of |G′ | is an increas-

ing function of Rep. On the other hand, for cases in which

magnetic forces dominate inertia (Ψ1 < π/2), |G′ | is a decreas-

ing function of the Reynolds number. Here, this is seen for

Mn∗ = 0.419.

Generally in a LAOS test, the intensity of the third har-

monic normalized with the amplitude of the first harmonic,

|G∗
3
|/|G∗

1
|, can be considered as a measure of the nonlinearity

of the stress response. Figure 4 presents the variation of

|G∗
3
|/|G∗

1
| as a function of Rep for the cases shown in Fig. 2.

The ratio |G∗
3
|/|G∗

1
| significantly decreases by increasing Rep

for a non-magnetic suspension. However, the intensity of non-

linearities is only affected weakly by inertia for a finite external

magnetic field with Mn∗ = 0.419. The arrangement of the

solid particles is shown in Fig. 5, which corresponds to the

instance that solid particle P1 (bottom tip particle) has reached

its maximum horizontal displacement. This is equivalent to the

maximum (tilting) deflection of the chain of solid particles in

a cycle. For the non-magnetic case, it is observed that the par-

ticle chain loses its symmetric shape (centered in the channel)

for Rep = 0.0038, while with Mn∗ = 0.419, the symmetry is

retained for all Reynolds numbers. Such an asymmetry can

be initiated by any minute asymmetry in the discretization

of the computational domain. In practice, any unsymmetrical

FIG. 4. |G∗
3
|/ |G∗

1
| as a function of Rep for γ̇0 = 2.4 s−1 and ω = 2π rad/s.
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FIG. 5. Position of solid particles obtained for γ0 = 1.2/π and ω = 2π rad/s.

Results obtained for the non-magnetic cases are shown with light color while

dark circles depict the cases with Mn∗ = 0.419. (a) Rep = 0.0038; light:

ωt = 2.52π, dark: ωt = 2.38π. (b) Rep = 0.0094; light: ωt = 2.52π, dark:

ωt = 2.40π. (c) Rep = 0.0188; light: ωt = 2.56π, dark: ωt = 2.44π.

force can initiate, support, and magnify such an asymmetry.

However, for Mn∗ = 0.419, magnetic bonding forces dom-

inate the hydrodynamic interaction between solid particles

and even for Rep = 0.0038, the initial symmetry is almost

undisturbed.

In Fig. 6, time histories of the spatial displacement of

P1 and P5 (the middle solid particle in the chain) are shown

for the non-magnetic case with Rep = 0.0038 and 0.0188.

In the non-magnetic case, solid particles are subject to the

hydrodynamic interaction54 that opposes the separation of

solid particles while the chain is strained. In this case, the

net hydrodynamic force is attractive. On the other hand, when

particles are forced to return to the vertical arrangement, the

net hydrodynamic force is repulsive. This leads to a peri-

odic vertical motion of the solid particle as seen in Fig. 6(b)

for P1. As long as the micro-structure retains its vertical

symmetry, the net force is (almost) zero for P5. However, once

P5 moves away from the centerline, it is subject to non-zero

horizontal and vertical forces. There is also another mech-

anism which works to bring P5 back to the centerline; at a

finite Reynolds number, a lift force acts on a solid body sus-

pended in a (Newtonian) shear flow.55 For Rep = 0.0038, the lift

force is not strong enough to readily compensate for the verti-

cal force exerted on P5 due to unbalanced lubrication forces.

As a result of the superposition of all active forces, a peri-

odic vertical motion is observed. For higher particle Reynolds

numbers, once P5 is displaced, the lift force is large enough to

promptly bring it back to the centerline. In this work, the results

are almost qualitatively similar for Rep = 0.0094 and 0.0038.

Therefore, in order to avoid prohibitive computational costs,

in the rest of this paper, the particle Reynolds number is set to

Rep = 0.0094.

Before further studying the stress response in magnetic

sweep tests, it is worth investigating the effect of the number of

solid particles arranged in a magnetic cluster on the intensity of

the non-linearity; the larger the number of magnetic particles,

the larger is the blockage ratio (2aN /H) in the test channel. It

is evident that a larger blockage ratio leads to an increase in

the intensity of the measured stress response. Also, if inertia

was negligible, by decreasing the number of solid particles that

form the magnetic chain, |G∗
1
|/η0ω tends to unity. However,

the curve shown in Fig. 7(a) approaches a larger than unity

value at the limit of N → 0 due to a finite Reynolds number.

Inertia increases the rate of energy dissipation in an oscillatory

shear test56 and, in this sense, adds to the amplitude of the

measured stress. Moreover, it is expected that the intensity of

the nonlinearity of the stress response decreases by shortening

the magnetic cluster (or reducing the solid volume fraction).

This is observed in Fig. 7(b) where |G∗
3
|/|G∗

1
| tends to zero as

N → 0.

B. Magnetic sweep tests

In the so called magnetic sweep tests, all parameters are

kept constant, while the intensity of the external magnetic field

FIG. 6. Time history of displacements of P1 and P5 for the non-magnetic case with γ0 = 1.2/π and ω = 2π rad/s.
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FIG. 7. (a) The non-dimensional strength of the first harmonic and (b) the intensity of the non-linearity in the stress response as functions of N. Results are

obtained for Mn∗ = 0.419 and ω = 2π rad/s with γ0 = 1.2/π.

is changed. In this way, the effects of the magnetic field on

the rheological behaviour of the system can be thoroughly

investigated. Frequency is ω = 2π rad/s and kept constant for

all these cases. In Fig. 8, the normalized strength of the first

harmonic and Ψ1 are shown as functions of (Mn∗)☞1 for three

different strain amplitudes (γ0). As seen in this figure, the first

harmonic of the stress response is only slightly affected by

increasing the strain amplitude in the range of γ0 = 0.05/π to

0.4/π, while a significant change is observed by increasing it

to γ0 = 1.2/π. This is a sign of an almost linear response for

γ0 < 0.4/π.

The trends of variation of |G∗
1
| and Ψ1 with (Mn∗)☞1

(which is proportional to B2
0
) are almost similar for both the

linear and non-linear regimes as shown in Fig. 8. The phase

angle decreases by increasing the strength of the external mag-

netic field, and for moderate to high magnetic field strengths,

the complex modulus is an increasing function of (Mn∗)☞1.

However, the slope of variations is smaller for a larger strain

amplitude. This can be explained as a result of the larger

contribution of the hydrodynamic forces in the effective rhe-

ology of the system. It is worth noting that for (Mn∗)☞1 <

2.385, the complex modulus, |G∗
1
|, increases by increasing γ0,

while for (Mn∗)☞1 > 2.385, |G∗
1
| reduces. Also, the phase angle,

Ψ1, is raised by increasing the strain amplitude although more

significantly at larger (Mn∗)☞1.

The corresponding elastic modulus, G′, and dynamic vis-

cosity, η ′, are shown in Fig. 9 as functions of (Mn∗)☞1. As

previously discussed,36 both G′ and η ′ are increasing func-

tions of (Mn∗)☞1 (or equivalently B0); however, it is observed

in Fig. 9 that the slope is reduced by increasing the strain

amplitude. In addition, it is noticeable that G′ decreases by

increasing γ0, while η ′ increases. One should remember that

G′ and η ′ correspond to the first harmonic in the stress

response.

In Fig. 10, the ratio |G∗
3
|/|G∗

1
| and the phase angle of

the third harmonic in the stress response are shown as func-

tions of (Mn∗)☞1 for γ0 = 0.4/π and 1.2/π. It must be men-

tioned that non-linearities are negligible for γ0 = 0.05/π.

FIG. 8. (a) The normalized complex modulus, |G∗
1
|/η0ω, and (b) the phase angle, Ψ1, as functions of (Mn∗)☞1 for ω = 2π rad/s and different strain

amplitudes.
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FIG. 9. (a) The elastic modulus and (b) dynamic viscosity as functions of (Mn∗)☞1. Results are obtained for ω = 2π rad/s and different strain amplitudes.

For a smaller strain amplitude, γ0 = 0.4/π, by increasing

(Mn∗)☞1, first, the nonlinearity in the stress response becomes

more significant, and then, a decreasing trend is observed for

(Mn∗)☞1 > 0.812. However, for γ0 = 1.2/π, the strength

of the nonlinearity varies in a non-monotonic manner, i.e.,

there is a second local peak in the ratio |G∗
3
|/|G∗

1
| occur-

ring between (Mn∗)☞1 = 2.385 and 3.246. Nevertheless, for

both strain amplitudes, with (Mn∗)☞1 > 0.149, the phase angle

of the third harmonic is a monotonically increasing function

of (Mn∗)☞1.

The quality of the non-linear response of the system

can be visualized by plotting variations of σ′ and σ′′ in

a complete strain-cycle as shown in Fig. 11. As discussed

in Ref. 36, it is expected that the slope of the curves pre-

sented in Figs. 11(a) and 11(b) shows an increasing trend

with respect to the intensity of the external magnetic field.

Although these results show an overall increase of the tangent

moduli by increasing (Mn∗)☞1, the intra-cycle behaviour of the

system is extremely non-linear. The tangent elastic modulus

presents a complex non-monotonic behaviour in a strain-

cycle for a rather small magnetic flux density, while for

a relatively strong magnetic field, (Mn∗)−1 ≥ 3.246 in

this case, a strain-softening rheology (reduction of σ′ by

increasing γ) is observed [see Fig. 11(a)]. As seen in Fig.

11(b), for (Mn∗)☞1 < 3.246, the current system behaves as a

shear-thinning material. This behaviour changes by increas-

ing (Mn∗)☞1 and, ultimately, an intra-cycle shear-thickening

behaviour (an increase in σ′′ by increasing γ̇) is observed for

(Mn∗)☞1 > 3.246.

The third coefficients of the Chebyshev representations

of σ′ and σ′′ are shown in Fig. 12 as functions of (Mn∗)☞1

for γ0 = 0.4/π and 1.2/π. As seen in Fig. 12(a), the third

elastic Chebyshev coefficient is a decreasing function of the

magnetic flux density for (Mn∗)−1 ≤ 3.246. Here, a pos-

itive e3 is obtained for (Mn∗)☞1 < 1.197 that certifies a

strain-stiffening (increasing slope dσ′/dγ by increasing |γ|)

behaviour in a cycle. For (Mn∗)☞1 > 1.197, e3 becomes negative

and gains a larger absolute value by further increasing (Mn∗)☞1.

FIG. 10. (a) Normalized strength, |G∗
3
|/ |G∗

1
|, and (b) the phase angle, Ψ3, of the third harmonic in the stress response as functions of (Mn∗)☞1 for ω = 2π and

different strain amplitudes.



107106-9 Hashemi, Manzari, and Fatehi Phys. Fluids 29, 107106 (2017)

FIG. 11. The intra-cycle variation of (a) the elastic stress and (b) the viscous stress obtained for γ0 = 1.2/π and different (Mn∗)☞1, with ω = 2π rad/s.

This leads to the strain-softening (decreasing slope dσ′/dγ

by increasing |γ|) behaviour observed in Fig. 11(a). The

increasing trend of the third elastic Chebyshev coefficient for

(Mn∗)☞1 > 3.246 can be partially due to a decrease in |G∗
3
|

as seen in Fig. 10(a). With γ0 = 0.4/π and 1.2/π, the third

viscous Chebyshev coefficient shows an increasing trend for

(Mn∗)−1 ≥ 1.197 and (Mn∗)−1 ≥ 2.385, respectively. The

coefficient 33 is negative for approximately (Mn∗)☞1 < 3.726.

This leads to an intra-cycle shear-thinning behaviour as seen

in Fig. 11(b). By further increasing (Mn∗)☞1, ultimately, 33
reaches a positive value for (Mn∗)☞1 > 3.726 and the system

behaves as a shear-thickening material [see Fig. 11(b)].

Comparing the absolute value of the third Chebyshev

coefficients shown in Fig. 12 with G′ and η ′ presented in

Fig. 9, it is clear that the viscoelastic rheology of the system,

especially for γ0 = 1.2/π, can be studied only by incorporat-

ing both the first and third harmonics of the stress response.

Generally, the tangent elastic modulus at zero strain and

the dynamic viscosity at zero strain-rate are good measures

of the overall rheology of a system tested under LAOS.41

These parameters are approximated as G′
M
≈ e1 − 3e3 and

η ′
M
≈ v1−3v3 and shown in Fig. 13 as functions of (Mn∗)☞1. As

expected from previous discussions,36 G′
M

is a monotonically

increasing function of (Mn∗)☞1 (or equivalently B0). How-

ever, the interesting point is that G′
M

is almost independent of

the strain amplitude. This behaviour is studied in more detail

for the strain sweep tests. On the other hand, η ′
M

presents a

non-monotonic variation for γ0 = 1.2/π, while it monotoni-

cally increases by increasing (Mn∗)☞1 for γ0 = 0.4/π. Using

Eqs. (15) and (16) and considering the absolute value of the

parameters shown in Figs. 9(b) and 12(b), it can be inferred

that 33 plays an important role in determining the trend of

variations of η ′
M

.

1. Micro-structure

To learn more about the rheology of the present system,

it is also worth investigating the micro-structure of the mag-

netic cluster under LAOS tests. In Fig. 14, the arrangement of

the magnetic particles is shown at the moment when the mag-

netic chain reaches its largest tilting angle (or equivalently P1

FIG. 12. Normalized third (a) elastic and (b) viscous Chebyshev coefficients as functions of (Mn∗)☞1 obtained for ω = 2π rad/s and two different γ0.
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FIG. 13. Normalized (a) tangent elastic moduli at zero strain and (b) tangent dynamic viscosity at zero strain rate as functions of (Mn∗)☞1 obtained for ω = 2π

rad/s and two different γ0.

reaches its right most position). This occurs at different times

for different (Mn∗)☞1 with a constant frequency (ω = 2π rad/s)

and the same strain amplitude (γ0 = 1.2/π). It is obvious that

the stronger the external magnetic field [larger (Mn∗)☞1], the

stiffer the magnetic chain and the smaller the tilting angle.

Therefore, by increasing (Mn∗)☞1, the stress response is inten-

sified as observed in Fig. 8(a). Moreover, both the elasticity

and viscosity are expected to be larger for a stiffer magnetic

chain which is in agreement with Fig. 9. Theoretical mod-

els31 that have been developed for a steady shear test also

predict a similar behaviour, i.e., a reduction in the tilting angle

as well as an increase in the shear stress by increasing the

magnetic field intensity. However, a quantitative comparison

with theory needs a model that is particularly developed for

FIG. 14. The arrangement of solid particles once the magnetic chain reaches

the largest tilting angle. The solid line shows the maximum displacement in

the absence of solid particles in line with the input strain amplitude. Results are

obtained for γ0 = 1.2/π and ω = 2π rad/s and different (Mn∗)☞1. (a) (Mn∗)☞1

= 2.385, ωt = 1.40π. (b) (Mn∗)☞1 = 3.246, ωt = 1.34π. (c) (Mn∗)☞1 = 4.509,

ωt = 1.30π.

an oscillatory shear test and circular magnetic particles in two

dimensions.

However, it is more suitable to quantify the arrangement

of solid particles using the non-dimensional slope defined as

s̄x =
1

γ0

x − L/2

y − H/2
. (17)

Figure 15 presents s̄x for the four solid particles positioned at

the bottom half of the magnetic cluster. In this figure, ȳ = y/H

and P1 (ȳ ≈ 0.1) has reached its maximum lateral position. As

seen in this figure, generally, the slope decreases by increas-

ing the amplitude of the input strain. However, by decreas-

ing (Mn∗)☞1, this variation also becomes smaller; beyond

γ0 = 0.8/π, the variation in the slope is small for (Mn∗)☞1 =

2.385, while for (Mn∗)☞1 < 2.385, it is negligible compared

to the results obtained for larger (Mn∗)☞1.

In a similar way as the non-dimensional slope defined

in Eq. (17), the velocity of the solid particles can also be

quantified using the non-dimensional velocity defined as

s̄v =
1

γ̇0

vx

y − H/2
. (18)

Figure 16 demonstrates s̄v for the four solid particles posi-

tioned at the bottom half of the magnetic chain once the

input strain-rate reaches its peak (γ̇ = γ̇0). As seen in

Fig. 15 for s̄x, by increasing the amplitude of the input strain,

s̄v also varies. However, unlike s̄x, the trend in the variation

of s̄v is not similar for all (Mn∗)☞1; for (Mn∗)−1 ≤ 2.385, the

variation in the non-dimensional velocity of P1 (positioned

at ȳ ≈ 0.1) is negligible, while s̄v increases for the upper

solid particles which are nearer to the center of the chain. For

(Mn∗)☞1 = 3.246, the variation in s̄v is small, while for the

strongest magnetic field with (Mn∗)☞1 = 4.509, s̄v shows a

decreasing trend for all solid particles. Such a change in the

micro-structural behaviour of the system signifies that its non-

linear rheological behaviour would also become substantially

different as the Mason number is changed.
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FIG. 15. Non-dimensional slope obtained for the four solid particles positioned at the bottom of the magnetic chain. Results are plotted at the moment that the

magnetic chain reaches the largest tilting angle and are obtained for ω = 2π rad/s and different (Mn∗)☞1. (a) γ0 = 0.4/π. (b) γ0 = 0.8/π. (c) γ0 = 1.2/π.

C. Strain sweep tests

In the literature,41,53 it is discussed that the intra-cycle

non-linear behaviour of a system obtained for a single strain

amplitude cannot be generalized to its overall non-linear rhe-

ology. Therefore, strain sweep tests shall be utilized to study

the overall rheology of the system41 beyond its intra-cycle

behaviour. In this section, two sets of tests are conducted;

in the first set, frequency is kept constant while the strain

amplitude is changed, and in the second set, the amplitude

of the strain-rate is kept constant while the frequency varies to

adjust γ0. Figure 17 illustrates the normalized complex mod-

ulus and phase angle corresponding to the first harmonic in

the stress response as functions of γ0. In these cases, fre-

quency isω = 2π rad/s and γ0 is proportional to the strain-rate

amplitude.

For the non-magnetic case, |G∗
1
| exhibits an increasing

trend with γ0; however, this is reversed for a rather large mag-

netic flux density (Mn∗ ≤ 0.308 in the present case). For Mn∗ =

0.419, the variation of |G∗
1
| with γ0 is almost negligible. Con-

sidering the first harmonic as the most influential part of the

stress response, it can be concluded that for a rather large B0

(small Mn∗), the stress response becomes weaker by increasing

γ0. This is due to the fact that the more the magnetic cluster is

tilted, the weaker the magnetic bonds become. As discussed in

Ref. 36, for B0 = 0, inertia leads to an obtuse phase angle. This

phase angle reduces by increasing γ0. This reduction is asso-

ciated with a reduction in the loss of energy. For all magnetic

cases considered in this section, Ψ1 is an increasing function

of γ0, which certifies a reduction in the elastic portion of the

stress response. In Fig. 18, G′ and η ′ are shown as functions

of γ0.

The elastic modulus is clearly a decreasing function of γ0

while dynamic viscosity increases only slightly in the strain

sweep test. However, the smaller the magnetic field inten-

sity (larger Mn∗), the larger is the variation of η ′ with γ0.

Nevertheless, G′ and η ′ only represent the first harmonic

in the stress response and the overall rheology of the sys-

tem can be deduced by investigating the higher harmonics.

The parameters which correspond to the third harmonic,

|G∗
3
|/|G∗

1
| and Ψ3, are shown in Fig. 19 as functions of γ0.

It must be noted that higher harmonics are relatively insignifi-

cant in the overall stress response. As shown in Fig. 19(a), the

non-linearity of the stress response generally becomes more

significant by increasing the strain amplitude. Nevertheless,

with a moderately small magnetic flux density, Mn∗ = 0.419
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FIG. 16. Non-dimensional velocity obtained for the four solid particles positioned at the bottom of the magnetic chain. Results are obtained at ωt = 2π for

ω = 2π rad/s and different (Mn∗)☞1. (a) γ0 = 0.4/π. (b) γ0 = 0.8/π. (c) γ0 = 1.2/π.

in this case, the slope of the variation of |G∗
3
|/|G∗

1
| with

γ0 is the largest for γ0 ≤ 0.25, while beyond this range,

i.e., γ0 > 0.25, a remarkable decrease in the slope occurs.

For γ0 ≥ 0.1, the phase angle of the third harmonic is

almost independent of γ0. For smaller strain amplitudes,

the stress response is almost linear, and therefore, the

FIG. 17. (a) Normalized |G∗
1
| and (b) Ψ1 as functions of γ0. Results are obtained for ω0 = 2π rad/s and different Mn∗.
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FIG. 18. (a) The elastic modulus and (b) dynamic viscosity as functions of γ0. Results are obtained for ω0 = 2π rad/s and different Mn∗.

FIG. 19. (a) The intensity of the third harmonic and (b) Ψ3 as functions of γ0. Results are obtained for ω0 = 2π rad/s and different Mn∗.

variation of Ψ3 has no significant effect on the rheology of

the system.

In order to further investigate the non-linear intra-cycle

behaviour of the system, the third Chebyshev coefficients

of the elastic and viscous stress are shown in Fig. 20 as

functions of the strain amplitude. For all cases presented in

Fig. 20(a), the third elastic Chebyshev coefficient is nega-

tive and the system shows a strain-softening behaviour in a

FIG. 20. Normalized third (a) elastic and (b) viscous Chebyshev coefficients as functions of γ0. Results are obtained for ω0 = 2π rad/s and different Mn∗.
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FIG. 21. Normalized (a) tangent elastic moduli at zero strain and (b) tangent dynamic viscosity at zero strain rate as functions of γ0. Results are obtained for

ω0 = 2π rad/s and different Mn∗.

large-amplitude strain-cycle. Unless for γ0 > 0.25 with

Mn∗ = 0.419, the absolute value of e3 increases by increas-

ing γ0. This change in the trend of e3 is associated with

the sudden reduction in the slope of |G∗
3
|/|G∗

1
| observed in

Fig. 19(a). It is interesting that unlike e3, the third viscous

Chebyshev coefficient reflects different trends for different

magnetic flux densities. With a moderately low magnetic field

strength, Mn∗ = 0.419, 33 is negative and a decreasing function

of γ0, while for Mn∗ = 0.222, 33 increases by increasing the

strain amplitude. This means that based on the strength of the

external magnetic field, the system may exhibit either a shear-

thinning (for a moderately small B0) or a shear-thickening

behaviour (for a rather large B0) in a large-amplitude

strain-cycle.

Tangent elastic modulus at zero-strain and tangent

dynamic viscosity at zero strain-rate are shown in Fig. 21

as functions of the strain amplitude. It was discussed above

that for the present test cases, G′ is a decreasing func-

tion of γ0, while η ′ is almost independent of the strain-

amplitude. However, especially for γ0 > 0.1, e3 and 33 play a

remarkable role in the calculation of the tangent moduli. As

seen in Fig. 21(a), despite the intra-cycle strain-softening

behaviour of the system, G′
M

is almost independent of γ0 for

a rather strong magnetic field. For Mn∗ = 0.419, G′
M

shows

a non-monotonic trend with the strain amplitude; however,

its variation is small. On the other hand, since η ′ is almost

independent of γ0 in these strain sweep tests, similar to 33,

the trend of η ′
M

depends on the magnetic field intensity. For a

rather strong magnetic field, η ′
M

is a decreasing function of γ0,

while for Mn∗ = 0.419, η ′
M

increases by increasing the strain

amplitude.

It is discussed in the literature57 that in a LAOS test, the

strain-rate amplitude as well as frequency are the time scales

associated with the micro-structural deformation of the sys-

tem. In the above test cases, γ̇0 varied with the strain amplitude,

while frequency was constant. In the following, the strain-

rate amplitude is kept constant and the strain sweep test is

conducted by adjusting the frequency. In this way, the fre-

quency dependence of the non-linear rheology of the system

can be understood.41,57 It must be noted that since in each case

FIG. 22. (a) The elastic modulus and (b) dynamic viscosity as functions of 1/γ0. Results are obtained for γ̇0 = 2.4 (1/s) and two different Mason numbers.
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the amplitude of the strain-rate is constant and frequency is

variable, the conventional definition of the Mason number

(8) is used in order to non-dimensionalize the strength of the

external magnetic field.

In Fig. 22, G′ and η ′ are shown as functions of ω/γ̇0

(or equivalently 1/γ0) for a rather strong magnetic field,

Mn = 0.085, and for a moderately small magnetic flux density,

Mn = 0.16. For Mn = 0.085 within the range of γ0 considered

in this work, G′ increases withω and η ′ is a linearly decreasing

function of frequency. However, for a rather large frequency,

a decreasing trend is observed in Fig. 22(a) for G′, which may

be due to the intensified inertial effect.36 An almost similar

trend is also observed for Mn = 0.16; however, the reduction in

the elastic modulus is more severe. Another point to mention is

the different trend of η ′ observed for a rather small frequency,

ω = 2π/3 in the present case with Mn = 0.16. The unpredicted

reduction in the dynamic viscosity is associated with the sepa-

ration of the tip solid particles from the whole magnetic chain.

This issue is shown in Fig. 23 which illustrates the arrange-

ment of solid particles in the test domain at the moment that

the magnetic chain has reached its maximum tilting angle. As

expected, the smaller the frequency, the larger the chain deflec-

tion is. Also, it is known that magnetic bonds become weaker

by increasing the angle formed between the magnetic chain and

the direction of the external magnetic field. Therefore, there

is a higher chance for particle separation at a rather small fre-

quency as seen in Fig. 23(a) forω = 2π/3. For Mn = 0.085, the

magnetic field is strong enough to keep all particles in a single

cluster even with ω = 2π/3. Nonetheless, the interesting point

is that for the present test case, the separation occurs for the tip

particles.

Figure 24 presents the ratio |G∗
3
|/|G∗

1
| and Ψ3 as func-

tions of ω/γ̇0 for the present test case. In Fig. 24(a), for

Mn = 0.085, it is observed that the intensity of the third har-

monic, as a measure of the non-linearity of the stress response,

slightly decreases by increasing frequency (or equivalently

decreasing γ0). On the other hand for Mn = 0.16, the trend

is non-monotonic. However, for both the Mason numbers,

although the strain amplitude is changed in a rather wide

range, 1.2/π ≤ γ0 ≤ 3.6/π, |G∗
3
|/|G∗

1
| varies only slightly

FIG. 23. Position of solid particles obtained for γ̇0 = 2.4 (1/s) with

(a) Mn = 0.16 and (b) Mn = 0.085. Results obtained for ω = 2π rad/s are

shown with light color, while dark circles depict the cases withω = 2π/3 rad/s.

by increasing ω as long as γ̇0 is constant. This underlines

the fact that nonlinearities are more sensitive to the strain-rate

amplitude than frequency. For both Mn, as seen in Fig. 24(b),

the phase angle of the third harmonic is a decreasing function

of ω.

Tangent elastic modulus at zero strain and tangent

dynamic viscosity at zero shear-rate are shown in Fig. 25 as

functions of ω/γ̇0. Compared to the elastic modulus shown in

Fig. 22(a), G′
M

presents a similar trend but varies in a wider

range by increasing ω while γ̇0 is constant. Here, G′
M

is an

increasing function of ω; however, for Mn = 0.16, the slope

gradually decreases and ultimately a decreasing function is

observed in Fig. 25(a). This may be partially due to the iner-

tia which becomes more effective at a rather large frequency

and tend to decrease the effective elasticity of the system.36

On the other hand, compared to the dynamic viscosity shown

in Fig. 22(b), η ′
M

presents a completely different trend; for

FIG. 24. (a) The intensity of the third harmonic and (b) Ψ3 as functions of 1/γ0. Results are obtained for γ̇0 = 2.4 (1/s) and two different Mason numbers.
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FIG. 25. Normalized (a) tangent elastic moduli at zero strain and (b) tangent dynamic viscosity at zero strain rate as functions of 1/γ0. Results are obtained for

γ̇0 = 2.4 (1/s) and two different Mason numbers.

Mn = 0.085, it is a decreasing function of frequency, while for

Mn = 0.16, η ′
M

slightly increases by increasing ω.

IV. CONCLUSION

In this paper, the nonlinear response of a periodic sus-

pension of non-gap-spanning magnetic clusters was inves-

tigated using the LAOS tests. Results of the present work

offer a new point of view in exploring the rheology of the

magnetorheological fluids in the post-yield state by explain-

ing the contribution of the non-gap-spanning clusters in the

nonlinear viscoelastic behaviour of the system. Consider-

ing a symmetric configuration, disordered rearrangement of

the magnetic clusters was avoided, and therefore, systematic

analysis of the rheological response of this special micro-

structure was possible. The main concluding points are as

follows:

• At rather small Mason numbers, the stronger the mag-

netic field, the smaller is the tilting angle of the cluster

and the lower is the intensity of non-linearity.

• Both G′ and G′
M

were increasing functions of the

intensity of the external magnetic field.

• While η ′ increased by increasing the intensity of the

external magnetic field, η ′
M

showed a non-monotonic

trend.

• The intra-cycle non-linear behaviour of the system

was generally different from the non-linear rheol-

ogy inferred from strain-sweep tests; for a rather

weak magnetic field, a shear-thinning behaviour was

observed during a strain cycle, while a shear-thickening

behaviour was seen in the strain sweep test. On the other

hand, for a rather strong magnetic field, the intra-cycle

behaviour was shear-thickening, while a shear-thinning

behaviour was observed in the strain sweep test.

• As long as no particle was detached from clusters,

the intensity of the non-linear response was a func-

tion of the amplitude of the strain-rate (not the strain

amplitude).

• Strain amplitude was responsible for particle separa-

tion which resulted in a significant reduction in the

measured dynamic viscosity of the system.

• The system effectively exhibited a strain-softening

behaviour, while the trend of dynamic viscosity

strongly depended on the strength of the external mag-

netic field. The behaviour of the system changed from

shear-thinning to shear-thickening by increasing the

intensity of the magnetic field.

In this work, it was observed that under LAOS, particle

separation occurs at the tips of a magnetic cluster. However,

from a theoretical point of view, in a steady shear test with

a uniform shear rate, chains are more prone to break at the

center.31 In order to investigate this issue, theoretical models,

e.g., see Ref. 31, are needed to be further developed to account

for an oscillatory shear flow regime where the magnetic clus-

ters are subject to non-affine34 time-dependent deformations

with a phase different from the input strain. Such a model also

facilitates the establishment of correlations between the micro-

structural parameters (s̄x and s̄v as proposed in this work) and

the physical properties of the system and may help explain the

rheological behaviours observed in the present work. In this

regard, beyond the hydrodynamic and magnetic forces, inertia

may also have a substantial role.
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19J. A. Ruiz-López, J. C. Fernández-Toledano, D. J. Klingenberg, R. Hidalgo-

Alvarez, and J. de Vicente, “Model magnetorheology: A direct comparative

study between theories, particle-level simulations and experiments, in steady

and dynamic oscillatory shear,” J. Rheol. 60, 61–74 (2016).
20W. H. Li, H. Du, G. Chen, S. H. Yeo, and N. Guo, “Nonlinear viscoelastic

properties of MR fluids under large-amplitude-oscillatory-shear,” Rheol.

Acta 42, 280–286 (2003).
21K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, “Large amplitude oscillatory

shear as a way to classify the complex fluids,” J. Non-Newtonian Fluid

Mech. 107, 51–65 (2002).
22J. E. Martin and J. Odinek, “A light-scattering study of the nonlinear dynam-

ics of electrorheological fluids in oscillatory shear,” J. Rheol. 39, 995–1009

(1995).
23H. G. Sim, K. H. Ahn, and S. J. Lee, “Three-dimensional dynamics sim-

ulation of electrorheological fluids under large amplitude oscillatory shear

flow,” J. Rheol. 47, 879–895 (2003).
24S. S. Deshmukh, “Development, characterization and applications of mag-

netorheological fluid based ‘smart’ materials on the macro-to-micro scale,”

Ph.D. thesis, Massachusetts Institute of Technology, 2006.
25S. Jamali, G. H. McKinley, and R. C. Armstrong, “Microstruc-

tural rearrangements and their rheological implications in a model

thixotropic elasto-visco-plastic (TEVP) fluid,” Phys. Rev. Lett. 118, 048003

(2017).
26D. Klingenberg, F. van Swol, and C. Zukoski, “Dynamic simula-

tion of electrorheological suspensions,” J. Chem. Phys. 91, 7888–7895

(1989).
27J. Fernández-Toledano, J. Ruiz-López, R. Hidalgo-Álvarez, and J. de
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