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ABSTRACT

The noise usually produces a non-linear distortion of the feature
space considered for Automatic Speech Recognition. This dis-
tortion causes a mismatch between the training and recognition
conditions which significantly degrades the performance of speech
recognizers. In this contribution we analyze the effect of the addi-
tive noise over cepstral based representations and we compare sev-
eral approaches to compensate this effect. We discuss the impor-
tance of the non-linearities introduced by the noise and we propose
a method (based on the histogram equalization technique) specifi-
cally oriented to the compensation of the non-linear transformation
caused by the additive noise. The proposed method has been eval-
uated using the AURORA-2 database and task. The recognition
results show significant improvements with respect to other com-
pensation methods reported in the bibliography and reveals the im-
portance of the non-linear effects of the noise and the utility of the
proposed method.

1. INTRODUCTION

The noise severely affects automatic speech recognition applica-
tions working in real conditions [1, 2]. The recognition systems,
usually trained with clean speech do not model properly the speech
acquired under noisy conditions. The noise significantly degrades
the performance of speech recognizers mainly due to the mismatch
between the training conditions and recognition conditions [3].

The methods proposed to make the speech recognizers more
robust against the noise are mainly focussed on the minimization
of the mismatch caused by the noise [3, 4, 5]. Some of them try to
represent the speech signal using robust features in order to mini-
mize the effect of the noise. Other methods try to compensate the
effect of the noise over the representation and provide an estima-
tion of the clean speech representation. There are also methods
which adapt the recognizers to the noise conditions in order to e-
valuate the noisy speech representation with noisy speech models.

The noise introduces a distortion of the representation space
which usually present a non-linear behavior. For example, cep-
stral based representations suffer non-linear distortions when the
speech signal is affected by an additive noise [6, 7]. In this case,
the frames with more energy are slightly affected but those frames
with energy in the same range or smaller than the energy of the
noise are severely affected. Even though linear methods (like the
Cepstral Mean Normalization (CMN) [8] or Mean and Variance
Normalization (MVN) [9]) provide significant improvements for
cepstral based representations, these methods present important
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limitations due to the non-linear distortion. Methods oriented to
the compensation of the noise effects over the speech representa-
tion should consider the non-linear effects and should be able to
estimate the non-linear transformation providing the best estima-
tion of the clean speech given the noisy speech.

In this work, we analyze the effect of the noise over the cep-
stral based representations. We show how linear methods (like
CMN and MVN) are useful for the compensation of the convolu-
tional noise and they also compensate some effects of the additive
noise. The non-linear effects of the additive noise and the limi-
tations of the linear compensation methods are also analyzed. In
order to estimate non-linear transformations for proper noise com-
pensation, we propose the application of the histogram equaliza-
tion technique. We have adapted this technique (usually applied
for image processing) for the compensation of the non-linear ef-
fects caused by the noise over the cepstral coefficients. We have
carried out recognition experiments (using the AURORA-2 da-
tabase and task [2]) to show the importance of the compensation of
the non-linear effects and to evaluate the proposed compensation
method.

2. NON-LINEAR EFFECTS OF THE NOISE

Currently, most of the automatic speech recognition systems make
use of parameterizations based on Mel Frequency Cepstral Coef-
ficients (MFCC) [10]. The MFCC coefficients are obtained from
a bank of filters uniformly distributed in Mel frequency scale. For
each frame, the MFCC coefficients are obtained as an orthonormal
transformation (usually a DCT) of the output log-energies of the
filterbank. If the speech and the additive noise are uncorrelated
signals, for the frame � and filter �, the energy of the contaminated
speech ����� can be written as a function of the energies of the
clean speech ����� and the noise ����� according to,

����� � ����� ������ (1)

If the signal is also affected by a convolutional noise (de-
scribed by����� for the frequency band �), the contaminated speech
can be written as,

����� � ������ ������� � ����� (2)

and the relationship for the logarithmically scaled output of the
filterbank (�� � �������) is given by,

����� � 	���� � ����	
�������� � 	
��
������ (3)

In this domain, the convolutional noise introduces a global
shift of the parameters representing the speech, while the addi-
tive noise introduces a non-linear transformation of the feature s-
pace. Since the MFCC coefficients are obtained by applying an
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Fig. 1. Effect of the additive noise over a log-energy coefficient.

orthonormal transformation to the log-filterbank outputs, the non-
linear effects of the additive noise are also present in the MFCC
domain.

We illustrate the non-linear effects and their consequences by
means of a Monte Carlo simulation. We have randomly gener-
ated a set of clean log-energy values �� according to a Gaussian
probability distribution with mean �� �  and standard deviation
�� � �. According to equation (3) these values have been contam-
inated in the log-energy domain with an additive noise randomly
generated with a Gaussian distribution with �� � ��� and stan-
dard deviation �� � �. No convolutional noise was considered
in this simulation (	� � ). Figure 1 shows the points ���� ���
obtained by the simulation. In this figure, it can be observed that
for values �� significantly greater than the noise, the clean val-
ues are not affected and �� asymptotically tends to ��. When the
energy of the clean values is in the same range of the energy of
the noise, the log-energy is severely affected, and when the ener-
gy is significantly smaller, �� asymptotically tends to 
�, and then
�� shows the statistics of the noise independently of the �� value.
The additive noise causes a non-linear transformation of the fea-
ture space as can be clearly appreciated in this figure1. Therefore,
an appropriate compensation method for the additive noise should
provide a non-linear transformation to compensate the transforma-
tion caused by the noise.

The noise also affects the probability distribution of the param-
eters representing the speech. Figure 2 represents the normalized
histograms of the clean values, the noise, and the contaminated
values for the simulation. It can be observed that the transforma-
tion introduced by the noise modifies the histogram corresponding
to the clean data. There is a compression of the low energy part of
the clean histogram which causes a shift of the mean and a reduc-
tion of the variance of the noisy histogram. In addition, due to the
non-linear effect of the noise, the shape of the histogram has been
modified and it is not Gaussian.

3. COMPENSATION OF THE NOISE USING LINEAR
AND NON-LINEAR TRANSFORMATIONS

Since one of the side effects of the additive noise is a shift of the
mean of the probability distributions of the parameters represent-
ing the speech, the Cepstral Mean Normalization (CMN) partially
compensates the mismatch caused by the noise. The combination

1In addition to the transformation, due to the random behavior of the
noise, the distribution �������� becomes wider as �� is more affected by
the noise, which causes an irreversible loss of information.
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Fig. 2. Histograms of the log-energy parameter for the clean val-
ues, the noise and the noisy values.

of CMN with a normalization of the variance (Mean and Variance
Normalization (MVN)) improves the compensation of the mis-
match with respect to CMN, and an improvement of the recog-
nition performance could be expected when this normalization is
applied for robust speech recognition. However, these methods
present the limitation that cannot compensate the non-linear ef-
fects caused by the noise.

In order to compensate the non-linear effects, we propose the
application of the histogram equalization (HEQ) technique, com-
monly applied for image processing [11], that we have adapted to
the representation of the speech signal. The aim of this method
is to provide a transformation ���� which converts the probability
distribution of the noisy speech ����� into a reference probabili-
ty distribution corresponding to the clean speech �����. It can be
demonstrated that if ���� transforms ����� into �����, then the
cumulative histograms verify that,

����� � �������� (4)

and therefore the transformation can be obtained from the cumu-
lative histogram of the noisy speech and the reference cumulative
histogram for the clean speech as,

���� � �
��

� ������� (5)

where ���� represents the inverse function of ��. In Figure 3, the
transformations provided by the linear methods (CMN and MVN)
and by the HEQ method for the described simulation are shown.
The histograms resulting from the application of the transforma-
tions are also shown. In this figure, it can be observed that the
CMN and the MVN are linear approaches that cannot compensate
properly the noise effect. The HEQ method provides a transfor-
mation which compensates the non-linear effects of the noise and
removes distortion from the probability distributions of the noisy
data.

4. EXPERIMENTAL RESULTS

The three considered noise compensation methods (CMN, MVN
and HEQ) have been compared in recognition experiments under
noise conditions using the AURORA-2 database and task [2]. The
task consists on the recognition of connected digits spoken in En-
glish. The speech is artificially contaminated at several SNRs with
noise recorded for 10 different conditions. The recognition results
at each SNR have been averaged over all the considered kinds of
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Fig. 3. (A) Transformations to compensate the noise effect (Mean
Normalization, Mean/Var Normalization and Histogram Equali-
zation). (B) Histograms for the noisy data compensated with the
different methods.

noise. The speech recognizer is based on Hidden Markov Model-
ing. Each digit is modeled as a left-to-right Continuous Density
HMM with 16 states and six Gaussians per state [12]. The speech
recognizer has been trained under clean conditions and also using
sentences contaminated with different kinds and levels of noise.
Recognition experiments have been carried out using the clean
training and the multicondition training recognizers according to
the AURORA-2 task.

The speech representation is based on a MFCC parameteri-
zation. The speech signal, sampled at 8 kHz is segmented into
frames and each frame is represented as a feature vector contain-
ing a log-energy coefficient, 12 cepstral coefficients and the 1st and
2nd associated regression coefficients, which amount to 39 com-
ponents. In order to apply the considered compensation methods,
in the three cases the transformations have been applied to each
component of the cepstral vector. In each case, the estimation of
the transformation for each component is based on the estimation
of the mean (for CMN), the estimation of the mean and the vari-
ance (for MVN) and the estimation of the cumulative histogram
(for HEQ). These estimations are obtained using all the frames
in each sentence and the transformations are applied sentence by
sentence. In the case of the HEQ, the considered reference prob-
ability density function is a Gaussian probability distribution with
zero mean and unit variance. In the three cases, the compensation
methods are applied for both, training and recognition.

Figure 4 shows the recognition results (Word Accuracy ver-
sus the SNR level) when each compensation method is applied.
The results are averaged for the three sets (set A, set B and set
C) considered in the AURORA-2 task. The figure includes clean
training and multicondition training results. In the case of clean
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Fig. 4. Recognition results obtained for the AURORA-2 databa-
se. Average over the different noises for clean training results and
multicondition training results.

training results, the CMN compensation method slightly improves
the baseline results. The normalization of the mean and variance
provides a better compensation of the noise effect compared to
the CMN method. In contrast to these linear compensation meth-
ods, the histogram equalization method is able to compensate the
non-linear mismatch caused by the noise, which provides signif-
icant improvements with respect to the Baseline, the CMN and
the MVN compensation methods. The clean training recognition
accuracy (averaged over SNR levels between 20 dB and 0 dB) is
60.06%, 61.13%, 69.66% and 80.96% for the Baseline (no com-
pensation method), and the CMN, MVN and HEQ compensation
methods, respectively.

In the case of multicondition training, the recognition results
present the same tendency (average recognition accuracy of 86.39%,
86.50%, 88.33% and 89.66% for Baseline, CMN, MVN and HEQ,
respectively), even though the differences in the performance for
the different compensation methods are significantly smaller (be-
cause the multicondition training drastically reduces the mismatch
between the training and recognition conditions).

The recognition results show the importance of the non-linear
effects caused by the noise. The HEQ method provides impor-
tant improvements in the recognition performance with respect to
the baseline system and also with respect to the linear compensa-
tion methods because it is able to compensate the non-linear ef-
fects caused by the noise. These improvements are comparable to
those provided by the best compensation methods proposed for the
AURORA-2 task presented at the EUROSPEECH-2001 Confer-
ence (see Table 1) [13]. Additionally, the formulation of the HEQ
method does not depend on the kind of noise or the parameteriza-
tion utilized for the representation of the speech signal. Therefore,
the HEQ method could provide improvements in speech recogni-
tion under noise conditions for a wide range of noise processes
and for different parameterizations of the speech signal. The HEQ
method could also be successfully combined with other noise com-
pensation methods and additional improvements could be expected
in this case.

5. CONCLUSIONS

In this work, we have analyzed the non-linear effects caused by
the noise over the representation of the speech signal in the con-
text of robust speech recognition under noise conditions. Linear
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Percentage
Subway Babble Car Exhibition Average estaurant Street Airport Station Average ubway M Street M Average Overall Improvement

Clean 97,97 97,67 97,85 97,53 97,76 97,07 97,67 97,85 97,53 97,53 98,13 97,70 97,92 97,70 -57,15%
20 dB 97,82 97,31 97,82 97,66 97,65 97,02 97,73 97,23 97,35 97,33 97,88 97,43 97,66 97,53 5,04%
15 dB 96,47 96,16 97,08 96,42 96,53 96,22 97,19 96,78 96,54 96,68 96,78 97,07 96,93 96,67 6,98%
10 dB 94,72 94,11 95,94 93,49 94,57 93,74 95,22 95,11 95,06 94,78 94,07 95,01 94,54 94,65 11,42%
5 dB 90,33 88,78 91,05 87,07 89,31 87,14 89,33 89,71 89,63 88,95 88,21 87,82 88,02 88,91 22,24%
0 dB 74,58 65,57 75,72 71,46 71,83 65,24 71,31 73,49 70,69 70,18 68,35 69,20 68,78 70,56 27,05%
-5dB 39,79 28,42 41,66 43,60 38,37 26,77 38,45 36,92 35,30 34,36 34,63 35,22 34,93 36,08 15,14%
Average 90,78 88,39 91,52 89,22 89,98 87,87 90,16 90,46 89,85 89,59 89,06 89,31 89,18 89,66

18,04% 3,62% 37,09% 9,94% 17,75% 16,98% 24,05% 22,84% 32,31% 24,15% 34,70% 31,84% 33,32%

Percentage
Subway Babble Car Exhibition Average estaurant Street Airport Station Average ubway M Street M Average Overall Improvement

Clean 98,83 98,61 98,99 98,89 98,83 98,83 98,61 98,99 98,89 98,83 98,80 98,67 98,74 98,81 -23,71%
20 dB 96,38 95,95 97,38 95,59 96,33 95,73 96,70 96,57 96,64 96,41 95,95 96,86 96,41 96,38 26,60%
15 dB 92,94 93,44 95,50 92,47 93,59 93,64 95,07 94,57 94,26 94,39 93,06 94,65 93,86 93,96 49,79%
10 dB 87,60 87,48 89,65 83,86 87,15 87,75 89,72 89,95 89,66 89,27 87,63 89,30 88,47 88,26 62,39%
5 dB 77,46 73,37 77,24 70,56 74,66 74,70 77,60 78,11 77,20 76,90 73,93 76,42 75,18 75,66 59,26%
0 dB 53,98 44,56 51,21 48,94 49,67 47,10 53,60 51,77 48,35 50,21 46,09 49,70 47,90 49,53 38,92%
-5dB 20,97 15,27 17,98 23,45 19,42 16,46 21,19 18,79 16,82 18,32 16,09 19,56 17,83 18,66 11,01%
Average 81,67 78,96 82,20 78,28 80,28 79,78 82,54 82,19 81,22 81,43 79,33 81,39 80,36 80,76

39,94% 58,02% 54,81% 37,25% 48,98% 57,36% 54,62% 61,91% 57,68% 58,05% 38,92% 45,06% 41,99% 51,81%

24,04%

Aurora 2 Clean Training - Results
A B C

Aurora 2 Multicondition Training - Results
A B C

Table 1. Recognition results obtained for the AURORA-2 database by applying the histogram equalization compensation method.

compensation methods like CMN or MVN partially compensate
the transformation caused by the noise, but they are not able to
provide non-linear transformations. We have proposed the appli-
cation of the histogram equalization (HEQ) technique as a method
to estimate the non-linear transformations which optimally com-
pensate the noise effects.

The linear and non-linear compensation methods have been
compared and evaluated with the AURORA-2 speech recognition
database and task. The experimental results show the importance
of the non-linear effects when the speech signal is affected by
noise, and the necessity of compensation methods which are able
to compensate the non-linearities introduced by the noise. The
HEQ compensation method provides a recognition performance
(averaged for SNR levels between 20 dB and 0 dB) of 80.76% for
clean training and 89.66% for multicondition training. The pro-
posed method significantly improves the performance of speech
recognition systems under noise conditions and is shown as a com-
petitive method compared with the ones proposed for the AURORA-
2 task [13].

Since the formulation of HEQ does not make any assump-
tion about the contamination process, it could compensate differ-
ent noise processes. Additionally, the HEQ method does not de-
pend on the parameterization utilized for the speech representation
and therefore, it could be combined with other noise compensation
methods in order to obtain additional improvements.

6. REFERENCES

[1] R. Cole et. al. The challenge of spoken language systems: re-
search directions for the nineties. IEEE Trans. on Speech and
Audio Processing, 3(1):1–21, January 1995.

[2] H.G. Hirsch and D. Pearce. The AURORA experimental
framework for the performance evaluation of speech recog-
nition systems under noise conditions. ISCA ITRW ASR2000
”Automatic Speech Recognition: Challenges for the Next Mil-
lennium”, Paris, France, September 2000.

[3] Y. Gong. Speech recognition in noisy environments: A survey.
Speech Communication, 16(3):261–291, 1995.

[4] J.R. Bellegarda. Statistical techniques for robust ASR: review
and perspectives. Proc. of EuroSpeech-97, pages KN 33–36,
1997.

[5] J.C. Junqua and J.P. Haton. Robustness in automatic speech
recognition. Kluwer Academic Publishers, 1996.

[6] R.M. Stern, B. Raj, and P.J. Moreno. Compensation for
environmental degradation in automatic speech recognition.
ESCA-NATO Tutorial and Research Workshop on Robust
Speech Recognition for Unknown Communication Channels,
pages 33–42, April 1997.

[7] A. de la Torre, D. Fohr and J.P. Haton. Compensation of
noise effects for robust speech recognition in car environ-
ments. Proc. of ICSLP 2000, Oct 2000.

[8] C.R. Jankowski, Jr. Hoang-Doan, and R.P. Lippmann. A com-
parison of signal processing front ends for automatic word
recognition. IEEE Trans. on Speech and Audio Processing,
3(4):286–293, July 1995.

[9] P. Jain and H. Hermansky. Improved mean and variance nor-
malization for robust speech recognition. Proc. of ICASSP
2001, Salt Lake City, 2001.

[10] S.B. Davis and P. Mermelstein. Comparison of parametric
representations for monosyllabic word recognition in continu-
ously spoken sentences. IEEE Trans. on Acoustic, Speech and
Signal Processing,

[11] J.C. Russ. The image processing handbook. CRC Press,
1995.

[12] S. Young, J. Odell, D. Ollason, V. Valtchev and P. Woodland.
The HTK Book. Cambridge University, 1997.

[13] EUROSPEECH 2001, Sessions A41 and B11. Noise Robust
Recognition: Front-end and Compensation Algorithms Proc.
of EUROSPEECH 2001, pp 184-236 and 421-440, Sep 2001.

I - 404


