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First it is indicated that, at the radiation-dominated stage of the expanding universe, two 

ways should be distinguished for the evolution of the second-order density waves most naturally 

associated with the first-order rotational and gravitational waves, and the behavior of an 

isolated eddy is examined for a comparison with those of periodically distributed eddies. 

Next the second-order waves associated with rotational, density and their mixed waves 

at the intermediate stage (before and after the decoupling epoch tD) are analyzed and the 

rapidity of compression due to the inertial force appearing soon after tD is calculated. 

Finally the possibility of galaxy formation is examined on the basis of the above analysis. 

Moreover a possibility for comparatively small galaxies to be formed through the cascade 

due to non-linear process is considered. 

§ 1. Introduction 

In two previous papers1>'2l (referred to as [IJ and [II]), we have extended 

Lifshitz's8l linearized theory of gravitational instability so as to deal with non­

linear processes up to second-order terms, and applied the non-linear theory to 

the problems of evolution of local inhomogeneities in the expanding universe. 

However, the applications have been limited to the problems at a later stage and 

at a radiation-dominated early stage. It is, therefore, necessary that we analyze 

continuously the behavior of inhomogeneities at an intermediate stage which in­

cludes the stage I from t = t* (the beginning of a matter-dominated stage) to t 

= tD (the decoupling epoch of matter from radiation) and the stage II after tD. 

The most striking change in a physical state at the intermediate stage is a 

rapid compression of gaseous matter within inhomogeneous regions soon after 

tD (for instance, tD<t<2tD). This arises because the balance between inertial 

force and radiation pressure gradient is broken in the inhomogeneities at tD and 

gaseous matter is compressed till the compression is prevented by the effect of 

background expansion (much stronger than the gradient of gas pressure). The 

qualitative analyses for galaxy formation due to this hydrodynamical instability 

have been given by Ozernoi and Chernin,4
> Ozernoi and Chibisov,5l Sato et al. 6

> 

and Sato/l and it has been shown that an inhomogeneous region with mass of a 

large galaxy (or a cluster of galaxies) can survive against dissipation effects. 

In this paper quantitative analyses for the motion of inhomogeneities are 
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Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 417 

carried out by the use of hydrodynamical equations derived in [II], and how and 

to what extent the perturbations of density and velocity are amplified at the in­

termediate stage are shown. Moreover the lower limits for initial perturbations 

leading to galaxy formation are evaluated and also a possibility for the forma­

tion of comparatively small galaxies are indicated. 

In § 2 it is shown at a radiation-dominated stage that two types should be 

distinguished for the evaluation of density waves associated with rotational and 

gravitational waves, and the motion of an isolated eddy is studied in a compari­

son with that of periodically distributed eddies. In §§ 3 and 4, the second-order 

density waves associated with the first-order rotational, density and mixed waves 

are derived at the intermediate stages I (t<tD) and II (t>tD), respectively, and 

in the latter section the junction between two stages is dealt with. In § 5 pos­

sibilities of galaxy formation are examined on the basis of the above results. 

Moreover, Appendices A and B are given over to deriving hydrodynamical equa­

tions for the second-order quantities at the relevant stages, and to showing the 

solutions of Lifshitz's linearized equations. 

Notation 

The notation in this paper is the same as in the previous one. But w=cmlcr 

=a/ a* is employed in place of 'fj for convenience. Here em and cr are the un­

perturbed matter and radiation mass densities, and the asterisk denotes an epoch 

of cm=cr. 

Assuming that em and cr are conserved separately and the matter pressure Pm 

is negligible (i.e., cmoca-3
, croca-4

), we can represent the equations describing 

the unperturbed state of the universe as 

w
12

=(dwld1JY= (w+1)11J*\ 

C w + 1 )1!
2 

- 1 = i'fJ I 'fJ * , 

rj* 2=3cra41 (cma
3
)

2 
= const.: 

(1·1) 

(1·2) 

In this papet all relativistic models are taken into consideration through a para­

meter !2 , c(to)lec (ec=10-29 g cm-3
), while spatial curvature is neglected. Suffix 

0 stands for the present epoch. 

In order to represent the time scale of expansion, we use the Hubble para­

meter H=a' I a 2 = cl3, where units c = 8nG = 1 are used. 

§ 2. Radiation-dominated stage 

(i) Two types of the second-order waves associated with the first-order ones 

In [IIJ, we have derived the second-order perturbation ¢=osle associated 
. 2 

with rotational and gravitational waves regarded as the first-order quantities. 

This ¢ is expressed . as a sum of a special solution of the relevant inhomogene­

ous differential equation and its homogeneous solutions, and is uniquely deter-
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418 K. Tomita 

mined by setting initial and boundary conditions. Those conditions should be 

chosen in such a way that the second-order waves associate most reasonably with 

the first-order ones. For this purpose, we must carefully deal with the homogene­

ous part, as will be shown below. 

If we take a very early stage such as n17<1 as a setting epoch, the condi-

tion CD must be imposed such that the homogeneous part ( oc17, 172
) should be ~ 

discarded. On the other hand, if we take a stage n17)> 1 (although before t») 

as a setting epoch, another. condition ® is necessary such that acoustic waves 

with constant amplitudes (the homogeneous part at that stage) should be dis-

carded. These two conditions CD and ® are, however, not compatible with each 

other. In fact, the incompatibility is shown by inserting the following homoge-

neous solutions (h.s.) into the expressions for ¢ (see the Appendix of [II]): 

h.s. =C1[y_1 cosy- y- 2 (1- y2/2) sin y] 0 

+ c2 [y-1 sin y + y-2 (1- y2 /2) cosy-y-2
] Q 

r--.J J CtC1Y + iC2y
2

) Q for y-<1 , 

- l(tCl sin y-tC2 cos y)O for y)>1, 

where y= (2/ .J3) n17 and 0 is a scalar harmonics specified by JQ = - n2Q. Be­

cause of this situation, the associated waves with no typical h.s. at the stage n17 

<1 have acoustical characteristics of h.s. at the stage n17)> 1, and inversely the 

associated waves with no acoustic properties show typical properties such as 

1.0 
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Fig. 1. Density perturbations of the associated type 2 waves. The solid lines denote rotational 

waves and the broken lines denote gravitational waves. 
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Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 419 

density perturbations at the stage nrr~l. Accordingly it seems to be difficult 

to decide which condition of CD or ® is superior, and so we had better adopt 

both conditions separately. In Figs. 2 and 3 of [II], we have shown the middle 

case (between CD and ®), such that the contribution from the terms ocr; is dis­

carded at nr;<L The behavior of ¢ in this case is analogous to that in the case 

of CD (type 1 waves). Here we shall show the behavior in the case of ® (type 

2 waves) in Fig. 1 for a comparison. It is found in this figure that the parts 

representing non-uniformity of density distribution damp out with time, except 

the part with a suffix a= 1 in the rotational waves. 

(ii) Behavior of an isolated eddy motion 

In [II] we have considered the eddies which are periodically distributed, and 

it has been shown that at nr;<1 the peaks of the second-order density perturba­

tions appear at the corners among the eddies and at nr;> 1 the type 1 waves 

have the peaks at the corners and centers oscillating alternately. Moreover, it 

is shown that the type 2 waves have stationary peaks at the corner. However, 

since eddies are not necessarily distributed periodically, it, is important to ex­

amine whether and where the peaks appear in a quite different distribution of 

eddies. 

In what follows, let us consider an extreme case of an isolated eddy for a 

comparison. Its simple model with symmetry around x 3 axis can be described 

by Eq. (3 · 5) of [II] and the velocity field is given by 

~v
1
= (C/8) (L1F),2, ~v

2
=- (C/8) (LJF),l, 

Here F may be a function of r= (x"x"Y12 and U1= { (x1)2 + (x2)2P12 in general, but 

we shall treat a simple case specified by F=F(r). (The generalization to the 

case of F=F(r, U1) can be done easily but with lengthy calculation.) Then iJva 
1 

1s compactly written as 

for a= (1, 2, 3), respectively, 

where 

a>= (C/8) (F,rrr + ~ F,rr- ~ F,r) /r 
plays a role of angular velocity. From Eq. (3 · 2) of [II], we obtain 

/"- ~ Llf= -
1

3

6
r;-

1 [cu2 + ~ (a>
2
),rr(U1/rY] 

(2·1) 

(2·2) 

Now let us represent by nc a wave number characteristic of the eddy with 

length L(nc=2rca/L), and show its respective behaviors at ncrJ<1 and >L 

For ncrJ<1, we get 
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420 K. Tomita 

f ~ 32 -3(1) + h - --r; 1 .s. 
3 

with 

(/)1 = ( r-8 ir drr4(J) r (fiJ /r)2, 

so that ( cf. Eq. (2 · 8) of [Il]) 

For ncr;"':> 1, we get 

¢-::::::.. 
32

r;- 2 (1-ln nr;) (/)1 + h.s. 
3 

- ~ Llf-::::::.. -
1

3

6
r;- 1 [(J)2 + ~ ((J)2),rr(W/rY] 

for the part of type 2 and solving this equation 

f-::::::..Sr;- 1
(/)2 + h.s. 

with 

nc..rc<< 1 

(2·3) 

(2. 2') 

(Type. .2.) 

Fig. 2. Density distributions associated with an isolated eddy at nc1J~l and ne1J)>l (type 2). Cur­

ves denote equidensity shells. It is remarkable that a ring appears around the center of the eddy. 
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Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 421 

where const is taken in such a way that @2~0 for r~oo. Therefore we obtain 

The solutions of type 1 is obtained by superposing on the solution (2 · 4) the 

acoustic waves, for which Eq. (2 · 2') cannot be used as an approximate equa­

tion of (2 · 2). 

As long as we are concerned with the main parts other than h.s., the general 

properties of these solutions are that (a) at ncr;<1, ¢ vanishes along z axis and 

¢~0 at W=O, oo and ¢>0 at the middle points on W plane, and (b) at ncr;>1, 

¢ (the type 2) is kept constant in time, ¢<0 along z axis and ¢~0 at w~oo, 

¢~¢ 0 ( <O) at w~o on W plane. Here we assumed that w (0) is const ( =FO) 

and ova vanishes at r~oo. In Fig. 2, we show the density distributions in the 
I 

case where w = const ( =FO) for r<rb and w = 0 for r>rb. 

In the above, we have treated the cases of ncr;<1 and ncr;> 1 (type 2 only) 

separately. For the junction at ncr;:::::..2 and a derivation of the part of type 1, 

the direct integration of Eq. (2 · 2) is necessary, but their systematic treatments 

are omitted in this paper. 

At the stage from the epoch t* to tD, we shall derive the second-order waves 

associated with rotational, density and their mixed waves. Radiation and ionized 

matter are dealt with as one fluid at this stage and the equation of state is ex­

pressed by p = er/3 and e = Sr +em. Then the sound velocity C8 is given by 

( 
4 \ 1/2 2 (. 4 ) -1/2 

Cs= (op/oe)/12 = - _P_) =- w+- ' 
3 e+p 3 3 

(3·1) 

where s=entropy and w=a(t)/a(t*). In the following the condition c8nw/w' 

( = 2ncsH-1/L) > 1 is assumed, as has been assumed at the end of radiation-dom­

inated stage (nr;> 1), and our analysis is limited to adiabatic perturbations. 

(i) Second-order density wave associated with rotational waves 

The behavior of this density wave is different according as we adopt the 

viewpoint Q) or ® in (i) of § 2. 

First let us adopt the viewpoint Q). Then, after an epoch nr;~2 when ¢ 

reaches ~ (ov)i2/c2
, the density wave behaves like a free acoustic wave whose 

I 

density has a constant amplitude ~ (ov)//c2 at the radiation-dominated stage. At 
I 

the intermediate stage I, the amplitude decreases slowly as 

(3·2) 

as shown in Eq. (B · 8) of Appendix B. 

On the other hand, if we adopt the viewpoint ®, the density is kept at the 

value r-.J (qv)i2
/ c2 after nr; = 2 at the radiation-dominated stage. The second-order 
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422 K. Tomita 

density and velocity at the intermediate stage I are shown in the following ( cf. 

Eqs. (3·10) and (3·11) below). 

For that purpose, the differential equations for ¢ are derived in Appendix 

A and the first-order perturbations are described in Appendix B as the solutions 

of Lifshitz's linearized equation. For the first-order rotational perturbation, it is 

to be noticed under the condition of c8nw / w'> 1 that the dominant term on the 

right-hand side of Eq. (A· 5) is only that including ~v~p~V~a· Therefore we have 

Y,ww+ 
7
/
2

. Y,w-
1 Y-JY/{3r;*- 2 (1+w)(1+~w)} 

w+1 w(w+1)2 4 

='ll 
2w- 2 (w+ 1)-312 rw2 (w+ 1)-112 (w+ i.)ova ovf1 } 

'I * l 3 ' ' f1, ' a 'w ' 
(3·3) 

where 

_ (w
2
./w+1)-1J w

2
J~ 

¢- w+4/3 y w+4/3 dw · (3·4) 

Inserting Eq. (B ·16), we can rewrite the right-hand side of Eq. (3 · 3) as 

(3·5) 

Here, for simplicity, we shall assume sa to be a vector harmonics satisfying JSa 

= - n2Sa and S.~ = 0. Then we can separate JS,[,JS,~ = n 4 S,[,S,~ into n6 (Qo + 02n), 

where Q 0 is a constant and Q 2n is a scalar harmonics satisfying JQ2n = - (2n YQ2n· 

(For example, in the case of periodic eddies where sa is defined by c.a~'vFI',v with 

F1 = F 2 = 0, F 3 =sin nx1 sin nx\ we have Q0 = 0 and 0 2n =cos 2nx
1 + cos 2nx

2
). 

Then we can separate the differential equation (3 · 3) into two parts as follows: 

L(Yo) = n6R 1 , 

L ( Y ) 4 (2 )2 Y2n 6R 
2n +-g nr;* (w+1)(w+4/3) =n 1, 

where 

Y = YoQo + Y2nQ2n 

and the operator L Is defined by 

L 8ww+ 
712 

8w--w-1 (w+1)-2
• 

w+1 

(3·6) 

(3. 7) 

(3·8) 

The approximate solutions of Eq. (3 · 7) can be easily obtained, if we notice 

c
8
nw/w'>l. That is to say, on the left-hand side of Eq. (3·7), the last term 

is dominant and its solution is expressed as 
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Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 423 

Hence, if we separate ¢ into two parts as 

¢ == cf>oQo + rP2n02n 

and integrate Eq. (3 · 4), we get 

rP2n~ lcr2
n

4
1j*

2
l(w+ 1). 

16 

Using Eqs. (3·1) and (B·16) again, we can express rP2n as 

- 2_ (~v)2 (W + 413 )/ a a 
c/>2n - 4 C / 'W + 1 ( S S ) , 

where the bars denote spatial average. 

(3·9) 

(3 ·10) 

On the other hand, the solution of Eq. (3 · 6) is estimated to be of the order 

of n6w 2R1, which is "-' (c8nwlw')2Y2n. Therefore, rP2n is negligibly small com­

pared with¢0 which is of the order of (nwlw')2(tjv)2=(n1j*wi.Jw+1) 2 (~v) 2 . In 

fact, for w~ 1, we get from Eqs. (3 · 6) and (B ·16) 

¢o= -iCr2
n

6
1j*

2
lw=- (n'l}*.Jw/(~v)21Sasa. 

Because of its spatial constancy, however, ¢0 does not contribute to the growth 

or decay of non-uniformity at all. Hence, we should pay attention to rP2n given 

by Eq. (3 ·10). (In the above case of periodic eddies, ¢0 does not appear, be­

cause of Q 0 = 0). 

For ova, we obtain from Eqs. (A·2) and (B·16) 
2 

gva I (~vY = 2.j3n'l}* (w + 413) {tan-1( .J 3 (w + 1)) + h1} b0 , (3 ·11) 

where b0=n-1 (-l-Q2n,a + S,cpS13
) I (S"' S"') "'-' 1 and h1 is an integration constant. If 

we take h1 = - nl3 so as to exclude homogeneous terms in ova for w<1. ova 1 

.J (~v) 2 for w>1 becomes nearly constant in time. 
2 2 

The condition that our second-order approximation is applicable can be given 

by ov<ov, i.e., 
2 I 

(~z;)n(wlw') (w+413) .Jw+ 1 {tan-1( .J 3(w+ 1)) +h1} <I. (3·12) 

On the other hand, the condition that non-linear inertial force is ineffective Is 

given by 

(~v)n(wlw') (=2n:~vH-
1
IL)<1, (3 ·12') 

The discrepancy between conditions (3 · 12) and (3 ·12') is raised by the inevita­

ble mixing of homogeneous terms at w?l. 

(ii) Second-order density wave associated with a density wave (acoustic wave) 

The first-order density wave before tD is given by Eqs. (B · 8) "'-' (B ·10) and 

the associated second-order density wave is described by Eqs. (A· 4) and (A· 5). 

It should be noticed here that, under the condition c 8 nwlw'~1, their terms 111-

cluding K and ~va are dominant on the right-hand side of Eq. (A· 5). 
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424 K. Tomita 

Inserting Eqs. (B·8) and (B·9) into Eq. (A·5), we obtain 

L(Y)- JY j[ 3n*-
2
(1 + w) ( 1 + ! w) J = ~;

2 

(nn*Y(w+ 1)-
5
1

2
( w + ~) -

2 

Xsm2ffJ -- w-- cos 2()+w+-, 0 [ 1 ( 4) 28] 
. 3 3 9 

(3 ·13) 

where we put Q=sin(), Pa=Q,a/n2 =na/n2 ·cos(), ()=naxa+()o (()0 : a constant 

phase factor). The definition of a phase factor ffJ is given in Eq. (B · 7) of Ap­

pendix B. 

By separating Y into two parts, i.e., 

Y= Yo+ Y1 cos 2(), 

Eq. (3 ·13) is reduced to 

C2 
L(Yo) =_a (nn*Y ( w + 1)-512 

( w + 4/3)-2 
( w + 28/9) sin 2ffJ, 

27 

L(Y1) + 
16

(nn*Y(w+ 1)-1(w+4/3)-1
Yl 

9 

c 2 
0 

= __ a (nn*Y(w+ 1)-512 (w+4/3)-2 (w-4/3)sm2ffJ. 
81 

Equation (3 ·14) is integrated as 

C2 
Y 0 = __ a (nn*Y(w+1)-312 (w+4/3)-1 (w+28/9)sin 2ffJ. 

48 

On the other hand, if we insert Y1 =F cos 2ffJ into Eq. (3 ·15), we get 

c 2 ( 4 )1/4 
F= _a (nn*)4 (w + 1)-3

1
2 w + - (I+ const), 

216 3 

where 

(3·14) 

(3 ·15) 

From these results, Yo proves to be negligible compared with Yh so that we 

have approximately Y=Y1 cos2(). Therefore, from Eq. (A·4), we obtain 

c 2 ( 4 )3/4 0 

¢ = _a (mh/(w + 1)-1 w + - I(w) cos 2() Sill 2d> +h.s., 
288 3 

(3·16) 

where homogeneous solutions (h.s.) take the form (B · 8). 

Here let us consider the spatial averages K 2 and ov2 for the squares of am-
I 

plitudes (the coefficients of cos d>) of K and ova given by Eqs. (B · 8) and (3 · 9). 
I 

Then ¢ is rewritten as 

1 - . 
¢ = -nn*K 2 

( w + 1) ( w + 4/3)-3
1

41( w) cos 2() sill 2m, 
36 

(3 ·17) 
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Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 425 

where we have K 2 = (ov)2/c/. Moreover we get using nw/w'=2n/(LH) 
1 

_ H-1{(ovYP12 

¢/(K 2Y/2 = L J(w)cos 28 sin 2(]), (3·18) 

where 

J(w)= 
2

7r w-1 (w+1Y12 (w+4/3Y14l(w). 
9 

(3 ·19) 

Because J is of the order of unity, the condition for applicability of the 

second-order approximation is defined by ¢/ (K 2Y/2<1 and expressed as 

(3. 20) 

The regions where this condition (3 · 20) and the condition (3 ·12) for rotational 

waves are satisfied are represented in Fig. 3. 

Next we shall examine the second-order velocity field. From Eq. (A· 2) we 

obtain 

( 4)-1[4 s -ijva= -r;* w+ S g Jw+1 (w+4/3)-
1
¢,adw 

+ J 'J+
413

(ovaov 13
) 13dw+'YJ* - 1 (w+ 1) (w+ 16/9) (w+4/3)-

1
Kova], ·w+ 1 1 1 • ., 1 

(3. 21) 

where only dominant terms are included. The first term including ¢,a is gradi­

ent and irrotational. If we are concerned with monochronous waves (wave num­

ber na), the second term is also gradient, because (Pa P 13
), 13 = { (Q, 13)2- n 20

2
},a/ 

(2n4
). Even if we consider complex waves with many wave numbers, the situa­

tion is unchanged. From Eqs. (3·21) and (B·9), we get 

ijva / (~v) 2 =- 2nar;* (w + 4/3Y/2 {sh-1V 3 (w + 1)- sh- 1 J3} sin-2
(]) sin 28, 

where an integration constant has been taken so as to exclude homogeneous terms 

in ova for w-<1. The condition of applicability given by ov<ov is consistent 
z z 1 

with that in (3 · 20). 

(iii) Mixed waves 

We shall treat the case when in the first-order smallness there coexist rota­

tional and acoustic waves which are interacting with each other. In this case, 

if we are concerned with one wave number n, the velocity field ova IS given by 
1 

(3. 22) 

where constants C in the rotational and acoustic cases are discriminated by Cr, 

Ca., respectively. The contributions of this velocity field to the non-linear coupl­

ing consist of pure rotational parts, pure acoustic parts and the parts for the in­

teraction between a rotational wave and an acoustic wave. The first two parts 
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426 K. Tomita 

are included in the treatments of (i), (ii), and so here we shall confine ourselves 

to the analysis of the last part which is indicated by a suffix ra in the follow­

ing. Here the dominant ra term on the right-hand side of Eq. (A· 5) is given 

by the term with 

(~v~p~V~a)ra= -- tn
4
'f7*

2
CrCa(w+4/3)-

714 sin Q)(S.~P,~). (3·23) 

From Eq. (A· 5) we get 

L ( Yra) - J Yra I { 3'17 * -2 
(1 + w) ( 1 + ! w)} 

(3. 24) 

where Yra denotes the ra part of Y and the right-hand side of the above eqD:a­

tion has been derived approximately taking c8nr;*';)> 1 into account. 

When we separate S,{JP.~ into n (00 + Q2n), Eq. (3 · 24) is solved as follows: 

(3· 25) 

{ 
Yrao:i-(~r;*YCrCa(w+ 1)-

2
(w+4/3)-

314 
cos(]), 

Yral - - 3 Yrao · 

For ¢ra, we have from Eq. (A·4) 

¢ra = i (n3'1J* 2) CrCa. ( w + 1)-312 
( w + 4/3)-114 sin (j) (Qo- i-Q2n). (3. 26) 

Moreover, we shall examine the second-order velocity :field which consists of ro­

tational part (ova)r and gradient part (ova)a. From Eq. (A· 2), we get 
z 2 

{(w+i.)cova)a} =-i.( w+
1 

)¢,a!w', (3·27) 
3 2 

,w 9 w + 4/3 ' 

{ ( w + t) (~va)r},w = ( w + 4/3) {rotational part of 

(~va~v~).~} jw' + ( w + 1) ( w + 16/9) ( w + 4/3)- 1
~va K,w, (3 · 28) 

where only dominant terms are written on the right-hand sides. Here we shall 

derive the expression for (ova)r. Inserting Eq. (3 · 22) into Eq. (3 · 28), we ob-
2 

tain 

(ova)r= _1_(n 37J*2)CrCa.(w+4/3)-514 cos (j){csaP~).tJ-1_(w+ 16 1 9 )saQ}~ 
' 3 2 w+4/3 

(3 ·29) 
where we used pa = Q, a! n2

• 

The contribution from only (ova)r to (ova)r is of higher-order smallness. 
I 2 

§ 4. Intermediate stage II. (t>tD) 

In this section we shall derive the expressions for the second-order density 

waves associated with rotational, density and their mixed waves after tn and deal 
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Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 427 

with their junction with the counterparts before ln. 

Since matter and radiation have moved together before tn, there remain the 

radiative perturbations soon after tn in the perturbed region of matter. But the 

radiative perturbations have influence on matter through gravitational attraction 

which is n~gligibly small compared with hydrodynamical non-linear force. There­

fore we shall confine our perturbation analysis to the matter part. Moreover, 

as an initial condition of the intermediate stage II, we shall assume that at tn 

the density and velocity perturbations of matter have the same values as those 

of the matter part at the end of stage I. At stage I, the velocity of matter is 

the same as that of radiation, but the density of matter is related (by virtue of 

the assumption of adiabatic change) to the total density as follows ( cf. Appen­

dix A): 

osm/s= (w/(w+4/3))os/s, 
I I 

osrn/s= (w/(w+4/3))os/s-_3_ w(w+
1

) (os/s)2
• 

• 

2 

9 (w+4/3Y 
1 

(i) Second-order density wave associated with rotational waves 

As long as we adopt the viewpoint Q), rotational motions have associated 

acoustic waves almost free from the original rotational motions. Hence their 

behavior can be analyzed in the next subsections (ii) and (iii). We shall there­

fore deal with the second-order quantities from the viewpoint ®. 
Inserting the expressions for the first-order rotational perturbation (B ·14) 

rv (B ·16) into Eq. (A· 9) and taking into account that only the term including 

~v~rifv~a is dominant under the condition C8nw/w' ( =csn1J*W/ .J w + 1)> 1, we get 

(4·1) 

where R 1 is defined in Eq. (3 · 5) and S,tpS,~ is replaced by n2 (Q0 + Q2n). Hence, 

contrary to the case before ln (§ 3 (i)), Y2n satisfies the same differential equa­

tion as that for Y0, where Y = Y0Q0 + Y2n02n. As a result, Y2n and ¢2n will in­

crease promptly after tn by a factor rv (c8 nw/w')\ so as to become comparable 

with Yo and ¢0, respectively. In fact, we have the following solutions for ¢2n: 

{ 
- (n1J*w)2(ov)2bl +h.s. for w>1, 

¢2nQ2n = 1 ( )2 '---c )2 5 ) , 
-2 n1J*W ~v (4-ln w b1 +h.s. for w<1, 

(4·2) 

where h.s. represents homogeneous solutions for density waves given by Eq. (B ·12) 

and bl=Q2n/Sasa..-v1. 

For qva, we obtain from Eqs. (A· 7) and (B ·16) 

(jva / ((jvY = 2.J3n1J* (w + 4/3)tan- 1
( .J 3 (w + 1)) S,"fgSflj (nS-;;:-Sp:) + h.s., 

(4 ·3) 

where h.s. is a homogeneous part determined by joining the above ova with ova 
z z 

before tn. A comparison with Eq. (3 ·11) shows that the amount of ova does 
2 
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428 K. Tomita 

not much change after tD. 

Now let us consider the junction of perturbed motions before and after tD. 

Linearized solutions for rotational perturbations are common before and after tD 

and continuous at tD. For the second-order quantities, the part of Q 0 is continu­

ous at tD as it is, and so we have only to treat the part of 0 2n. Therefore we 

equate at tD the values of the matter part of ¢2n given by Eqs. (3 ·10) and ( 4 · 2), 

and the values of ova given by Eqs. (3 ·11) and ( 4 · 3). These two equations 
2 

determine the additive homogeneous solutions (h.s.), or the constants B and Ca 

appearing in Eqs. (B ·12) and (B ·13). Another constant D is related to the 

definition of density perturbation itself and cannot be determined uniquely. Here 

and in the following, D is taken to be zero. As a result of the junction, we get 

( 
(ovY) [ 1 S.j3 
.~ D 4+ (csnr;*.JW)D

2
(w/wD-1) + 15(c8nr;*w)D 

X {tan-
1

V3(w+1) +h1} (.JwD/w-w/wD) Jb1 for wD(====12.8SJ)>1, 

x { :;( ~ -In wD)- (;Dr(~ -In w )} Jb1 for wD<1, 

qva / (~vY = 2.J3 (w + 4/3) [ {tan-1V 3 (w + 1) + h1} S,f,S 13 

+ {tan-1 V3(wD+ 1) +hl}Q2n,a]/(nS"'S"). 

From this expressions, we :find that during an interval between w = Wn and 2wD, 

¢ increases by a factor rv (c8nw/w')D2
• 

(ii) Second-order density wave associated with a density wave (acoustic wave) 

Let us consider the second-order density waves associated with the first­

order wave given by Eqs. (B ·11) rv (B ·13). In this case, the dominant term on 

the right-hand side of Eq. (A ·10) is that including ~v~p~V~a, so that Eq. (A· 9) 

leads to 

L(Y)-1 2 ( 4) w
3

+6w+16/3 (o a 0 P) 
- 2r;* wD+ 3 w(w+ 1Y(w+4/3Y 'V,p, V,a D' 

(4·4) 

where we have put 

(4·5) 

Now we must solve Eq. ( 4 · 4) so as to .satisfy the junction condition at tD. In 

the case of wD> 1, we have 

Y= -ir;* 2 wDw-
2
(qv~p~V~a)D+h.s., 

so that 

(4 ·6) 
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Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 429 

Here, from Eq. (B · 9), we get 

(~v~p~V~a)n = n
2 
(~v)n

2
b2, 

where b 2 -==P,pP,~/ (n2Pa pa) is a function of spatial variables of the order of unity. 

For ova, we get from Eqs. (A· 7), (B ·12) and (B ·13) 
z 

1 ( 4 )-
1

{ 11 - 16 v -
-- w+- J -18Vw+1 + J +2Kln(vw+1 +1) 

30 3 w w+1 w+1 

( v 16 ) ~ vl] - K+ lnw+2(B/Ca)Kr sin2(naxa+8o)+h.s. 
wvw+1 ) 

(4·7) 

Now let us deal with the junction at w = wn}> 1. First we must join the 

linearized solutions. By equating the values of K and ova at both stages, we 
I 

get 

(4·8) 

In the same way, by equating the values of ¢ and ova at both stages, we 
z 

obtain the following expressions. 

The first-order wave: 

K =- ~; ( v' (qv)' / c,)n[ (c,nn.Vw )njj r:-( :J} -10( :::Jot (/)n ]Q, 
~va= (~va)nwn/w. ((K)n2

= ((~v)2/cs 2 )n coe(/)n) (4·9) 

The second-order wave: 

+ 3 (csn1J* -/w )n[ Wn { (sh- 1 V3 (wn+ 1)- sh-1 -/3) /sin2
(b 

10 

+ V3 tan-• v'3(wn+ 1) · rw_;;} ( ff:;;- :J + ( ~- ~) ]b,], 

tjva = 2(~v)n 2 (na7J*Wn) [ :;tan-1 V3 (w + 1) -tan-1 V 3 (wn+ 1) 

(4·10) 

From these results we find that, during an interval between w = Wn and 2wn, 

both density contrasts increase by a factor "-/Csnw/w'. For ova, the amount does 
z 
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430 K. Tomita. 

not much change. For wn<1 also, the analogous results are derived, as in the 

case of rotational waves, but they are omitted here. 

(iii) Mixed waves 

If rotational and acoustic waves coexist in the first-order smallness, the velo­

city field ova is given by 
I 

~va = t (n2r;*) ( w + 4/3)-1 (CrSa- iCaPa) 

= (ov«)n(wn+4/3)/(w+4/3), 
I 

(4 ·11) 

where Cr, Ca denote the constants C in the rotational and acoustic cases, respc­

tively. Similarly to the previous cases (i) and (ii), ¢ and ova can be derived. 
2 

Here we shall examine the second-order velocity field. From Eq. (A· 7), 

we obtain 

qva = -r;* ( w + 4/3)-1 S dw ( W + 4/3) (w + 1)-1
1

2 (~va~vfl),fJ 

= _l_n4r;* 3 
( w + 4/3)-1 Jaw ( w + 4/3)-1 

( w+ 1)-112 

27 

x [l_c 2 (Pa Pfl) - C C (Sa Pfl) J 
3 

a ,fJ r a ,fJ • (4 ·12) 

The rotational part (qva)r of q·va comes from the term including (Sa Pfl),fl: 

(ova)r =~.VB n4'YI* 3 ( w + 4/3)-1 tan- 1 
( ../ 3 (w + 1)) CrCa(Sa p.e),f] + h.s. (4 ·13) 

z 27 'I 

In order to determine h.s. ( oc ( w + 4/3)-1
), let us join (ova)r before and after tn. 

z 

From Eqs. (3·29) and (4·14), we have 

h.s.=- ~ n
3
7J*

2
Crca(w+ ~)-

1

(SaP 11 ),fl (4·14) 

so that 

(4 ·15) 
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Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 431 

where b3=(SaPfl),fljvSasar-./1, b4=ba/Vn2papar-Jl. From this it follows that 

qvr~qva(nwjw') ·qvr after tD, and we find from Eqs. (3·29) and (4·13) that 

by a factor rvcsnwjw' rotational motion can be amplified by an acoustic wave. 

§ 5. Clues to galaxy formation 

The deviations of the universe from homogeneity and isotropy consist of 

three kinds of perturbations which are of the forms of density (acoustic), rota­

tional and gravitational waves. In this section we shall examine the possibility 

of galaxy formation from these waves on the basis of the results in the previous 

sections. 

(i) From rotational waves 

First let us follow the course of formation from rotational waves. As in­

dicated in § 2, the behavior of the second-order density waves at nr;"---'2 are dis­

tinguished in two ways. For type 1 waves, their treatment is reduced to that 

in the next case for acoustic waves. For type 2 waves, ¢ does not oscillate with 

time after n71 = 2, and decreases slowly in proportion to ( w + 4/3) / ( w + 1) till tD. 

After t», the densities of the surviving associated density waves are amplified 

during the interval w = wDrv2wD by a factor "--'Csnw /w' for ¢ of type 1 and by 

a factor rv (csnw/w')2 for ¢ of type 2. Here this factor has the following value: 

c nw w' 2 = 5.0 X 104 
. D 

w 2 Q -4!3 ( M ) - 2;3 

( s / )» (w»+ 1) (w»+ 4/3) 1010M® 

(5·1) 

for tJ>, <10- 1
"\ respectively, where wD = 12.8Q. In the mass range M<109

'
8Q- 11

1
4M®, 

1012
'
2Q-1

1
2M®(tJ>, <10- 1

'\ respectively), the rotational waves dissipate at tD, so 

that the maximum value of amplification factor for type 2 is given by 6.8 X 104,Q 11\ 

2.4 X 106Q for tJ>, <10- 1
'
1

• For type 1, the maximum value is given by 8.0 

X 102Q- 112
, 6.0 X 104Q, because the acoustic waves dissipate at t» in the range M 

<1012
•
7
,Q-

5
1

4M®, 1013
'
1Q-1

1
2M®, respectively. In Table I, the values of ¢=os/s 

2 

directly before tD and after the amplification are shown by means of the para-

meters of M, Q, (ov/c)i. 
I 

On the other hand, the value of ova does not change its order of inagnitude 
2 

after tD, but a translational velocity develops which is comparable with the ro-

tational part of ova. This translational velocity corresponds to the increase of 
2 

density. 

Now let us consider what conditions are imposed on the velocities of in­

homogeneities from observational evidence. 

a) If we assume the rotational and peculiar velocities of existing galaxies to 

be Vg = 107
'
5 em/ sec and the formation time to be Sm = 10-24 gj cm3

, their velocities 
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432 K. Tomita 

Fig. 3 (a). Characteristic masses for rotational waves. Mhor, M 8 , M1n are the masses of matter 

within the spheres with radius L=ct, c8 t, (iJv)it, respectively, and Mdis is the mass for dissipa-
1 

tion. Vertical lines denote the decoupling epoch. Horizontal lines with arrows are the evolu-

tionary paths of several masses with (iJv/c)i=1/10. 
1 

Table I. 

ifJ (type 1) ifJ (type 2) 

n1}=2 (iJvjc)i2 
1 

(iJv/c)i2 

1 

Directly 
(w D+ 1)-l(w D+4/3)814(iJvjc)i2 (wD+1)-1(wD+4/3) (iJv/c)i2 

before tD 1 1 

After 
2.2xl02( WDVwD+4/3 r12 

(wD+1)3 
5.0 X 104 (1 + 1/ w D)-2 

amplification ( M , -lis 
X .Q21QlOMe) (~v/c)i2 

( M ) -z;s 
X .Q\010Me (~v/c)i2 

Vt at tD lead~ to 

(5·2) 

Since, in the above calculation, we have not taken into account the increase of 

velocities due to the contraction, the value is an upper limit. 
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Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 433 

b) The motions with high speed at tD disturb the background temperature Tr 

of cosmic microwave radiation. Considering the upper limit from the measure­

ments/2) we have the condition 

or 

(5·3) 

for SJ>, <I0- 1
'\ respectively. 

Under these conditions, what behavior of rotational waves and associated 

waves will be allowed? We shall analyze them in the following alternative cases 

such as SJ> l0- 1
'
1 or <I0-1

'
1

• In the case of SJ> l0-1
'\ their behavior is shown 

on the diagram in Fig. 3 (a). The rotational waves which survive till tD are 

those passing over the mountain, which are specified by H- 1(jv<L. If they enter 

into the mountain, they cascade owing to full non-linear effect of inertial force 

and further are reduced to thermal motion. In particular, the waves which enter 

into the neighbourhood of the top of the mountain will not cascade completely 

and may be able to run away from the right hand of the mountain. Moreover, 

if the following condition is satisfied, i.e., 

(5·4) 

the right skirt of the mountain is over the barrier of dissipation. Then some 

eddies will cascade not only till tD, but also after tD continuously and run away 

from the skirt towards the outside of the mountain. Comparing the above con­

dition (5 · 4) with (5 · 3) for Vt = iJv, we find that such a situation is on the criti-
' 

cal point of compatibility. In that situation, therefore, the effectiveness of dis-

sipation comes into severe question. If dissipation is not effective in the top 

region of the barrier and the above situation has been realized, much interesting 

results are yielded. That is to say, if the eddies cascading till tD at the skirt 

are turbulent, the size spectrum will be close to the characteristic turbulent spec­

trum which can be approximated by Kolmogorov's one.8
)'

9
) That spectrum is 

frozen after running away. The spectrum of the eddies which cascade after tD 

may be vocL1
fB+n (n = Orv 1), as was estimated by W eizsacker,9

) and Ozernoi and 

Chibisov5
) for supersonic turbulence. Thus, under the condition (5 · 4), even 

the eddies with masses smaller than the characteristic mass limit given by the dissi­

pation barrier may survive and dwarf galaxies will be formed from the associated 

density waves of such eddies. 

In the case of SJ<I0-1·1, the analogous situation arises when the top of the 

mountain is higher than the barrier of dissipation, i.e., some eddies can arrive at 

the top of the mountain without being dissipated. This condition is given by 

(5·5) 

In this case, even if the eddies survived till tD and were amplified after tD, they 
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434 K. Tomita 

may or may not enter into the mountain and cascade completely. In order to 

pass over the top or enter into the neighbourhood of the top, they must have 

the mass 

(5·6) 

If the condition (5 · 4) or (5 · 5) is not satisfied, the situation is quite dif­

ferent, since the birth of comparatively small galaxies at t?::-tn is impossible. 

However, let us consider here under what condition the second-order density 

wave can lead to a gravitationally bound system at least. Because the wave 

must have at least ¢"2:_10-2 in order to be bound at t<10-1t 0, we find from Table 

I that 

WD2 .JwD+ 3/4 1010M 0 

for type 1, 

1

6.7 X 1o-a( (wD+ 1Y )lf4Qlf3( M )1/6 

(ov/c).> 
1 ·- ~ 

4.5x10-4 (1+1/wD)!2 213
( M ) for type 2. 
1010M 0 

(5· 7) 

As for the upper limit of masses, we have no clear cut. However, in order 

that the jump at tn is effective, we must have L<c8H-I, i.e., M<L8 X 1015Q-·2.Z\10 , 

8.1 X 1016!2M0 for !2>, <I0-1'\ and the amplification factor is larger, if the mass 

is smaller. 

(ii) Front acoustic waves 

For acoustic (density) waves we can examme the possibility of galaxy for­

mation in parallel with the case of rotational waves. In the present case, how­

ever, the first-order waves themselves have density perturbation K(/"'o.Jov/c) and 
1 

they are amplified by a factor rvc8nw/w' soon after tD as well as the second-order 

waves. Moreover, if weak rotational waves coexist with acoustic waves, they 

are amplified at the same time as the acoustic waves by interacting each other, 

and as a result large rotational motions may be raised. Such rotational velocities 

increase by a factor r.../c8nwjw' after tD. In Table II, the values of K, ¢ and 

OVra are shown. 
2 

The behavior of acoustic waves is explained on the diagram in Fig. 3 (b). 

In the case of !2>10-1
'\ the first-order acoustic waves (with c8nw/w'>1 before 

tD) can survive till tD only when they satisfy the condition ovH-1<L, i.e., they 
1 

pass over the mountain. If they enter into the mountain, they will cascade to 

smaller waves owing to non-linear inertial force. Only when they arrive at the 

neighbourhood of the top, they will cascade partially and run away partially from 

the right skirt of the mountain. Moreover, if the right skirt is above the dis­

sipation barrier M = 1012
"
7Q-

5
1

4M 0 , i.e., 

(5·8) 

it 1s possible that the acoustic waves are cascading from the neighbourhood of 
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{

1/5 / 
(qvlc)

1 
= 10-1 

. 10-~ 

1 

10 

-
Fig. 3(b). Characteristic masses for acoustic waves. The evolutionary paths for (Dv/c)-t=1/5 are 

l > 

represented by the horizontal lines with arrows. The definitions of Mhor. M 8 , Mtn and Mdts are 

the same as those in Fig. 3 (a). 

Table II. 

K 
K(Dv/c)i 

l 

n1]=2 (Dv/c)i 1 (Dvr)i 
1 2 

Directly 
(w n+ 1) -l(w n+4/3)3/4 (Dv/ c)i l(wn)a) ( w n+4/3)-514 (Dvr)i 

before tn 1 2 

( .; y/2 2.2 X 1Q2w D ( w n+ 1)-1/2 
2.2x 102 wn wn+4/3 

After (wn+1)8 X (wn+4/3)-714 
l(wn) 

amplification ( M ) -vs ( M ) -vs 
X !J21010M0 (~v/c)i X !J21QlOM0 (~vr)i 

a) Cf. § 3 (ii). 

the top beyond the dissipation barrier at tn and run away in the supersonic re­

gion. This situation may explain the formation of comparatively small galaxies. 

In the case of JJ<I0- 1
'\ the top of the mountain is on right-hand side of a 

line for decoupling. If the top is higher than the dissipation barrier, i.e., the 

same condition as (5 · 8) is satisfied, the waves which arrive at the neighbourhood 
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436 K. Tomita 

of the top can thereafter cascade partially and run away partially from the right 

skirt of the mountain. 

However, the above possibilities seem to be more difficult than for rotational 

waves, when we compare Eq. (5 · 8) with Eq. (5 · 3). Under another situation 

such that the condition· (5 · 8) is not satisfied, the amplified value of K soon after 

tn should exceed 10-2 at least. Then we get from Table II 

(5·9) 

(iii) From gravitational waves 

The second-order density perturbation due to gravitational waves leads to 

'.:::::.0.05<h/3 h11a)i at nr; = 2, as was shown in § 4 of [IIJ. Now the behavior of the 

associated density waves at nr;'.:::::.2 is distinguished in two ways, as in the case 

of rotational waves. 

For type 1 waves, their density waves behave like free acoustic waves and 

the amplitudes decrease slowly as (w+ 1)-1 (w+4/3Y14• · Soon after tn, the 

amplitudes increase promptly by a factor rvCsnw/w'. Therefore the amplified 

value of ¢ is about 102 {wn.J wn + 4/3/ ( Wn + 1YP12.Q-
1
/

6 (M/10 10M 0)-118<hap hpa)i. 

It should be noticed here that the associated waves with M = 1012
'

7.Q- 514MC!J, 

1013
'

1
.Q-

1
1

2
J\,10 (for JJ>, <I0-1

'
1

) are cut out due to dissipation. Accordingly, m 

order that the amplified value leads to 10-2
, we must have <haPhpa)i>0.074 at 

least for J2 = 1. 

For type 2 waves, the amplitude of the associated wave decreases rapidly 

after nr; = 2, as has been shown in § 2. However, as was concluded in § 4 of 

[II], the possibility of the formation through the latter course is not excluded. 

(iv) After being bound gravitationally 

Under the initial condition that the fluid motions at an early stage are at 

an extremely high speed (so that for instance the condition (5·4), (5·5) or (5·8) 

is satisfied), the relative density perturbations soon after tn will reach unity and 

non-linear force of gravitation will act on them strongly. As a result, the gas 

in those perturbed regions is bound gravitationally and tends to contract soon. 

However, gas clouds thus formed cannot collapse to a final state. As they con­

tract, the gas temperature rises owing to heating due to compression and dissipa­

tion of waves, so that they are ionized and opaque to radiation confined within 

themselves. Then the gradient of radiation pressure prevents them from con­

tracting and makes them expand again to the maximum size. Thereafter such 

gravitationally bound gas clouds will continue to oscillate till an epoch t 1 or t 2 

(defined below) when the pressure gradient becomes ineffective. The epoch t 1 

is given by 
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for which Jeans's wavelength of ionized gas and radiation with T m = 104 °K is 

equal to the radius of clouds with mass M. Another epoch t2 is given by z 

= 200 (M/1010M 0 )-
1
1

4Q-1
1

2
, for which the mean free path m!P/ (emO" T) at T m = 104 °K 

is equal to the radius of clouds (0" T is . Thomson's scattering cross section). 
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Appendix A 

Hydrodynamical equations at the intermediate stage 

(i) Before the decoupling epoch tn 

For adiabatic disturbance, we get 

IJer/Sr =fiJem/Sm 

, from the first law of thermodynamics, so that 

(/P= (dpjde)s(je=i(l +!w)-1(/e, 

tJp = (dpj de)s?Je + t (d 2p/ de2)s (tJe)2 
Z Z I 

=!(1 +!w)- 1 qe+~w(1 +!w)-3 (1 + w) ((je)2/e. 

Inserting these into Eqs. (2 · 2) ""-' (2 · 4) in [II], we obtain 

(w+1)¢w-
113 

¢+ (w+4/3) {cava),a/w'+ __!_l,w} +A=O, 
' w+4/3 • 2 

{ (w + 4/3) tJva} + 
4 

( w + 1) "' /w' + Ba = 0 
• ,w 9(w+4/3)\f',a ' 

l + ( 1 +__!_)l +_l__(w+8/3)"'+C=O 
,ww 2(w+1) w ,w w 2 w+4/3 'f' ' 

where 

(A·1) 

(A·2) 

(A·3) 

A=~ (w+1)2 K 2 + {(w+ 4/ 3) (tJv?} + (w+16/9) (w+1) K tJva/w' 
9 (w+4/3Y • ,w w+4/3 ,a. 

+ __!_ (w + 1) (w + 16/ 9) Kh + __!_ (w + 4/3)tJvah /w'- __!_(w + 4/3)(h "h P) 
2 W + 4/3 ,w 2 . 1 ,a 4 . P. " ,w' 

Ba= w+4/3(tJvatJv,e) + ~ w(w+1Y (K2) /w' 
w' • • ,,e 27 (w+ 4/3Y ,a 

+ { (w+1) (w+16/9) tJvaK+ (w+4/3)h,atJv"} 
w+4/3 I I ,W 
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438 K. Tomita 

+_!_(w+4/3)h ava- 2 (w+ 1) h K/w' 
2 · ,w 1 9(w+4/3) ,w ' 

C==-h/ {(h/),ww+ (
2

(w
1
+

1
) + ! ) (h/),w} ~! (h/),w(h/),w 

+ 3 {3(w+4/3)(iJvY+2w(w+1YK'Z}· 
w 2 (w+ 1) 

1 

9(w+4/3Y 

Here ¢, K stand for ~e/ s, ~e/ s. 
Eliminating ava, l from Eqs. (A·1)'"'-'(A·3), we obtain 

2 

_ (w2vW+T)-1 s w2vWTI 
¢- w+4/3 y w+4/3 dw' 

where Y satisfies an inhomogeneous second-order differential equation 

with 

- 7/2 1 L=fJww + --fJw-----
w+1 w(w+1Y 

cjJ == (w + 1YI2[(w+4/3)ava iJvi1 I (w')2+ 2w(w+ 1Y J(K2) 1 
1 

,J9
1 

,a 27(w+4/3Y (w')2 

+ { (w+ 1) (w+ 16/9) Kava+ (w+4/3)hvaavv}. /w' 
w+4/3 I I ,Wa 

+! (w+4/3) (h,w~va),a/w'- ~ (w~:~ 3 ) (h,aK),a/(w'Y 

-[ (w+ 1)lf2
[ {(w+4/3) (~vY},w+ ~ (w+4/3)h,a~va/w' 

+ (w+1) (w+16/9) Kh _ _!_(w+4/3) (h vh '~) 
2(w+4/3) ,w 4 . "' v ,w 

+ 2(w+1)
2 

K 2 +{(w+1)(w+16/9)Kava} /w']] 
9(w+4/3Y w+4/3 1 ,a ,w 

- (w + IY12 (w+4/3)¢2, 

"· == 3/4 [_!_h v{ch "') + 3(w+2/3) (h "').} +_!_(h v) (h "') 
'f'2 w + 1 2 "' v ,ww 2w ( w + 1) ., ,w 4 "' ,w ., ,w 

_ 3(w+4/3) {cavY+ w(w+1)
2 

K2}]. 
2w2 (w+1) 1 

27(w+4/3Y 

(ii) After the decoupling epoch tn 

(A·4) 

we consider only matter part of the disturbances, so that as= asm, as= asm 
1 1 2 2 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

7
/2

/4
1
6
/1

8
6
6
3
3
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Non-Linear Theory of Gravitational Instability in the Expanding Universe. III 439 

and op = op = 0 are assumed in the following. 
I 2 

From Eqs. (2·2),...__,(2·4) in [Il], we obtain 

where 

(w+1)¢,w-¢/w+ (w+4/3) [(qva),a/w'+il,w] +A=O, 

{(w +4/3)qva},w+Ba =0,. 

l,ww+ !(w+ 2/3)w-1 (w + 1)-1l,w+ 3w-2¢+C=O, 

A= { (w +4/3) (ov)2},w+ (w+ 1)K,aova/w' +-~(w+ 1)Kh,w 
I I 

+ i(w+4/3)ovah,a/w' -t(w+4/3) (h/h/),w, 
I 

Ba= (w+4/3) (ijvaqv 13),f1/w' + {(w+1)Kqva+ (w+4/3)hvaqvv}.~ 

+i(w+4/3)h,wOVa, 
I 

(A·6) 

(A·7) 

(A·8) 

C= -h/{(h/),ww+ !(w+ 2/3)w-1 (w+ 1)-1 (h/),w} -i(h/),w(h/),w 

+9(~vY(w+4/3) / {w2 (w+ 1)}. 

Eliminating qva, l from Eqs. (A· 6) ""'(A· 8), we get 

(A·9) 

where Y satisfies 

(A·10) 

with 

c/h= ( w + 1Y12 
[ ( w + 4/3) qv~sqv~a/w' + { ( w + 1) Kqva 

+ (w +4/3)hvaovv},wa + t (w+ 4/3) (h,wova),a/w' 
I I 

- ( (w + 1Y12
[ { (w + 4/3) (qv)2},w+ i(w +4/3) h,aijva /w' 

+i(w+ 1)h,wK -t(w+4/3) (h/h/),w]),w- (w + 1Y12 (w+4/3)cjJ2 , 

c/J2=f ( W + 1)-1 [h/ { (h/),ww +! ( W + 2/3) w-1 ( W + 1)-1 (h/),w} 

+ i (h/),w (h/),w- 9 ( w + 4/3) w- 2 
( w + 1)-1 (qv )2

]. 

If we use Y=w- 1 (w+ 1)1f2 Y, y=w + 1 in place of Y, w, the homogeneous 

equation corresponding to Eq. (A ·10) is reduced to 

y(1-y) Y,yy + tcs -9y) Y,y- !Y =o, 

which was derived and solved by Nariai, Tomita and Kato. 13
) 

Appendix B 

Perturbations in the linear approximation at the intermediate stage 

In this Appendix we shall present at the relevant stage the solutions of 

Lifshitz's equations for the first-order perturbations, which are used as a basis 
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440 K. Tomita 

to our derivation of the second-order non-linear quantities. 

(i) Acoustic (density) perturbations 

Following Lifshitz's procedure, put the metric perturbation as 

ha13 = J..P a13 + !J.Qa13
, 

where 

P (3_ -2Q + 1.);' f3Q a =n ,afJ sUa • 

Then we have equations for ). and fJ.: 

). + 2(w+4/5)). -l(n'Yl )2().+ ")/(w+1) =0 
,ww w(w + 1) ,w 3 ''* f.N ' 

fJ. + { 3 (w + 2/3) + ~(1 + ~ (dpjde) )} ). 
,ww 2w(w+1) w 2 8 ,w 

+ _!_ (nr;*)2 ().+fl.) (1 + 3 (dp/ ds)s) / ( w + 1) = 0 . 
3 

(B·1) 

(B·2) 

If we define ~' ( by ). +fl.= ().0 + fJ.o) I ~dr;, ).'- /}.1 = ().o'- fl.o') I ~dr; +(/a with Ao 

=-n2Idr;/a, !J.0=n2Idr;/a-3a'/a2
, we have the following equations for~ and(: 

~.w+ ~ {-
1
-- ~(1- ~ (dp/de)s)} + _!_r;*( (dpjde)s/ Jw+ 1 =0, (B·3) 

w+1 w 2 2 

(,w+l.(1+~(dp/de)s) -~Jw+1 [Cnr;*Y/(w+1) 
w 2 r;* . 

3
/

4 
+3w-2 {1-l_(dp/de)st] =0, 

w(w+1) 4 J 

where (dp/ de) 8 = f (w + 4/3)-I, 0 before and after the decoupling epoch tn, re­

spectively. Moreover, we have 

K=~s/s=tw
2
{(nr;*) 2

().+fJ.)/(w+1) +3!J.,w/w}Q, 

~Va = tn2r;* ( W + 1Y/2 ( W + 4/3)'--l (fl.+ J..),wPa, 

(B·4) 

(B·5) 

where pa=Q,a/n2 and the definition of w is given in § 1. 

Before tD 

By canceling ( from Eq. (B ·1), we obtain 

~,ww + J ( W + 1)- 1 ~,w + [ f ( W + 1)-1 
( W + 4/3)-1 

{ (nr;*Y + 9 /16} - fW-
2 

+ t(w + 4/3)- 2 -t (w + 1)-2 ~ !w-1 (w + 4/3)-1 + tw- 1 (w + 1)-1 

-t{w(w + 1) (w+4/3)}- 1 +tw-2(w +4/3)- 1 -fw- 2 (w+4/3)- 2 ]~ =0. 

(B·6) 

If we assume c 8 nw/w'~l, we get an approximate solution of Eq. (B · 6): 
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~ = Caa* ( w + 1)-112 
( w + 4I3Y14 sin (/) , 

(J)=1;nr;* ln{vw+1 + Jw+413} +const, 

and ( is given by the first line of Eq. (B · 3). 

Using Eq. (B · 2), therefore, we obtain 

9 c 
). + 11 =- _a_w- 2 

( w + 4I3Y14 cos (/) , 
2 nr;* 

111 (). + /1) =i (12w2 + 29w + 16) I (w + 1) 

so that we obtain 

K = tCanr;* ( w + 1)-1 
( w + 4I3Y14 cos (/)Q , 

~Va = - !Can2r;* ( w + 413)- 3
/

4 sin (J)pa, 

(B·7) 

(B·8) 

(B·9) 

ha!3= 1_Ca(nr;*)-1w-2(w+413YI4 cos(/) [oa!3Q- 3(12w2+21w+8) 0 a[3ln2]. 
2 8(w+1) ' 

After t:n 

Directly solving Eq. (B · 2), we obtain 

'"" [ - 1 Jw+f -1] 
A+fl= -Ca Jw+ 1lw+ 2ln Jw+

1 
+

1 
+B, 

1 ['""' { Jw+1 -1 
fl= 

45
(nr;*)2 Ca (3w-8lw-4lnw-912)ln Jw+

1 
+

1 

- 4 (ln w )2 + 8 (ln w + 1) I w + 1._ (3 7 w + 100 I w) J w + 1 
6 

-8 Jln wl(w+ 1) ·dw} +2B(3w-8lw-4ln w) 

(B·10) 

(B ·11) 

+ 15D [ J w + 1 I w + ~ ln { C J w + 1 -1) I C J w + 1 + 1)}]] , 

where B, Ca and D are integration constants. Inserting these expressions into 

Eqs. (B·4) and (B·5), we get 

K = _!__(nr;*)20 [Ca { (26 + 11lw) I lw + f -18Jw + 1 
270 

where 

+ 2K ln ( J w + 1 + 1) - ( K + 16 I ( w Jw + 1 ) ) ln w} 

+2BK-30DI (wvw+f)], 

ova= l..n2
'YI c (z.e) + 413)-1 pa 

• 9 ''* a ' 

K=9w-7+15l(w+l) -16lw. 

(B·12) 

(B ·13) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

7
/2

/4
1
6
/1

8
6
6
3
3
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



442 K. Tomita 

For w~l, we have 

K= -
1
-(n1J*)

2Q[ 3 
(1+0(w- 1))i:\+18w(1+0(w-1))B 

270 ../w 

- 30w- 312 (1 + 0 ( w- 1))D J. 

(ii) Rotational perturbations 

The metric perturbation is expressed by means of a vector harmonic as 

(B ·14) 

with 

[ (
Jw+1-1)] 

(J = C r 2 V w + 1 / w + ln J w + 
1 
+ 

1 
, (B ·15) 

and the velocity perturbation is given by 

(B ·16) 

This results are independent of whether the epoch is before or after tD. 

In the place of the above harmonics we can express S" by S"=s."P-"F"'•" 

(Sa13 =S,{J + S,~), where Ffh is arbitrary functions of spatial variables. 

(iii)· Gravitational waves 

The metric perturbation 1s expressed by means of a tensor harmonics as 

ha
13 = vG afJ, 

where v satisfies the wave equation 

v + 5(w+4/5) v + (n7J*Y v=O. 
,ww 2w(w+l) ,w w+1 

(B ·17) 

The approximate solution of this equation for n(w+ 1)/w'~1 Is given by 

v = Cuw- 2 sin [2n1J* J w + 1 +canst.], (B·18) 

which Is independent of whether the epoch is before or after tD. 
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Note added in proof : 

After the completion of this manuscript, we have seen Peebles' paper in Astrophys. and Space 

Science 11 (1971), 443, There Peebles has asserted that, at the stage z::::::lOOO, the contraction of 

compressed clouds cannot be stopped by pressure gradient because of the free-free cooling process. 

However, it should be noticed that, after the matter temperature T m reaches collisional ionization 

temperature 104 oK, the mean free path of photons in fully ionized plasma becomes smaller than 

the radius of clouds for M;=1010M0 (say). Therefore these clouds become opaque to radiation and 

the pressure gradient of trapped radiation can be effective. Further discussions will be given in a 

forthcoming paper. 
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