IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 7, JULY 2009

By condition ii) of Theorem 2, the switched system X, is exponen-
tially ~,-stable if 7o > Inm /(v — v ), choosing 7, = 0.001, one
has 7 > 153. B

Example 2: A single-mode plant is here considered assuming the
same dynamical matrix A(#(¢)) considered in [14]

—1—1.36(t)
—1+426(t)

—0.5 — 206(t)

A(6(1) = -2 —106(t)

In the above reference, it is shown that A(6(¢)) is quadratically stable
VO(t) such that 6(¢) € [0,1], V& > 0. Assuming #(¢) = [a,b] +
[e, ]t + [e, f]#*, the corresponding A(6(t)) can be written in the form
@) with L = 2, ng = n1 = no = 2. If [0, 0] = [-2,1], [e,d] =
[—5, 6], [d, e] = [1, 2], itis found that the whole set of LMIs (13)—(21)
is not satisfied so that (5) does not hold V¢ > 0. Nevertheless, it is found
that inequalities (12) are satisfied starting from k& = 3. The relative
LMIs are given by the strict version of (21) with: = 1,5 =2 = {
(corresponding to Hs(a) < 0), and by (16), (17) withi = 2 = {
(corresponding to Hy(a) < 0). By Lemma 2, V(x(t). ) < 0, V¢ >
f 2 (k) = #(3), and the value #(3) = 12 has been numerically
found. It follows that, under the assumed polynomial behavior of 6 (¢),
the exponential stability of A(#(#)) is attained also for arbitrarily large
variations of the parameter and of its variation rate.

V. CONCLUSION

The stability analysis developed in this technical note is based on
the mild modeling assumption of a dynamical matrix with smoothly
time varying elements. This made it possible to consider the significant
class of switching linear systems with uncertain elements whose time
behavior is described by piecewise interval polynomial of arbitrary de-
gree. This in turn implies that the present approach offers the possibility
of dealing with uncertain plants whose parameters are not confined in-
side a relatively small polytopic region. Unlike all the other methods,
both parameters and their derivatives may take values over arbitrarily
large sets and theoretically unbounded dynamical matrices can be con-
sidered. The sufficient LMIs stability conditions have been derived
using a quadratic Lyapunov function polinomially depending on time.
It has also been shown that, giving up the requirement V, (:(¢), o?)) <
0,vteT ,Ep ) e {T,&p )}, reduced conservatism conditions are obtained
because the number of LMIs reduces to n¢ 4+ n¢(ne — 1)/2, indepen-
dently of the polynomial degree ¢.

REFERENCES

[1] P. Gahinet, P. Apkarian, and M. Chilali, “Affine-parameter dependent
Lyapunov functions and real parametric uncertainty,” I[EEE Trans. Au-
tomat. Control, vol. 41, no. 3, pp. 436-442, Mar. 1996.

[2] V. F. Montagner and P. L. D. Peres, “A new LMI condition for the
robust stability of linear time-varying systems,” in 42nd IEEE Conf.
Decision and Control, Maui, HI, 2003, pp. 6133-6138.

[3] J. G. Geromel and P. Colaneri, “Robust stability of time varying poly-
topic systems,” Syst. Control Lett., vol. 55, no. 1, pp. 81-85, 2006.

[4] A.Trofino and C. E. de Souza, “Biquadratic stability of uncertain linear
systems,” IEE Trans. Automat. Control, vol. 46, no. 8, pp. 1303-1307,
Aug. 2001.

[5] R. C. L. F. Oliveira, M. C. de Oliveira, and P. L. D. Peres, “Pa-
rameter-dependent Lyapunov functions for robust stability analysis
of time-varying systems in polytopic domains,” in Proc. American
Control Conf., New York, 2007, pp. 6079—-6084.

[6] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Robust stability of time-
varying polytopic systems via parameter dependent homogeneous Lya-
punov functions,” Automatica, vol. 43, pp. 309-316, 2007.

[7] P. A. Bliman, “A convex approach to robust stability for linear systems
with uncertain scalar parameters,” SIAM J. Control and Optimiz., vol.
42, no. 6, pp. 2016-2042, 2004.

1709

[8] L. Zheng, “Discrete-time adaptive control for time-varying systems
subject to unknown fast time-varying deterministic disturbances,” IEE
Proc. D, vol. 135, pp. 445450, 1988.

[9] X.Y.Guand C. Shao, “Robust adaptive control of time-varying linear
plants using polynomial approximation,” IEE Proc. D, vol. 140, pp.
111-118, 1992.

[10] P.R.Pagillaand Y. Zhu, “Adaptive control of mechanical systems with
time-varying parameters and disturbances,” ASME J. Dynam. Syst.,
Meas., Control, vol. 126, pp. 520-530, 2004.

[11] M. Vidyasagar, Nonlinear Systems Analysis.
Prentice-Hall, 1978.

[12] R. C. L. F. Oliveira and P. L. D. Peres, “Parameter dependent LMIs

in robust analysis: Characterization of homogeneous polynomially pa-

rameter dependent solutions via LMI relaxations,” IEEE Trans. Au-

tomat. Control, vol. 52, no. 7, pp. 1334-1340, Jul. 2007.

J.P. Hespanhaand A. S. Morse, “Stability of switched systems with av-

erage dwell time,” in Prooc. 8th Conf. Decision and Control, Phoenix,

AZ, 1999, pp. 2655-2660.

[14] C. E. De Souza, A. Trofino, and J. de Oliveira, “Robust H., control
of uncertain linear systems via parameter dependent Lyapunov func-
tions,” in Proc. 39th IEEE Conf. Decision and Control, Sydney, Aus-
tralia, 2000, pp. 3194-3199.

Englewood Cliffs, N.J.:

[13

Non-Linear Symmetry-Preserving
Observers on Lie Groups

Silvere Bonnabel, Philippe Martin, and Pierre Rouchon

Abstract—In this technical note, we give a geometrical framework for
the design of observers on finite-dimensional Lie groups for systems which
possess some specific symmetries. The design and the error (between true
and estimated state) equation are explicit and intrinsic. We consider also a
particular case: left-invariant systems on Lie groups with right equivariant
output. The theory yields a class of observers such that the error equation is
autonomous. The observers converge locally around any trajectory, and the
global behavior is independent from the trajectory, which is reminiscent of
the linear stationary case.

Index Terms—Inertial navigation, invariance, Lie group, nonlinear
asymptotic observer, symmetry.

I. INTRODUCTION

Symmetries (invariances) have been used to design controllers and
for optimal control theory ([7], [8], [11], [16], [18]), but far less for the
design of observers. References [2] and [4] develop a theory of sym-
metry-preserving observers and presents three nonlinear observers for
three examples of engineering interest: a chemical reactor, a nonholo-
nomic car, and an inertial navigation system. In the two latter examples
the state space and the group of symmetry have the same dimension
and (since the action is free) the state space can be identified with the
group (up to some discrete group). Once again, there is extensive lit-
erature on control systems on Lie groups (see [10] as one of the pio-
neering papers), but far less on observers on Lie groups ([5], [9], [12]).
Applying the general theory to the Lie group case, we develop here a
proper theory of symmetry-preserving observers on Lie groups. The
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advantage over [2] and [4] is that the observer design is explicit (the
implicit function theorem is not needed) and intrinsic, the error equa-
tion and its first-order approximation can be computed explicitly, and
are intrinsic, and all the formulas are globally defined. Moreover, this
technical note is a step further in the symmetry-preserving observers
theory since [2], [4] does not deal at all with convergence issues in the
general case. Here, using the explicit error equation, we introduce a
new class of trajectories around which we build convergent observers.
In the case of Section III, a class of first-order convergent observers
around any trajectory is given. The theory applies to various systems of
engineering interest modeled as invariant systems on Lie groups, such
as cart-like vehicles and rigid bodies in space. In particular, it is well
suited to attitude estimation and some inertial navigation examples.

The technical note is organized as follows: in Section II we give a
general framework for symmetry-preserving observers on Lie groups.
It explains the general form of the observers [12], [9], [6], and [2],
[4] (car example) based on the group structure of SO(3) and (respec-
tively) SE(2), without considering the convergence issues. The design,
the error equation, and its first-order approximation are given explicitly.
It is theoretically explained why the error equation in the car example
of [2] and [4] does not depend on the trajectory (although it depends on
the inputs). Then we introduce a new class of trajectories called perma-
nent trajectories which extend the notion of equilibrium point for sys-
tems with symmetries: making a symmetry-preserving observer around
such a trajectory boils down to making a Luenberger observer around
an equilibrium point. We characterize permanent trajectories geomet-
rically and give a locally convergent observer around any permanent
trajectory.

In Section 111, we consider the special case of a left-invariant system
with right equivariant output. It can be looked at as the motion of a
generalized rigid body in space with measurements expressed in the
body-fixed frame, as it will be explained in Section III-A-1. Thus, it
applies to some inertial navigation examples. In particular, it allows to
explain theoretically why the error equation in the inertial navigation
example of [2], [4] is autonomous. A class of first-order convergent
observers such that the error equation is autonomous is derived. This
property is reminiscent of the linear stationary case. We also explore the
links between right equivariance of the output map and observability.

Preliminary versions of Section III can be found in [3] and [5].

II. SYMMETRY-PRESERVING OBSERVERS ON LIE GROUPS

A. Invariant Observer and Error Equation
Consider the following system

d
() = fa, ) M

y =h(z,u) 2)

where x is an element of a Lie group G of dimension n, v € U =
R™,y € Y = RP (the whole theory can be easily adapted to the
case where I/ and ) are smooth m and p-dimensional manifolds, for
instance Lie groups), and f is a smooth vector field on G. v € U is a
known input (control, measured perturbation, constant parameter, time
tie. f(x,u) = f(x,t) etc.).

Definition 1: Let G be a Lie Group with identity e and ¥ an open
set (or more generally a manifold). A left group action (¢4)gsecz on &
is a smooth map

such that:
s 9.(§) = forall &
* Dy, ((7591(5)) = Qgogy (5) for all g1, g2, €.
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In analogy, one defines a right group action the same way except that
Ggo (g, (£)) = Py, g0 (&) forall g1, g2, &. Suppose G acts on the left on
Uand Y viavyy : U — U and py : Y — Y. Suppose the dynamics (1)
is invariant in the sense of [2], [4] where the group action on the state
space (the group itself) is made of left multiplication: for any g € G,
DL, f(x,u) = f(gz,¥y(u)),ie.,

Va,g € G f(Lg(x),¢4(u)) = DLyf(x,u)

where L, : @ — gu is the left multiplication on G, and DL, the
induced map on the tangent space. D L, maps the tangent space T'G|..
to TG|y.. Let Ry : @ — xg denote the right multiplication and DR,
its induced map on the tangent space. As in [2] and [4], we suppose
that the output y = h(x,u) is equivariant, i.e., h(¢g(x), ¥g(u)) =
pg(h{z,w)) for all g, x, u.

Definition 2: Consider the change of variables X = gx, U = ¢4(u)
and Y = p,(y). The system (1), (2) is left-invariant with equivariant
output if for all ¢ € G it is unaffected by the latter transformation:
(d/dt)X(t) = f(X,U0),Y = h(X,U).

We are going to build observers which respect the symmetries (left-
invariance under the group action) adapting the constructive method of
[2] and [4] to the Lie group case.

1) Invariant Pre-Observers: Following [17] (or [2] and [4]) con-
sider the action (¢4)ge of G on ¥ = R’ where s is any positive
integer. Let (x, z) € G x R, one can compute (at most) s function-
ally independent scalar invariants of the variables (., z) the following
way: I(x,z) = ¢,-1(z) € R’. It has the property that any invariant
real-valued function J(x, z) which verifies J(gx, ¢4(z)) = J(x, z)
for all g, z, z is a function of the components of I(x, z) : J(x,z) =
H(I(z,z)). Applying this general method, we find a complete set of
invariants of (z,u) € G X U

I(z,u) = ¢,—1(u) EU. (3)

Take n linearly independent vectors (W5, ..., W,,) in TG|. = g,
the Lie algebra of the group G'. Define n vector fields by the invariance
relation w;(xz) = DL, W; € TG|,,i = 1...n,2 € G. The vector
fields form an invariant frame [17] according to [2] and [4].

Definition 3 (Pre-Observer): The system (d/dt)& = F(Z,u,y) is
a pre-observer of (1) and (2) if F(x,u,h(x,u)) = f(x,u) for all
(z,u) € G xU.

The definition does not deal with convergence; if moreover
z(t)"'#(t) — e ast — oo for every (close) initial condi-
tions, the pre-observer is an (asymptotic) observer. It is called
G-invariant if F(g&,v4(u),04(y)) = DLyF(2,u,y) for all
(g,%,u,y) € GXGExUXY.

Lemma 1: Any invariant pre-observer reads

d " N
gt = @ w+ DL (Z;E <'¢w<u>7m.1(y>)m> @

where the £; are any smooth functions of their arguments such that
Li(s—1(u),h{e,¢p;-1(u))) = 0. The proof of this lemma is anal-
ogous to [2] and [4]: one can write DL, 1 ((d/dt)t — f(&,u)) =
St Fi(@u,y)W; € g, where the Fs are invariant scalar
functions of their arguments. But a complete set of invariants of
Z,u,y is made of the components of (¢;—1(u),ps—1(y)), thus
Fi(#,uyy) = Li(Wz-1(u),ps—1(y)). And when & = x, we have
pa1(y) =h(z" "z, ¢¥,-1(u)) = h(e,¥5—1 (u)) and the £; s cancel.

2) Invariant State-Error Dynamics: Consider the invariant state-
error 7 = 2~ & € G. It corresponds to the error between & and x in
the sense of the group multiplication (the usual linear error & — x is not
defined on G). It is invariant by left multiplication: = (gx)™'(g#)
for any ¢ € G. Notice that a small error corresponds to # close to e.
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Contrarily to [2], [4], the time derivative of 7 can be computed explic-
itly. We recall R, denotes the right multiplication map on G Since we
have
e forany g1,92 € G, DLy DLy, = DLy ,,, DRy DRy, =
DRy,4,, DLy DRy, = DRy, DLy,
o I(Z,u) = ¢p-1(u) = w(vnf 1(u);
* ppr(h(xu)) = T,y
By~ ¥y (1))
o (d/dt)y = (d/dt)(x™'#) = DL,—1(d/dt)i—DRs(d/dt)z~"
with (d/dt)a™' = =DL, -+ DR, (d/dt)x;
the error dynamics reads
0= DLy f (0201 () = DRy f (er0,-1(w)

+DL, <Z£’ (1/)(”)71 (u),h (77—1 sy —1 (u))) I/Vi>. 5)

=1

1(u)) writes py-1(y) =

The invariant error n obeys a differential equation that is coupled to
the system trajectory ¢ — (x(t),u(t)) only via the invariant term
I(x,u) = ¢,—1(u). Note that when ¢’4(u) = wu the invariant error
dynamics is independent of the state trajectory =(¢)! This is why we
have this property in the nonholonomic car example of [2], [4].

3) Invariant First-Order Approximation: For 1 close to e, one can
setin (5) n = exp(e) where £ is an element of the Lie algebra g and
€ € R is small. The linearized invariant state error equation can always
be written in the same tangent space g. We recall that for ¢, ¢ € g, the
Lie bracket of g (denoted by “[,]”) is defined by [(, ] = ad¢< where

d
21(15; ‘g6 'ddc = %|3:U‘DRexp(sC)_1DLP‘(T’(""C)

Also using the fact that (D L, —Id) isaterm of ordere, that ¢ ..,y 1 («)
can be approximated by ¢,,—1 (u) up to terms of order €, and that  * =
exp(—ef), we have up to second-order terms in ¢

af

T S CRTRC)) B Y CRTR ()
a fy

X % (e,,—1(u))€

"L (AL
- ; < oh

) ol ) . .
hie,,-1(u)) a—; (e,9,-1(u)) é) Wi (6)

b ()

where v is viewed as a function of (g, u), and 9L, /dh denotes the
partial derivative of £; with respect to its second argument. The gains
(0L;/Oh) (W, -1 (u), h(e,, -1 (u)) can be tuned via linear techniques
to achieve local convergence.

B. Local Convergence Around Permanent Trajectories

The aim of this paragraph is to extend local convergence results
around an equilibrium point to a class of trajectories we call perma-
nent trajectories.

Definition 4: A trajectory of (1) is permanent if I(x:(t),u(t)) = I
is independent of £.

Note that adapting this definition to the general case of symmetry-
preserving observers [2], [4] is straightforward. Any trajectory of the
system verifies (d/dt)x(t) = DL, f(e, ¥, -1 (u(t))) thanks to
the invariance of the dynamics. It is permanent if I(z(t),u(t)) =
¥, —1(¢)(u(t)) = @ is independent of ¢. The permanent trajectory x(¢)
is then given by z(0) exp(tw) where @ is the left invariant vector field
associated to f(e, ). Thus x(¢) corresponds, up to a left translation
defined by the initial condition, to a one-parameter subgroup.

1711

Let us make an observer around an arbitrary permanent trajectory:
denote by (. (t),u,(t)) a permanent trajectory associated to & =
¢ _—1.,u-(t). Let us suppose we made an invariant observer following
(4) Then the error (5) writes

ir/ =DL,f (6,'d1n—1(l_l))

dt
+DL77 <Z [»i

=1

— DR, f(e0)
-1 (@), h (-1 (@) W ) @)

since ¥, y—1(u) = ¥, —1(¢p —1(u)) = 1,1 (@). The first-order

approximation (6) is now a time-invariant system

d i Ou .
Le=te se.il- Lie.m e ne

£ e

Let us write £ and f(e,u) in the frame defined by the Wi’s: £ =
Sr_ &5 Wy and f(e,@) = So7_, f¥*Wi. Denote by CF; the struc-

ture constants associated with the Lie algebra of G : [W;, W] =
i_, CEW,.. The above system reads
d L
%5— (A+LO)KE 8)
where
~ im0, 00,
= (Z i fr - {a—u(e,u)@(e.u) )
= “J 1<i,7<n
= (-5 ) .

C= <%(e u)) e

and where (21,...,x,) are the local coordinates around e defined by
the exponential map: = exp(>__, 2;W;). If we assume that the
pair (A, C) is observable we can choose the poles of A + LC to get
an invariant and locally convergent observer around any permanent tra-
jectory associated to @. Let W (z) = [Wi(z),..., W, (2)]. It suffices
to take

3~
Tﬂ>

= f (& u(t) + W) Lpy—1 (y(t)). C)]

Examples: In the nonholonomic car example of [2] and [4],
permanent trajectories are made of lines and circles with constant
speed. In the inertial navigation example of [2], [4], ¢, -1(u)
(q*((;t:j;(z‘;)iq_l)’ a trajectory is permanent if ¢ * w * ¢ '
g #* (a+v x w)*q ! are independent of ¢. Some computations show
that any permanent trajectory reads

Q
q(t)=exp <§f> * o
— Q Q
v(t)=qq *| (AQt +T+exp —57‘, * [ % exp ;7‘, * (o

where 2, Y, and T are constant vectors of R®, ) is a constant scalar,
and ¢o is a unit-norm quaternion. These constants can be arbitrarily
chosen. Hence, the general permanent trajectory corresponds, up to a
Galilean transformation, to a helicoidal motion uniformly accelerated
along the rotation axis when A # 0; when A tends to infinity and €2 to
0, we recover as a degenerate case a uniformly accelerated line. When
A =0and ' = 0 we recover a coordinated turn.

and
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ITI. LEFT INVARIANT DYNAMICS AND RIGHT EQUIVARIANT OUTPUT

A. Invariant Observer and Error Equation

1) Left Invariant Dynamics and Right Equivariant Output: Con-
sider the following system:

d
%T(t) = f(l‘ t)

y =h(x)

(10)
an

where we still have ¢ € G,y € Y, and f is a smooth vector field on
G. Let us suppose the dynamics (10) is left-invariant (see, e.g., [1]),
ie,:Vg,xz € Gf(Ly(x),t) = DLyf(x,t). Forall g € G, the trans-
formation X (¢) = gx(t) leaves the dynamics equations unchanged:
(d/dt)X (t) = f(X(t),t). Letws = DL,_1(d/dt)x € g. Then the
dynamics (10) are given by (12), generalizing the motion equation of a
rigid body in space fixed at a point (16). This is why it is stated in [1]
that one can look at any left invariant dynamics on GG as a motion of
a “generalized rigid body” with configuration space . Thus one can
look at w,(t) = f(e, t) as the “angular velocity in the body”, where e
is the group identity element (whereas DR, 1 (d/dt)x is the “angular
velocity in space”). We will systematically write the left-invariant dy-
namics (10)

d

ET(?") = DL,w,(t).

12)

Let us suppose that b : G — Y is a right equivariant smooth output
map. The group action on itself by right multiplication corresponds to
the transformations (pg4)gcc on the output space Y: for all 2, g € G,

h(zg) = py(h(x)) ie.,
(2g) = pq(h(z) lehmg(m)):pg(h(m))-

Left multiplication corresponds then for the generalized body to a
change of space-fixed frame, and right multiplication to a change of
body-fixed frame. If all the measurements correspond to some part of
the state = expressed in the body-fixed frame, they are affected by a
change of body-fixed frame, and the output map is right equivariant.
Thus the theory allows to build nonlinear observers such that the error
equation is autonomous, in particular for cart-like vehicles and rigid
bodies in space (according to the Eulerian motion) with measurements
in the body-fixed frame (see the example below).

2) Observability: If the dimension of the output space is strictly
smaller than the dimension of the state space (dimy < dimg) the
system is necessarily not observable. This comes from the fact that,
in this case, there exists two distinct elements ;7 and x> of G such
that i(z1) = h(x2). If 2(t) is a trajectory of the system, we have
(d/dt)x(t) = DLgyw,(t) and because of the left-invariance, g x(¢)
and go7(t) are also trajectories of the system

5 (0re() = DLy (0), 1 (2(0)) = DLysrion (1)
But since h is right equivariant: h(gi1x(t)) = p.nh(g) =
peyh(g2) = h(g22(t)). The trajectories gix(t) and gox(t) are
distinct and for all ¢ they correspond to the same output. The system
is unobservable.

3) Applying the General Theory of Section 1I: There are two ways
to apply the theory of Section II. i) The most natural (respecting left-in-
variance) does not yield the most interesting properties: letZ/ = R x Y
and let us look at (u1,u2) = (t, h(e)) as inputs. For all g € G, let
y(t,hie)) = (t,p,~1(h(e))). Define a new output map H(x,u) =
h(x) = ps(h(e)) = pz(uz).Itis unchanged by the transformation in-
troduced in definition 2 since H(X,U) = pgu(p,—1(u2)) = H(x, u)
for all ¢ € G. (10), (11) is then a left-invariant system in the sense of
definition 2, when the output map is H (x, u). ii) Let us rather look at
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we(t) as an input: w(t) = ws(t) € U, where!d = g = R" is the input
space. Let us define for all ¢ the map ¢, : G — U the following way:

¢y = DL,-1DR,.

It means ¢4 is the differential of the interior automorphism of G.
The dynamics (10) writes (d/dt)x = F(x,u) = DL.u and can be
viewed as a right-invariant dynamics. For all =, g we have indeed:
(d/dt)Ry(x) = DRyDLyws(t) = DL, DLyDL,—1 DRyws(t) =
DLg,(x)tg(ws(t)) = F(Rg4(x),1(u)). Note also that (1g)sea
and (py) geq are right group actions since for all g1, 9> € G, we
have 'y, 0 ¥4, = ¥g,q, and py, © pgy = pgog,- Thus, we strictly
apply the general theory of II, exchanging the roles of left and right
multiplication.

4) Construction of the Observers: Take n linearly independent vec-
tors (Wi,...,W,) in TG|. = g. Consider the class of observers of
the form

d . _ .
T DL;ws(t) + DR;: (; Li(ps-1(y)) W,;) 13)

where the £;’s are smooth scalar functions such that £;(h(e)) =
0. They are invariant under the transformations defined in
Section III-A.3ii).

5) State-Error Dynamics: The error (invariant by right multipli-
cation) is G 3 5 = (#27') = Ls(2~"). The error equation is an
autonomous differential equation (14) independent from the trajectory
t — x(t) (as in the linear stationary case)

d n _ )
E"Y = DR, <; L; (11,(77 1)) W'i) )

It can be deduced from (5) or directly computed using (d/dt)n =
DL;((d/dt)a™") 4 D, Ls(x~")(d/dt)# and the following points:

o D.Li(z=YY(d/db)i = DR, . ((d/dt)z) =
DRI—I DL\szs(t)+DHI_1 DR; 2?:1 L‘,i(p%_l(y))[/‘/} which
canbe written DR, —1 DLyw.(t)+ DR, 3" | Li(ps—1(y))Wi;

» moreover, we have Li(p;-1(y)) = Li(pz(h(x))) =
Lih(n));

e finally, DL;((d/dt)2™") = —DL;DR, 1DL, .13& =
—DL;DR, 1wws = —DR, 1DL;w(t).

6) First Order Approximation: We suppose that 7 is close to e.

Let ¢ € g such that n = exp(ef) with ¢ € R small. We have up
to second-order terms in €

(14)

n

i 9L oh )
ARy < an (M) 5(0)5) Wi

=1

Let us define a scalar product on the tangent space g at e, and let
us consider the adjoint operator of Dh(e) in the sense of the metrics
associated to the scalar product. The adjoint operator is denoted by
(Dh(e))" and wetake £(y) = K(Dh(e))* (y—h(e)). The first-order

approximation writes
¢ = —KDh"Dh¢ (15)

2. which is the

and for K > 0, admits as a Lyapunov function |||
length of ¢ in the sense of the scalar product.

B. A Class of Nonlinear First-Order Convergent Observers

Consider for (10) and (11) the following observers: (d/dt)z =
DL;ws(t) + DR:[Y1 [Li(p7 " (h(x)))]W;] where the £;’s are
smooth scalar functions such that £;(h(e)) = 0. Using the first-order
approximation design, take £,..., £, such that the symmetric part
(in the sense of the scalar product chosen on T'G/|.) of the linear map
g =" ((0L;/Oh)(h(e))(Oh/Ox)(e)E)W;is negative. When it
is negative definite, we get locally exponentially convergent nonlinear
observers around any system trajectory.
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IV. BRIEF EXAMPLE: MAGNETIC-AIDED ATTITUDE ESTIMATION

To illustrate the theory we present one of the simplest example: mag-
netic-aided inertial navigation as considered in [5], [13]. To pilot a
flying body requires at least a good knowledge of its orientation. This
holds for manual, or semi automatic or automatic piloting. In low-cost
or “strap-down” navigation systems the measurements of angular ve-
locity & and acceleration @ by rather cheap gyrometers and accelerom-
eters are completed by a measurement of the earth magnetic field B.
These various measurements are fused (data fusion) according to the
motion equations of the system. The estimation of the orientation is
generally performed by an extended Kalman filter. But the following
proposed observer, in addition to its structural properties, is simpler.
Indeed a more realistic situation is studied along the same lines in [14],
[15], with more emphasis on tuning and experimental results; [15] also
presents an implementation on an 8-bit microcontroller running at 11
MHz and using the standard C floating point emulation, which illus-
trates the computational simplicity of the proposed observer.

The orientation (attitude) can be described by an element of the
group of rotations SO(3), which is the configuration space of a body
fixed at a point. The motion equation is

d .

%R =R(& x-) (16)
where R € SO(3) is the matrix which represents the rotation mapping
the body-fixed frame to the earth-fixed frame, &3 (¥) is the instantaneous
angular velocity vector measured by the gyroscopes and (& X -) is the
skew-symmetric matrix corresponding to wedge product with <. If the
output is the earth magnetic field B measured by the magnetometers
in the body-fixed frame y = R 'B ([6]), it is right equivariant. The
output has then dimension 2 (the norm of y is constant) and the state
space has dimension 3. Thus the system is not observable according to
Section I1I-A.2. This is why we make an additional assumption as in [5],
[13]. Indeed the accelerometers measure @ = (d/dt)if + R~* G where
(d/dt) is the acceleration of the center of mass of the body and & is
the gravity vector. We suppose the acceleration of the center of mass is
small with respect to || G|| (quasi-stationary flight). The measured output
isthusy = (ye,ys) = (R~'G, R™' B). One can apply the theory as
described in Section III-A.3i) or Section III-A.3ii). This latter section
yields a class of first-order convergent observers around any trajectory

TR =@ x) - K [(Bys x (Rys - BY) < | B

—K> [(Ryc X (éyc — G)) X ] R.

Indeed, it corresponds to (13) with a choice of the £;’s motivated by
the following first-order analysis. If = RR™" is the error we have
(d/dt)n = =K, [(nBx (nB—B)) X In—=K2[(nG x (nG = G)) x-]1.
Let us linearize this equation. As the tangent space to SO(3) at the
identity rotation Id is made of skew-symmetric matrices we write for
ncloseto Id : p = Id 4 € x - with ¢ € R® small. Up to second-order
terms in £ we have (d/dt) = —K1B x (£ x B) — K2G x (€ x
G). Without loss of generality, one can assume that B is orthogonal to
G [14]. Let W1, W5, W3 be an orthonormal basis of R® with W, =
G/||G|| and W5 = B/||B||. Writing £ = & W7 + & Wa + EWs, we
have

p ¢ ¢! 0
wn 2| ==-K, || -K.|[¢& a7
S\¢ 0 ¢

The linearized error system is exponentially convergent around any
trajectory, independently from the trajectory, and the time constants
1/K; > 0and 1/K> > 0 can be chosen freely.

1713

V. CONCLUSION

In this technical note, we completed the theory of [2] and [4], giving
a general framework to symmetry-preserving observers when the state
space is a Lie group. The observers are intrinsically and globally de-
fined. We explained the nice properties of the error equation in two
examples of [2] and [4]. In particular, we derived observers which con-
verge around any trajectory and such that the global behavior is inde-
pendent of the trajectory as well as of the time-varying inputs for a
general class of systems.
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