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Non-linear vibration of Euler-Bernoulli beams

Abstract

In this paper, variational iteration (VIM) and parametrized

perturbation (PPM) methods have been used to investigate

non-linear vibration of Euler-Bernoulli beams subjected to

the axial loads. The proposed methods do not require small

parameter in the equation which is difficult to be found for

nonlinear problems. Comparison of VIM and PPM with

Runge-Kutta 4th leads to highly accurate solutions.
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1 INTRODUCTION

The demand for engineering structures is continuously increasing. Aerospace vehicles, bridges,

and automobiles are examples of these structures. Many aspects have to be taken into consider-

ation in the design of these structures to improve their performance and extend their life. One

aspect of the design process is the dynamic response of structures. The dynamics of distributed-

parameter and continuous systems, like beams, were governed by linear and nonlinear partial-

differential equations in space and time. It was difficult to find the exact or closed-form solu-

tions for nonlinear problems. Consequently, researchers were used two classes of approximate

solutions of initial boundary-value problems: numerical techniques [28, 31], and approximate

analytical methods [2, 26]. For strongly non-linear partial-differential, direct techniques, such

as perturbation methods, were not utilized to solve directly the non-linear partial-differential

equations and associated boundary conditions. Therefore first partial-differential equations are

discretized into a set of non-linear ordinary-differential equations using the Galerkin approach

and the governing problems are then solved analytically in time domain.

Approximate methods for studying non-linear vibrations of beams are important for in-

vestigating and designing purposes. In recent years, some promising approximate analytical

solutions have been proposed, such as Frequency Amplitude Formulation [13], Variational It-

eration [5, 6, 14, 17], Homotopy-Perturbation [3, 4, 7, 24], Parametrized-Perturbation [18],
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Max-Min [15, 19, 29], Differential Transform Method [16], Adomian Decomposition Method

[22], Energy Balance [23, 30], etc.

Kopmaz et al. [20] considered different approaches to describing the relationship between

the bending moment and curvature of an Euler-Bernoulli beam undergoing a large deforma-

tion. Then, in the case of a cantilevered beam subjected to a single moment at its free end,

the difference between the linear and the nonlinear theories based on both the mathematical

curvature and the physical curvature was shown. Biondi and Caddemi [8] studied the problem

of the integration of the static governing equations of the uniform Euler-Bernoulli beams with

discontinuities, considering the flexural stiffness and slope discontinuities.

The vibration problems of uniform Euler- Bernoulli beams can be solved by analytical or

approximate approaches [10, 21]. Pirbodaghi et al. [25] studied non-linear vibration behaviour

of geometrically non-linear Euler-Bernoulli beams subjected to axial loads using homotopy

analysis method. Also, the effect of vibration amplitude on the non-linear frequency and

buckling load is discussed. Burgreen [9] investigated the free vibrations of a simply supported

buckled beam using a single-mode discretization. He pointed out the natural frequencies of

buckled beams depend on the amplitude of vibration. Eisley [11, 12] used a single-mode

discretization to investigate the forced vibrations of buckled beams and plates. He considered

both simply supported and clamped-clamped boundary conditions. For a clamped-clamped

buckled beam, Eisley [11, 12] used the first buckling mode in the discretization procedure. He

obtained similar forms of the governing equations for simply supported and clamped-clamped

buckled beams.

The main purpose of this study is to obtain the analytical expression for geometrically

non-linear vibration of clamped-clamped Euler-Bernoulli beams fixed at one end. Geometric

non-linearity arises from non-linear strain-displacement relationships. This type of nonlinearity

is most commonly treated in the literature. Sources of this type of nonlinearity include mid-

plane stretching, large curvatures of structural elements, and large rotation of elements. First,

the governing non-linear partial differential equation using Galerkin method was reduced to a

single non-linear ordinary differential equation. It was then assumed that only fundamental

mode was excited. The later equation was solved analytically in time domain using VIM and

PPM. Ultimately, VIM and PPM methods are compared with Runge-Kutta 4th method.

2 DESCRIPTION OF THE PROBLEM

Consider a straight beam on an elastic foundation with length L, a cross-section A, a mass

per unit length µ, moment of inertia I , and modulus of elasticity E that subjected to an axial

force of magnitude F̃ as shown in Fig. 1. It is assumed that the cross-sectional area of the

beam is uniform and its material is homogenous. The beam is also modeled according to the

Euler-Bernoulli beam theory. Planes of the cross sections remain planes after deformation,

straight lines normal to the mid-plane of the beam remain normal, and straight lines in the

transverse direction of the cross section do not change length. The first assumption ignores

the in plane deformation. The second assumption ignores the transverse shear strains and
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consequently the rotation of the cross section is due to bending only. The last assumption,

which is called the incompressibility condition, assumes no transverse normal strains. The last

two assumptions are the basis of the Euler-Bernoulli beam theory [27].

The equation of motion including the effects of mid-plane stretching is given by:

EI
∂4W̃

∂X̃4
+ µ

∂2W̃

∂t̃2
+ F̃

∂2W̃

∂X̃2
+C

∂W̃

∂t̃
+ K̃W̃ −

EA

2L

∂2W̃

∂X̃2
∫

L

0

(∂W̃
∂X̃
)2 dX̃ = U(X̃, t̃) (1)

Where C is the viscous damping coefficient, K̃is a foundation modulus and U is a dis-

tributed load in the transverse direction.

Figure 1 A schematic of an Euler-Bernoulli beam subjected to an axial load.

Assume the non-conservative forces were equal to zero. Therefore Eq. (1) can be written

as follows:

EI
∂4W̃

∂X̃4
+ µ

∂2W̃

∂t̃2
+ F̃

∂2W̃

∂X̃2
+ K̃W̃ −

EA

2L

∂2W̃

∂X̃2
∫

L

0

(∂W̃
∂X̃
)2 dX̃ = 0. (2)

For convenience, the following non-dimensional variables are used:

X =
X̃

L
, W =

W̃

R
, t = t̃

√
EI

µL4
, F =

F̃L2

EI
, K =

K̃L4

EI
. (3)

Where R = (I/A)0.5 is the radius of gyration of the cross-section. As a result, Eq. (2) can

be written as follows:

∂4W

∂X4
+

∂2W

∂t2
+ F

∂2W

∂X2
+KW −

1

2

∂2W

∂X2 ∫
1

0

(∂W
∂X
)2 dX = 0. (4)

Assuming W (X, t) = φ(X)ψ(t)whereφ(X)is the first eigenmode of the beam [32] and ap-

plying the Galerkin method, the equation of motion is obtained as follows:

ψ̈(t) + αψ(t) + βψ
3

(t) = 0 (5)
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Where α = α1 + α2F +K and α1 , α2 and β are as follows:

α1 =
∫ 1

0
φivφdx

∫ 1

0
φ2dx

, α2 =
∫ 1

0
φ′′φdx

∫ 1

0
φ2dx

, β =
−0.5 ∫ 1

0
(φ′′ ∫ 1

0
φ′2dx)φdx

∫ 1

0
φ2dx

(6)

The Eq. (5) is the governing non-linear vibration of Euler-Bernoulli beams. The center of

the beam subjected to the following initial conditions:

ψ(0) = A, ψ̇(0) = 0 (7)

where A denotes the non-dimensional maximum amplitude of oscillation.

3 BASIC IDEA OF VARIATIONAL ITERATION METHOD

To illustrate the basic concepts of the VIM, we consider the following differential equation:

Lu +Nu = g(t). (8)

Where L is a linear operator, N a nonlinear operator and g(t) an inhomogeneous term.

According to VIM, we can write down a correction functional as follows:

un+1(t) = un(t) +∫ t

0

λ (Lun(η) +Nũn(η) − g(η))dη. (9)

Where λ is a general Lagrange multiplier which can be identified optimally via the varia-

tional theory [17]. The subscript n indicates the nth approximation and ũn is considered as a

restricted variation [17], i.e. δũn = 0.

4 APPLICATION OF VARIATIONAL ITERATION METHOD

To solve Eq. (5) by means of VIM, we start with an arbitrary initial approximation:

ψ0 = A cos(ωt). (10)

From Eq. (5), we have:

ψ̈ = −αψ − βψ3
⇒ ψ̈ = −αA cos(ωt) − βA3 cos3(ωt). (11)

Integrating twice yields:

ψ1 =

−9αA − 7βA3
+ 9αA cos(ωt) + βA3 cos3(ωt) + 6βA3 cos(ωt)

9ω2
. (12)

Equating the coefficients of cos(ωt) in ψ0 and ψ1, we have:

ωV IM =

√
α + 0.75βA2, (13)
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And therefore,

ψ0 = A cos (√α + 0.75βA2 t) . (14)

Where δũn = 0 is considered as restricted variation.

ψn+1(t) = ψn(t) +∫ t

0

λ(d2ψn

dη2
+ αψn + βψ

3

n) dη. (15)

Its stationary conditions can be obtained as follows:

1 − λ′ ∣η = t = 0, (16)

λ ∣η = t = 0, (17)

λ′′ + ω2λ = 0. (18)

Therefore, the multiplier, can be identified as

λ =
1

ω
sinω(η − t). (19)

As a result, we obtain the following iteration formula:

ψn+1(t) = ψn(t) +∫ t

0

( 1
ω
sinω(η − t)).(d2ψn

dη2
+ αψn + βψ

3

n)dη. (20)

By the iteration formula (20), we can directly obtain other components as:

ψ1(t) = A cos(ω t) − A3β cos(ω t) − (16ω2
− 16α − 12A2β)Aω t sin(ω t) −A3β cos(3ω t)

32ω2
. (21)

Where ω is evaluated from Eq. (13).

In the same manner, the rest of the components of the iteration formula can be obtained.

5 APPLICATION OF PARAMETRIZED PERTURBATION METHOD

Equation of motion, which reads:

ψ̈(t) + αψ(t) + βψ
3

(t) = 0, ψ(0) = A, ψ̇(0) = 0. (22)

We let

ψ = εU, (23)

By substituting Eq. (23) in Eq. (22):
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Ü + αU + ε2β U3
= 0, U(0) = A/ε, U̇(0) = 0. (24)

We suppose that the solution of Eq. (24) and the constant α, can be expressed in the

forms:

U = U0 + ε
2U1 + ε

4U2 + ε
6U3 + ... (25)

α = ω2
+ ε2ω1 + ε

4ω2 + ε
6ω3 + ... (26)

Substituting Eqs. (25) and (26) into Eq. (24) and equating coefficients of same powers of

ε yields the following equations:

Ü0 + ω
2U0 = 0, U0(0) = A/ε, U̇0(0) = 0. (27)

Ü1 + ω
2U1 + ω1U0 + βU

3

0
= 0, U1(0) = 0, U̇1(0) = 0. (28)

Solving Eq. (27) we obtain:

U0 =

A

ε
cos(ω t). (29)

Therefore, Eq. (28) can be re-written as:

Ü1 + ω
2U1 + (ω1 +

3βA2

4ε2
) A
ε
cos(ω t) + βA3

4ε3
cos(3ω t) = 0. (30)

Avoiding the presence of a secular terms needs:

ω1 = −

3βA2

4ε2
. (31)

Substituting Eq. (31) into Eq. (26)

ωPPM =

√
α + 0.75βA2. (32)

Solving Eq. (30), we obtain:

U1 = −

A3β

32ω2ε3
(cos(ω t) − cos(3ω t)) . (33)

Its first-order approximation is sufficient, and then we have:

ψ = εU = ε(U0 + ε
2U1) = A cos(ω t) − A3β

32ω2
[cos(ω t) − cos(3ω t)]. (34)

Where the angular frequency can be written by Eq. (32).
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6 RESULTS AND DISCUSSIONS

The behavior of ψ(A, t) obtained by VIM and PPM at α = π and β = 0.15 is shown in Figs. 2

and 3. Influence of coefficients β and α on frequency and amplitude has been investigated and

plotted in Figs. 4 and 5, respectively. The comparison of the dimensionless deflection versus

time for results obtained from VIM, PPM and Runge-Kutta 4th order has been depicted in

Fig. 6 for α = π and β = 0.15, with maximum deflection at the center of the beam equal to

five (A=5 ). The solutions are also compared for t=0.5 in Table 1. It can be observed that

there is an excellent agreement between the results obtained from VIM and PPM with those

of Runge-Kutta 4th order method [1].

Figure 2 VIM deflection at α = π and β =
0.15.

Figure 3 PPM deflection at α = π and β =
0.15.

Figure 4 Results of frequency versus ampli-
tude associated with influence of β
at α = π, for PPM or VIM.

Figure 5 Results of frequency versus ampli-
tude associated with influence of α
at β = 0.15, for PPM or VIM.
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Figure 6 Results comparison between VIM and PPM deflection versus time at α = π, β = 0.15 and A = 5 with
Runge-Kutt 4th order.

Table 1 Comparison between PPM & VIM with time marching solution for the motion equation (4), when
t = 0.5(s), α = 1 and β = 1.

A PPM VIM Runge-Kutta Error(PPM) Error(VIM)

0.01 0.008775710 0.008775735 0.008775693 -0.000000017 -0.000000042

0.1 0.087643206 0.087668378 0.087643042 -0.000000168 -0.000025336

0.2 0.174597455 0.174797831 0.174597438 -0.000000017 -0.000200393

0.3 0.260180487 0.260851146 0.260182593 -0.000002106 -0.000668553

0.4 0.343723299 0.345294531 0.343733783 0.000010484 -0.001560748

0.5 0.424576467 0.427599316 0.424609486 0.000033019 -0.00298983

1 0.767843030 0.789109858 0.768790533 -0.000947503 -0.020319325

10 -2.960606970 -3.461741578 -3.700321826 -0.739714856 -0.238580248

7 CONCLUSIONS

In this paper, nonlinear responses of a clamped-clamped buckled beam are investigated. Math-

ematically, the beam is modeled by a partial differential equation possessing cubic non-linearity

because of mid-plane stretching. Governing non-linear partial differential equation of Euler-

Bernoulli’s beam is reduced to a single non-linear ordinary differential equation using Galerkin

method. Variational Iteration Method (VIM) and Paremetrized Perturbation Method (PPM)

have been successfully used to study the non-linear vibration of beams. The frequency of both

methods is exactly the same and transverse vibration of the beam center is illustrated versus

amplitude and time. Also, the results and error of these methods are compared with Runge-

Kutta 4th order. It is obvious that VIM and PPM are very powerful and efficient technique

for finding analytical solutions. These methods do not require small parameters needed by

perturbation method and are applicable for whole range of parameters. However, further re-

search is needed to better understanding of the effect of these methods on engineering problems

especially mechanical affairs.
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