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Non-linear vibrations of shallow circular cylindrical panels with complex
geometry. Meshless discretization with the R-functions method

G. Pilgun, M. Amabili

Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebéc, Canada H3A 2K6

Geometrically non-linear forced vibrations of a shallow circular cylindrical panel with a complex shape, clamped at the edges and subjected to a radial 
harmonic excitation in the spectral neighborhood of the fundamental mode, are investigated. Both Donnell and the Sanders–Koiter non-linear shell 
theories retaining in-plane inertia are used to calculate the elastic strain energy. The discrete model of the non-linear vibrations is build using the 
meshfree technique based on classic approximate functions and the R-function theory, which allows for constructing the sequences of admissible 
functions that satisfy given boundary conditions in domains with complex geometries; Chebyshev orthogonal polynomials are used to expand shell 
displacements. A two-step approach is implemented in order to solve the problem: first a linear analysis is conducted to identify natural frequencies 
and corresponding natural modes to be used in the second step as a basis for expanding the non-linear displacements. Lagrange approach is applied to 
obtain a system of ordinary differential equations on both steps. Different multimodal expansions, having from 15 up to 35 generalized coordinates 
associated with natural modes, are used to study the convergence of the solution. The pseudo-arclength continuation method and bifurcation analysis 
are applied to study non-linear equations of motion. Numerical responses are obtained in the spectral neighborhood of the lowest natural frequency; 
results are compared to those available in the literature. Internal resonances are also detected and discussed.

1. Introduction

Circular cylindrical shells (or panels) are largely used in aero-

nautics, aerospace and other engineering fields. They are subjected to

dynamic loads that can cause vibration amplitude of the order of the

shell thickness, giving rise to significant non-linear phenomena. Refs.

[1–4] provide the most complete reviews of studies on non-linear

vibrations of shells before 2003. First contributions to non-linear

dynamics of circular cylindrical shells were made in Refs. [5–7]. A

single or two modes expansion of the shell transverse displacement

and the Donnell shell theory with tangential and rotary inertia

omitted in order to simplify the mathematical formulation were

initially used. In many of the past studies, the Donnell non-linear

shallow shell theory has been applied to model non-linear vibrations

of panels for its simplicity [8–13]. More refined classical non-linear

shell theories have been applied to study large-amplitude vibrations

of cylindrical shells in Refs. [1,4,14–20]. In particular, the Sanders–

Koiter (also referred as Sanders), the Flügge–Lur’e–Byrne, the Novoz-

hilov and the Donnell non-linear shell theories retaining in-plane

inertia have been used. A detailed discussion on their strengths and

weaknesses has been given by Amabili [4,18].

Another important refinement in studies on non-linear

dynamics of shells is achieved increasing the number of modes

(i.e. degrees of freedom (dofs)) retained in the approximating

functions [10,17–22]. Refs. [19,20] present a comprehensive

discussion on the importance of introducing the multimode

expansions of shell displacements into analysis.

In general, the majority of the available studies address the non-

linear dynamics of circular cylindrical panels or double curved

shallow shells with simple geometric shapes; e.g. with a rectangular

base [5–13,17–20,22]. The complex geometry of the shell significantly

increases the numerical difficulty of the problem. In fact, models with

thousands of degrees of freedom obtained for instance by commercial

finite-element method (FEM) present large computational problems,

with possible divergence of the solution or impossibility to perform a

full bifurcation analysis. The discussion on non-linear vibrations of

cylindrical shells using FEM can be found, e.g. in Refs. [23–26]. In case

of global discretization using admissible functions, in the framework

of the Rayleigh–Ritz method or the Lagrangian approach, complex

geometry makes their mathematical representation very difficult.

One of the alternatives to the finite-element method is the

effective mesh-free discretization technique based on classic

approximate functions and the R-functions theory (also referred
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as the R-functions method, or shortly RFM). It discretizes the

system of non-linear partial differential equations using admis-

sible functions that satisfy given boundary conditions; this is a

very difficult task in cases of complex domains. The R-functions

theory, developed by the Ukrainian mathematician Rvachev [27],

suggests a way for the analytical description of domains with

complex boundaries. It allows for the construction of approximate

functions that satisfy exactly boundary conditions of different

types, including mixed boundary conditions. Therefore, the

R-functions method (RFM) is a meshless method that allows all

prescribed boundary conditions to be satisfied exactly at all

boundary points. When the R-functions method is coupled to

the variational Rayleigh–Ritz method, a global discretization of

the problem is obtained surpassing the difficulty of expressing

admissible functions that satisfy the geometric boundary condi-

tions. A review of mesh-free methods can be found in the book by

Liu [28]. The approach based on the R-functions method coupled

to the variational Rayleigh–Ritz method has been successfully

applied to linear and non-linear vibrations of plates [29–31] and

shallow shells [32–35], including circular cylindrical panels with

geometry similar or equal to the case of the present study [33,35].

In particular, a single degree of freedom has been used in Ref. [33]

to study non-linear free vibrations. This single degree of freedom

is associated to the mode shape of the fundamental mode, and it

is only a first approximation to the problem solution. Similar

limitations are observed in Refs. [34,35] that cannot guarantee the

convergence of the solution. For this reason, the present study

introduces, for the first time, a multi-mode expansion in the

R-functions used to the study of non-linear vibrations of shells.

In the present study, geometrically non-linear forced vibrations of

a shallow circular cylindrical panel with a complex shape, clamped at

the edges and subjected to a radial harmonic excitation in the spectral

neighborhood of the fundamental mode, are investigated. Two

different non-linear strain–displacement relationships, according to

the Donnell and the Sanders–Koiter shell theories retaining in-plane

inertia, are used to calculate the elastic strain energy. It must be

observed that, for the panel considered in the section of numerical

results, the two theories give practically coincident results, as

expected since the panel is shallow and very thin. However, for deep

shells the Sanders–Koiter theory has been proven to bemore accurate

(see e.g. [18]). It must be observed here that the computational effort

necessary to obtain the numerical solution is significantly larger for

the Sanders–Koiter theory since many additional non-linear terms

appear in the discretized equations of motion.

The R-functions theory is applied to construct the sequences of

admissible functions that satisfy the given boundary conditions in

domains with complex shapes; Chebyshev orthogonal polynomials

[21,36] are used to expand shell displacements. A two-step approach

is implemented in order to solve the problem: first a linear analysis is

conducted to identify natural frequencies and corresponding natural

modes to be used in the second step as a basis for expanding the non-

linear displacements. The Lagrange variational approach is applied to

obtain a system of ordinary differential equations. This approach

introduces multimode expansions of the shell displacements for the

first time in studies involving the R-function method to study non-

linear vibrations. In the study, different multimodal expansions

having from 15 up to 37 generalized coordinates, associated with

natural modes of the panel, have been used in order to study the

convergence of the solution. The pseudo-arclength continuation

method and bifurcation analysis are applied to study the non-linear

equations of motion. Numerical responses are obtained in the spectral

neighborhood of the lowest natural frequency. Results are compared

to those available in the literature. Internal resonances are also

identified and discussed.

2. Problem formulation

An isotropic shallow circular cylindrical panel of uniform thick-

ness h with complex shape of the base is considered, as shown in

Fig. 1. The principal lines of curvature of the middle surface coincide

with the coordinates x, y of the Cartesian coordinate system, and z is

directed along the normal to the middle surface of the shell, as

shown in Fig. 1; the origin is placed at the middle of the panel base

in order to take advantage of the symmetry of the structure. The

displacements of an arbitrary point of coordinates (x, y) on the

middle surface of the panel are denoted by u(x, y, t) in the axial

direction, v(x, y, t) in the circumferential direction and w(x, y, t) in

the radial direction, respectively; it is assumed that the deflection of

the middle surface of the panel is of the same order of the thickness

and is taken positive outwards.

2.1. Strain energy

In the present study, two different non-linear shell theories,

namely Donnell and Sanders–Koiter theories, retaining in-plane

inertia, are used. Both theories are based on Love’s first approxima-

tion assumptions. According to them, strain components ex, ey and

gxy at an arbitrary point of the panel are related to the middle

surface strains ex,0, ey,0 and gxy,0, and to the changes in the curvature

and torsion of the middle surface kx, ky and kxy by the following

relationships:

ex ¼ ex,0þzkx, ey ¼ ey,0þzky, gxy ¼ gxy,0þzkxy ð1Þ

Fig. 1. Circular cylindrical panel with complex base. (a) Coordinate system and dimensions; (b) the function of the boundary O(x,y).
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where z is the distance of the arbitrary point of the shell from the

middle surface. The middle surface strain–displacement relation-

ships and changes in the curvature and torsion have different

expressions for the Donnell and the Sanders–Koiter shell theories.

According to the Donnell non-linear shell theory, the middle

surface strain-components and the changes in curvature and

torsion are given by [4,10]

ex;0 ¼
@u

@x
þ

1

2

@w

@x

� �2

, ð2aÞ

ey;0 ¼
@v

@y
þ

w

R
þ

1

2

@w

@y

� �2

, ð2bÞ

gxy;0 ¼
@u

@x
þ

@v

@y
þ

@w

@x

@w

@y
, ð2cÞ

kx ¼�
@2w

@x2
, ð2dÞ

ky ¼�
@2w

@y2
, ð2eÞ

kxy ¼�2
@2w

@x@y
, ð2fÞ

where R is the constant middle surface principal radius of

curvature.

The Sanders–Koiter shell theory is a more refined non-linear

classical theory developed by Sanders [37] and Koiter [38],

separately. It considers finite deformations with small strains

and moderately small rotations, which allows for non-linear

terms that depend on in-plane displacements to be retained.

According to the Sanders–Koiter non-linear shell theory, the

middle surface strain–displacement relationships and changes in

the curvature and torsion for a circular cylindrical shell are given

by [4,18]

ex;0 ¼
@u

@x
þ

1

2

@w

@x

� �2

þ
1

8

@v

@x
�
@u

@y

� �2

, ð3aÞ
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w

R
þ
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@w
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�
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þ
1

8

@u

@y
�
@v
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, ð3bÞ

gxy;0 ¼
@u

@x
þ

@v

@y
þ

@w

@x

@w

@y
�
v

R

� �

, ð3cÞ

kx ¼�
@2w

@x2
, ð3dÞ

ky ¼
@v

R@y
�
@2w

@y2
, ð3eÞ

kxy ¼�2
@2w

@x@y
þ

1

2R
3
@v

@x
�
@u

@y

� �

: ð3fÞ

The elastic strain energy Us of a circular cylindrical shell,

within the limits of Kirchhoff–Love assumptions, is given by

[4,10]

Us ¼
1

2

ZZ

S

Z h=2

�h=2
ðsxexþsyeyþtxygxyÞdSð1þz=RÞdz, ð4Þ

where S is the shell middle surface; the stresses sx, sy and txy are
related to the strains for homogeneous and isotropic material

(sz¼0, case of plane stress) by

sx ¼
E

1�n2
ðexþneyÞ, sy ¼

E

1�n2
ðeyþnexÞ, tx ¼

E

2ð1þnÞ
gxy, ð5Þ

where E is the Young modulus and n is Poisson’s ratio. using

Eqs. (1), (4) and (5), the following expression is obtained:

Us ¼
1

2

Eh

1�n2

ZZ

S

e2x;0þe2y;0þ2nex;0ey;0þ
1�n

2
g2xy;0

� �

dS

þ
1

2

Eh
3

12ð1�n2Þ

ZZ

S

k
2
x þk

2
yþ2nkxkyþ

1�n

2
k
2
xy

� �

dS

þ
1

2R

Eh
3

6ð1�n2Þ

ZZ

S

ex;0kyþey;0kyþnex;0kyþney;0kxþ
1�n

2
gxy;0kxy

� �

dSþOðh
4
Þ,

ð6Þ

where O(h4) is a higher order term in h according to the Sanders–

Koiter theory; the last term in h3 must be omitted, if z/R is

neglected with respect to unity in Eq. (4), according to the

Donnell non-linear theory [4,10]. The right-hand side of Eq. (6)

can be easily interpreted: the first term is the membrane (also

referred as stretching) energy, the second one represents the

bending energy and, if the last term is retained, membrane and

bending energies are coupled.

2.2. Kinetic energy, virtual work and damping

The kinetic energy Ts of the panel, by neglecting rotary inertia,

is given by

Ts ¼
1

2
rh
ZZ

S

ð _u2
þ _v2

þ _w2
ÞdS, ð7Þ

where r is the mass density of the panel. In Eq. (7) the over-dot

denotes a time derivative.

The virtual work W done by the external forces is written as

[4]

W ¼

ZZ

S

ðqxuþqyvþqzwÞdS, ð8Þ

where qx, qy and qz are the distributed forces per unit area acting

on the shell in x, y and normal directions, respectively. In the

present study, only a single harmonic normal force is considered;

therefore qx¼qy¼0. An external, distributed load qz normal to the

shell surface is applied due to the radial concentrated force ~f and

is given by [4]

qz ¼
~f dðx� ~xÞdðy� ~yÞcosðotÞ, ð9Þ

where o is the excitation frequency, t is the time, d is the Dirac

delta function, ~f is the amplitude of the force applied along the

normal to the panel middle surface and taken positive in z

direction, ~x and ~y determine the position of the point of the force

application; in present case, the excitation point is located at the

origin of the reference system. Eq. (9) is transformed as follows:

W ¼ ~f cosðotÞw9
x ¼ 0,y ¼ 0: ð10Þ

The non-conservative damping forces are assumed to be of

viscous type and are taken into account using the Rayleigh

dissipation function [4]

F ¼
1

2
c

ZZ

S

ð _u2
þ _v2

þ _w2
ÞdS, ð11Þ

where c is the viscous damping coefficient; it has a different value

for each term of the mode expansion.

3. The solution method

The problem is solved in two steps: (i) the linear modal analysis

is conducted to obtain the natural frequencies and corresponding

natural modes; (ii) selected natural modes are used as a basis for

expanding the non-linear displacements in the non-linear analysis.
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3.1. Linear free vibrations: modal analysis using the R-functions

method

For the purpose of carrying out a linear vibration analysis, only

linear terms are considered in the shell middle surface strain–

displacement relationships for both shell theories, i.e. only quadratic

terms are retained in Eqs. (2a)–(2c) and (3a)–(3c).

In the present study, natural frequencies and mode shapes are

found using the Lagrange equations and the R-functions method

(RFM) in order to expand shell displacements using admissible

functions, which satisfy the given boundary conditions.

The main idea of the R-functions method is to build the so called

solution structures of the boundary value problem, which are

appropriate for domains with arbitrary shapes. Such structures form

the basis of the appropriate sequences of admissible functions in a

form that satisfies exactly all the boundary conditions and contain

functions to be determined in order to satisfy the differential

equations governing the problem in an approximate way. Details

on the R-function method are given in the appendix.

Vibrations of the shell are assumed to be harmonic in time.

The space and time variable are separated, which yields

uðx,y,tÞ ¼Uðx,yÞf ðtÞ, vðx,y,tÞ ¼ Vðx,yÞf ðtÞ, wðx,y,tÞ ¼Wðx,yÞf ðtÞ,

ð12Þ

where Uðx,yÞ,Vðx,yÞ,Wðx,yÞ represent the modal shape and f(t) is a

harmonic function, i.e.

f ðtÞ ¼ cosðotÞ: ð13Þ

The studied shell is considered to be clamped, which means

un9@S ¼ 0, vn9@S ¼ 0, w9
@S
¼ 0,

@w

@n

�

�

�

�

@S

¼ 0, ð14Þ

where un ¼ ulþvm, vn ¼�umþvl and l,m are the direction

cosines of the edge with respect to the in-plane axes x and y (in

case of curved edge, l and m are functions of the position); n and t
are the normal and the tangent to the boundary, respectively;

both of them are contained in the plane tangent to the panel at

the boundary, with the normal pointed outward the shell domain.

Corner points do not need any special treatment.

According to the R-function theory, the structure of admissible

functions for the clamped shallow shell is [29,33]

Uðx,yÞ ¼Oðx,yÞP1ðx,yÞ, Vðx,yÞ ¼Oðx,yÞP2ðx,yÞ,

Wðx,yÞ ¼O2
ðx,yÞP3ðx,yÞ, ð15Þ

where functions Pi (i¼1,2,3) are functions expanded in the

following way:

P1ðx,yÞ ¼
X

N1

j ¼ 1

qjj1jðx,yÞ, P2ðx,yÞ ¼
X

N2

j ¼ N1 þ1

qjj2jðx,yÞ,

P3ðx,yÞ ¼
X

N3

j ¼ N2 þ1

qjj3jðx,yÞ, ð16Þ

where qj, j¼ 1,. . .,N3 are unknown coefficients to be determined

from the corresponding eigenvalue problem and {jij},

(i¼1,2,3;j¼1,y,N3) are any complete sequences of functions,

e.g. power polynomials, splines and trigonometric polynomials;

in the present study, Chebyshev orthogonal polynomials are used

since they have given good results for complete circular shells

[39,40]. Thus, mode shapes, expanded in double series in terms of

Chebyshev polynomials, are written as

Uðx,yÞ ¼Oðx,yÞ
X

Mu

i ¼ 0

X

Mu�1

j ¼ 0

ui,jT1iðxÞT1jðyÞ, ð17aÞ

Vðx,yÞ ¼Oðx,yÞ
X

Mv

i ¼ 0

X

Mv�1

j ¼ 0

vi,jT1iðxÞT1jðyÞ, ð17bÞ

Wðx,yÞ ¼O2
ðx,yÞ

X

Mw

i ¼ 0

X

Mw�1

j ¼ 0

wi,jT1iðxÞT1jðyÞ, ð17cÞ

where T1i( � ) is the ith order Chebyshev polynomial of the first

kind, ui,j, vi,j and wi,j are unknown coefficients, which have to be

re-arranged into a single indexed sequence qj, j¼1,y,N3, in order

to obtain Eq. (16) and the corresponding eigenvalue problem. This

can be easily achieved first by expanding the double series over

Chebyshev polynomials in Eqs. (17) and then reordering the

coefficients in the following way:

q¼ fwð1Þ
0,0,wð2Þ

0,1,. . .,wðN1Þ

Mw ,Mw�1,uðN1 þ1Þ
0,0 ,. . .,uðN2Þ

Mu ,Mu�1,vðN2 þ1Þ
0,0 ,. . .,vðN3Þ

Mv ,Mv�1g:

ð18Þ

In Eqs. (15) and (17) O(x,y)¼0 is the function of the boundary

of the panel normalized up to the first order. Normalization of the

function O(x,y) is given by [27,29]

Oðx,yÞ ¼ 0, 8ðx,yÞA@S,

@Oðx,yÞ

@n
¼�1, 8ðx,yÞA@S,

Oðx,yÞ40, 8ðx,yÞAS:

In the case of the cylindrical panel with the geometry shown in

Fig. 1(a), the function of the boundary O(x,y) can be composed in

the following form [4,33]:

Oðx,yÞ ¼ Z140Z240ðZ330Z4Þ, ð19Þ

where the functions Zi, (i¼1,y,4), are given by

Z1 ¼
1

2b
ðb

2
�x2ÞZ0, Z2 ¼

1

2a
ða2�y2ÞZ0,

Z3 ¼
1

2d
ðd

2
�y2ÞZ0, Z4 ¼

1

2c
ðx2�c2ÞZ0:

The function O(x,y) for the panel shown in Fig. 1 is plotted in

Fig. 1(b).

The complete procedure of building the equation of the

domain O(x,y)¼0 for the panel shown in Fig. 1 is addressed in

Refs. [4,33] in details. In Eq. (19) the R-conjunction (x40y) and the

R-disjunction (x30y) have been used. They are defined as [27]

x40y¼ xþy�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2
q

,

x30y¼ xþyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2
q

:

Eqs. (17)–(19) are first inserted into Eq. (12) and then into the

linear expression of the strain energy, Eq. (6), and the kinetic

energy (7), respectively. Then, for harmonic linear vibration, it is

possible to write

US ¼
1
2 q

TKq, TS ¼
1
2
_q
T
M _q,

_q ¼oq, ð20Þ

where o are the natural frequencies and q¼ ðq1,q2,. . .,qN3
ÞT are

the corresponding eigenvectors giving the mode shapes. The

components of the vector q correspond to the reordered

sequences of the unknown coefficients in Eq. (17). K¼

fkijgi,j ¼ 1,...,N3
and M¼ fmijgi,j ¼ 1,...,N3

are the stiffness matrix and

the mass matrix, respectively.

The Rayleigh–Ritz method yields the classical non-standard

eigenvalue problem:

ðK�o2MÞq¼ 0: ð21Þ

It is important to point out that coefficients in both matrices K

and M are double surface integrals over the domain with complex

shape to be numerically computed with accuracy. Eq. (21) gives
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the natural frequencies om, for m¼1,y,N3, and the correspond-

ing eigenvectors qm. The mode shapes are obtained once qm is

inserted back in Eq. (16) and then in (15). The mode shapes

Wm(x,y), Um(x,y) and Vm(x,y) obtained are then normalized by

Wmðx,yÞ=max ðWmðx,yÞÞ, Umðx,yÞ=maxðUmðx,yÞÞ and Vmðx,yÞ=max

ðVmðx,yÞÞ for any (x,y) in order to have the maximum amplitude in

the shell domain S equal to unit.

3.2. Non-linear vibrations

In the non-linear analysis, the full expressions of the panel

middle surface strain–displacement relationships, Eqs. (2) or (3)

and Eq. (6), are used to evaluate the potential energy, which

contains terms up to the fourth order. The panel displacements

u, v, w are expanded using the normalized natural modes as a

Table 1

Natural frequencies (Hz) and corresponding mode shapes of the panel.

Table 2

Comparison of natural frequencies (Hz) of symmetric modes of the circular cylindrical panel.

Methods Modes (m,n)

(1,1) (1,3) (3,1) (1,5) (3,3) (3,5) (1,7)

FEM (SOLID186) 367.39 451.24 626.20 678.22 923.21 1057.00 1120.50

RFM (Donnell theory) 368.64 453.44 627.84 689.51 933.44 1089.47 1152.45

RFM (Sanders–Koiter theory) 368.64 453.43 627.83 689.50 933.43 1089.46 1152.45
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basis

wðx,y,tÞ ¼
X

M1

m ¼ 1

Wmðx,yÞpmðtÞ, ð22aÞ

uðx,y,tÞ ¼
X

M2

m ¼ M1 þ1

Umðx,yÞpmðtÞ, ð22bÞ

vðx,y,tÞ ¼
X

M3

m ¼ M2 þ1

Vmðx,yÞpmðtÞ, ð22cÞ

where pm(t) are the generalized coordinates. The total number of

degrees of freedom in the non-linear analysis M3 is much smaller

than N3 used in the linear analysis. Also, the number of terms

necessary for the expansion of the in-plane displacement is larger

than for the normal displacement w. The advantage of building a

reduced-order non-linear model is in the possibility of having a

full bifurcation analysis and at the same time to reduce numerical

problems like divergence. The generalized coordinates to be

retained in the expansion (22) have to be carefully chosen in

order to reach accuracy of the solution.

The normalized mode shapes Wm(x,y), Um(x,y) and Vm(x,y) are

known functions expressed in terms of Chebychev polynomials.

In Eq. (22a)–(22c) the generalized coordinates pm(t),m¼1,y,M3

are unknown time functions; due to normalization, the general-

ized coordinates represent the maximum amplitude of vibration

in that specific mode shape since the maximum of Wm(x,y),

Um(x,y) and Vm(x,y) after normalization is equal to unit.

Eqs. (22a)–(22c) are inserted in the expressions of the strain

and kinetic energies (6) and (7), virtual work (10) and damping

(11). Calculations for damping give

F ¼
1

2

X

M1

m ¼ 1

cm _p2
mAmþ

X

M2

m ¼ M1 þ1

cm�M1
_p2
mAmþ

X

M3

m ¼ M2 þ1

cm�M2
_p2
mAm

 !

,

ð23aÞ

Am ¼

RR

SW
2
mdS, if m¼ 1,. . .,M1,

RR

SU
2
mdS, if M1þ1rmoM2,

RR

SV
2
mdS, if M2þ1rmoM3:

8

>

>

<

>

>

:

ð23bÞ

In Eq. (23a) the damping coefficient cm is the viscous modal

damping coefficient that can be related to the damping ratio.

The generalized forces Qj are obtained by differentiation of

Rayleigh’s dissipation function and of the virtual work done by

external forces [4]

Q j ¼�
@F

@ _p j

þ
@W

@pj
¼�Ajcj _p jþ

0
~f cosðotÞ if 1r joM1

, j¼ 1,. . .,M3:

(

ð24Þ

The Lagrange equations of motion are

d

dt

@T

@ _pi

� �

�
@T

@pi
þ

@U

@pi
¼ Q i, i¼ 1,2,. . .,M3, ð25Þ

where qT/qpi¼0. These second-order differential equations have

very long expressions containing quadratic and cubic non-linear

terms. In particular, the complicated term containing the linear

terms and quadratic and cubic non-linearities can be written in

the form

@U

@pi
¼
X

M3

k ¼ 1

pk ~zk,iþ
X

M3

k,j ¼ 1

pjpk ~zj,k,iþ
X

M3

k,j,l ¼ 1

pjpkpl ~zj,k,l,i, ð26Þ

where coefficients ~z can be obtained only numerically and the

linear terms ~zk,i in Eq. (26) are equal to zero for any iak (for

0o irM1) since normal modes are used to expand the unknown

non-linear displacements. Linear coupling is present only among

the components Wm(x,y), Um(x,y) and Vm(x,y) of the same mode

shape, i.e. with the same m.

Fig. 2. Amplitude of the vibration response of the panel versus the excitation frequency; excitation frequency around the fundamental mode (1,1), nondimensional

excitation f¼0.02, where f ¼ ~f =ðho1;1m1;1Þ; m1,1 is the modal mass of the mode (1,1) and z1,1¼0.004; model with 27 dofs; Donnell theory. NNNN, stable solution; – –, unstable

solution; -.-, backbone curve from Kurpa et al. [33]. (a) Maximum of the generalized coordinate w1,1 (in a vibration period); (b) minimum of the generalized coordinate w1,1

changed of sign.

Table 3

Natural frequencies (Hz) of the circular cylindrical panel.

Modes (n,m) FEM (SOLID186) RFM (Donnell theory)

1,1 367.39 368.64

1,2 384.48 385.52

2,1 393.73 396.73

2,2 408.14 409.88

1,3 451.24 453.44

1,4 544.76 548.27

2,3 570.70 579.91

3,1 626.20 627.84

3,2 627.78 629.53

1,5 678.22 689.51

2,4 680.86 695.70

2,5 811.32 823.77

1,6 843.50 853.88

4,2 897.98 907.23

3,3 923.21 933.44

3,5 1057.00 1089.47

1,7 1120.50 1152.45
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Gaussian quadrature in the Mathematica software [41] has

been used in order to compute double surface integrals in

Eqs. (6) and (7). The system of Lagrange equations is pre-multi-

plied by the inverse of the mass matrix M and then each equation

is transformed in two equations of the first order. For computa-

tional convenience, variables are non-dimensionalized in the

following way: the frequencies are non-dimensionalized dividing

by the natural frequency of the resonant mode (i.e. the one

excited near its resonance frequency) and the vibration ampli-

tudes are divided by the shell thickness h. The resulting M3

equations are studied using the software AUTO [42] for numerical

continuation and bifurcation analysis of non-linear ordinary

differential equations. The software AUTO is capable of continua-

tion of the solution, bifurcation analysis and branch switching

using pseudo-arclength continuation method. In particular, the

shell response under harmonic excitation has been studied using

an analysis in two steps: (i) first the excitation frequency has been

fixed far enough from resonance and the magnitude of the excita-

tion has been used as bifurcation parameter; the solution has been

started at zero force where the solution was the trivial undisturbed

configuration of the shell and has been continued up to reach the

desired force magnitude and (ii) when the desired magnitude of

excitation has been reached, the solution has been continued using

the excitation frequency as bifurcation parameter.

4. Numerical results and discussion

Numerical calculations are performed for the clamped cylind-

rical panel with the complex base shown in Fig. 1(a), with the

following dimensions and material properties: overall length

2b¼ 0:199m, curvilinear width 2a¼ 0:132m, length of the cut

2c¼0.041 m, curvilinear width at the cut 2d¼0.092 m, radius of

curvature R¼2 m, thickness h¼ 0:00028m, Young modulus

E¼195 GPa, mass density r¼ 7800kg=m3 and Poisson’s ratio

n¼0.3. The same shell was considered in Ref. [33]. In all

numerical simulations, a modal damping B1,1¼0.004 is assumed.

If not differently specified, the calculations have been performed

using the Donnell non-linear shell theory retaining in-plane

inertia. Where specified, the results obtained using the Sanders–

Koiter non-linear shell theory.

4.1. Linear analysis

The frequency range around the fundamental mode, i.e. the

lowest natural frequency mode (1,1), is investigated. Here (1,1)

indicates that the mode shape has one half-wave in both x and y

directions, as shown in Table 1. The fundamental frequency o1,1

obtained with the Donnell shell theory is 368.64 Hz, while

o1,3¼453.44 Hz, o3,1¼627.84 Hz, o1,5¼689.51 Hz and o3,3¼

933.44 Hz. Table 1 gives the natural frequencies of interest and

corresponding mode shapes obtained with the Sanders–Koiter

shell theory. The relative difference between natural frequencies

obtained using the Donnell and the Sanders–Koiter shell theories

is less than 0.01%, i.e. practically the same results for both

theories.

In order to verify that our linear solution is practically

converged, a comparison of the present results to a commercial

FEM code was performed. The FEM results have been obtained

after mesh refinement for convergence study using the ANSYS

finite element code [42,43]. The panel was discretized using the

standard three-dimensional non-layered structural solid element

SOLID186 [44]. The element is defined by 20 nodes having three

degrees of freedom per node: translations in the nodal x, y and z

directions. The coordinate system for this element and its full

description can be found in ANSYS Element Manual [44]. Natural

frequencies obtained by the finite element method (FEM) are

shown in Table 2 (for symmetric modes) and in Table 3. The

convergence of the finite element model was studied by increas-

ing the total number of elements in discretization until the

relative difference reached 0.01%. Convergence was reached with

a total number of 24,576 elements. Table 2 compares natural

frequencies obtained using RFM models with the Donnell and the

Sanders–Koiter shell theories to FEM results. The difference

between natural frequencies obtained using the RFM and FEM is

the range from 0.33% to 1.6% and becomes noticeable for higher

frequencies.

Fig. 3. Amplitude of the vibration response of the panel versus the excitation

frequency; mode (1,1), f ¼ 0:034 and z1,1¼0.004; (a) Donnell theory. –.– , back-

bone curve from Kurpa et al. [33]. (a) Maximum of the generalized coordinate

w1,1; (b) minimum of the generalized coordinate w1,1 changed of sign.

7



4.2. The non-linear vibrations

If not differently specified, the non-linear response of the panel

to the harmonic force excitation ~f ¼ 0:034N applied at the center

of the panel in z direction is investigated; this gives the advantage

of having a symmetric excitation. A different amplitude ~f ¼ 0:02N

has been used when specified.

4.2.1. Calculations with the Donnell shell theory

Fig. 2(a) and (b) presents the maximum and the minimum of the

amplitude-frequency response of the present study model with 27

dofs, i.e. retaining only one term, mode (1,1), in the panel deflection

w and 13 terms in expansions for each one of the in-plane

displacements u and v in Eqs. (22); specifically the generalized

coordinates used in the model are: w1,1, u1,1, v1,1, u1,3, v1,3, u3,1, v3,1,

u1,5, v1,5, u3,3, v3,3, u3,5, v3,5, u1,7, v1,7, u5,1, v5,1, u3,7, v3,7, u5,3, v5,3, u5,5,

v5,5, u1,9, v1,9, u7,1, v7,1. Due to the curvature of the panel in the x

direction, in a vibration period, the amplitude of the displacement

inward the curvature (minimum displacement since it is in the

negative z direction) is larger than the amplitude outward. There-

fore, the panel in a vibration period is for a longer time deflected

inward than outward.

In the previous study [33], a single-mode expansion was used for

the transversal displacement w and the Donnell non-linear shallow-

shell theory, which neglects in-plane inertia, was applied to con-

densate the in-plane displacements u and v into the Airy potential

function. The potential function was directly obtained by solving a

partial differential equation in w with Galerkin method. The present

model with 27 degrees of freedom (dofs) includes one mode in the

panel deflection w and thirteen modes for each in-plane displace-

ment, so that it can be directly compared to Ref. [33]. However, it

must be clarified that the present 27 dofs model gives slightly

different results since in-plane inertia is retained. In Fig. 2, the forced

vibration response obtained with the present model is very close to

the backbone curve from Ref. [33]. In fact, the backbone curve of

[33], indicating the free vibration response for different vibration

amplitudes, approximately passes through the middle of the forced

response curve (and its peak) computed in the present study. The

softening type non-linearity, turning to hardening type for ampli-

tudes of vibration much larger than the shell thickness, can be

clearly observed in Fig. 2.

The convergence of the solution has been checked by calculat-

ing the amplitude-frequency response of the panel with larger

models, including 33 dofs, 35 dofs and 37 dofs. The model with 37

dofs retains seven generalized coordinates in the panel deflection

Fig. 5. Amplitude of the response of the panel versus the excitation frequency; mode (1,1), f ¼ 0:034 and z1,1¼0.004; Donnell theory. All models keep five transversal

modes. (a) Maximum of the generalized coordinate w1,1; (b) minimum of the generalized coordinate w1,1 changed of sign.

Fig. 4. Amplitude-frequency response of the panel with respect to the different numbers of in-plane modes around the mode (1,1); Donnell theory; f ¼ 0:034 and

z1,1¼0.004. In all models 3 transversal modes are considered: (a) maximum of the generalized coordinate w1,1; (b) minimum of the generalized coordinate w1,1 changed

of sign.
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w1,1,w1,3,w3,1,w1,5,w3,3,w3,5w1,7 and 15 terms in the expansions

for both the in-plane displacements u and v; specifically u1,1, u1,3,

u3,1, u1,5, u3,3, u3,5, u1,7, u5,1, u3,7, u5,3, u5,5, u1,9, u7,1, u9,1, u3,9; v1,1,

v1,3, v3,1, v1,5, v3,3, v3,5, v1,7, v5,1, v3,7, v5,3, v5,5, v1,9, v7,1, v9,1, v3,9.

The model with 35 dofs has five generalized coordinates in the

panel deflection w1,1,w1,3,w3,1,w1,5,w3,3 and the model with 33

dofs keeps three flexural modes in the expansion of deflection,

w1,1,w1,3,w3,1, respectively, in addition to the same in-plane

coordinates. All these models exclude non-symmetric modes, as

e.g. w1,2 and w2,1, from the analysis since the problem is

symmetric. This is correct excluding the case of internal reso-

nances with the non-symmetric modes. The frequency range of

internal resonances can be reasonably predicted by linear

analysis. Natural frequencies of symmetric and non-symmetric

modes are given in Table 3.

Comparison of the computed responses for both maximum

and minimum of the generalized coordinate w1,1 is given in

Fig. 3(a) and (b), where the backbone curve from Ref. [33] is also

shown. The response computed with 35 dofs model (with

5 deflection coordinates) is slightly moved to the right with

respect to the one of the 33 dofs (3 deflection coordinates) model.

In order to test if the convergence is reached, simulations with the

model of 37 dofs (with 7 deflection coordinates) have been

performed. The response of the 37 dofs models is very close to

the one computed for the model with 5 deflection coordinates

and is also presented in Fig. 3, showing solution convergence. On

Fig. 6. Amplitude-frequency responses of the panel around the mode (1,1); f ¼ 0:034 and z1,1¼0.004; Donnell theory. NNN, stable solution; – –, unstable solution.

(a) Maximum of the generalized coordinate w1,3; (b) maximum of the generalized coordinate w3,1; (c) maximum of the generalized coordinate w1,5; (d) maximum of the

generalized coordinate w3,3; (e) maximum of the generalized coordinate u1,1; (f) maximum of the generalized coordinate v1,1.
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the other hand, Fig. 3 shows that the 27 dofs model, with a single

deflection mode, is not accurate for vibration amplitude larger

than about half the shell thickness.

Fig. 3(a) and (b) shows an initial softening behavior of the

panel, turning to hardening for vibration amplitude around 0.8h.

While Fig. 3(a) shows the displacement outwards (positive),

Fig. 3(b) shows the displacement inwards (negative). It is inter-

esting to observe that the displacement outwards is slightly

smaller than inwards, as observed in general for curved panels.

However, Fig. 3(b) shows that the inward displacement presents

Fig. 7. Time-domain response of the panel at the excitation frequency o¼0.937o1,1; f ¼ 0:034 and z1,1¼0.004; Donnell theory; model with five transversal modes (35

dofs);. (a) Force excitation; (b) generalized coordinate w1,1; (c) generalized coordinate w1,3; (d) generalized coordinate w3,1; (e) generalized coordinate w1,5; (f) generalized

coordinate w3,3; (g) generalized coordinate u1,1; (h) generalized coordinate v1,1 .
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almost a discontinuity in the slope of the response at the

transition from softening to hardening behavior, which is

observed for vibration amplitude equal to 0.8h. This transition is

instead smooth in Fig. 3(a) where the outward displacement is

presented.

Fig. 3 shows also two small peaks for the 37 dofs model for

o/o1,1¼0.85 and 1.04. These peaks do not appear for the 33 dofs

model, while for the 35 dofs model only the peak at 0.85 is

observed. These two peaks can be easily attributed to 3:1 internal

resonances of mode (1,1) with mode (3,3) for o/o1,1¼0.85 and

with mode (1,7) for o/o1,1¼1.04. The natural frequencies in

Table 2 divided by three times o1,1 give exactly the peak values.

The presence or absence of these two internal resonances in a

model is also perfectly justified by the corresponding expansion:

mode (3,3) is used in both the 35 and 37 dofs models while mode

(1,7) is used only in the 37 dofs model.

Fig. 4(a) and (b) shows the effect of the number of dofs taken

into account in the in-plane displacements on the panel response.

Here three bending modes are used in the panel deflectionw in all

models; the model with 15 dofs has 6 terms for both the in-plane

displacements u and v; the model with 21 dofs keeps 9 terms in

expansions of both u and v; the model with 27 dofs has 12 terms

of both u and v; finally, the model with 33 dofs retains 15 terms in

each one of the in-plane displacements. Results of the 33 dofs

model are close to the ones of the 27 dofs model, while the two

smaller models are significantly moved to the right. Therefore,

Fig. 4 shows that 9 in-plane terms for both u and v are not enough

to guarantee accurate results, while 12 terms give good results.

A similar analysis has been performed for the more refined

models with 25 dofs and 35 dofs. In particular, the 35 dofs model

has been previously introduced and retains 5 deflection terms on

w and 15 terms for each one of u and v. The 25 dofs model retains

the same 5 terms for w, but the number of in-plane terms is

reduced to 10 for both u and v. The maximum and minimum of

the generalized coordinate w1,1 in a vibration period are given in

Fig. 5(a) and (b). Results show that 10 terms for the in-plane

Fig. 8. Phase plane diagram of the panel response; excitation frequency o¼0.937o1,1; f ¼ 0:034 and z1,1¼0.004; Donnell theory; 35 dofs model. (a) Generalized

coordinate w1,1; (b) generalized coordinate w1,3; (c) generalized coordinate w3,1; (d) generalized coordinate w1,5; (e) generalized coordinate w3,3.
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displacements are not sufficient to give very accurate results, as

shown by comparison with the model with 15 in-plane terms.

This is in agreement with the result in Fig. 4.

The more complicated amplitude–frequency response of the

models retaining 5 bending modes in Fig. 5 with respect to Fig. 4,

obtained with only 3 bending modes, is due to the presence of

internal resonances that involves the additional bending modes

w1,5 andw3,3, which are excluded in the models in Fig. 4. In fact, at

the excitation frequency o¼ 0:935o1,1, there is a two-to-one

internal resonance due to the relationship 2o¼o1,5. This can be

Fig. 9. Time-domain response of the panel; the excitation frequency o¼0.9o1,1; f ¼ 0:034 and z1,1¼0.004; model with 35 dofs; Donnell theory. (a) Force excitation;

(b) generalized coordinate w1,1; (c) generalized coordinate w1,3; (d) generalized coordinate w3,1; (e) generalized coordinate w1,5; (f) generalized coordinate w3,3;

(g) generalized coordinate u1,1; (h) generalized coordinate v1,1 .
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observed in Fig. 5(a) and (b) for w1,1 and Fig. 6(a)–(f) for the other

most significant generalized coordinates, with indication of

response stability. In fact, the complication in the non-linear

response of the model with 5 bending modes is due to a loop

appearing around excitation frequency 0:94o1,1. This loop is more

evident in Fig. 6(c) relative to the coordinate w1,5. The difference

between the 35 dofs model in Fig. 5 and the 33 dofs model in

Fig. 4 is mostly limited to a small frequency range around the

internal resonance. Another internal resonance is 2(1,03o1,3)¼o3,3

in the frequency range shown in Fig. 6, but this does not affect the

resonant generalized coordinate w1,1.

Fig. 6(b) shows that the amplitude of the generalized coordi-

nate w3,1 is as big as the main coordinate w1,1 around the

resonance peak. The response of the coordinate w3,1 grows very

quickly after the response turns from softening to hardening

behavior for vibration amplitude around 0.25h (amplitude similar

to the one of w1,3, that anyway is not growing so fast after the

turning point), with a transfer of energy from w1,1, that in fact

presents the sudden change of slope already observed in Fig. 3(b),

to w3,1. The sudden increase of the response w3,1 is attributed to a

1:2 internal resonance happening at excitation frequency

o¼ 0:85o1,1 according to linear frequencies. Anyway this inter-

nal resonance relationship is moved to different frequency by the

system non-linearity. In fact, internal resonances must be checked

on the non-linear frequency–amplitude relationship so they do

not occur at the exact linear frequency relationship [45,46]. An

accurate way of identifying internal resonances is the construc-

tion of frequency energy plots, as discussed by Lee et al. [47] and

Vakakis et al. [48]; this is beyond the scope of the present study.

Fig. 6(b) indicates that this internal resonance is achieved around

0:9o1,1 in the present case.

Responses given in Fig. 6(a)–(f) have been computed using two

large models with 33 dofs and 35 dofs, with 3 and 5 bending terms,

respectively. Internal resonances could be further complicated by

introducing larger models retaining non-symmetric modes, e.g.

modes (2,4) and (4,2).

Fig. 10. Phase plane diagram of the panel response; excitation frequency o¼0.9o1,1; f ¼ 0:034 and z1,1¼0.004; Donnell theory; 35 dofs model. (a) Generalized coordinate

w1,1; (b) generalized coordinate w1,3; (c) generalized coordinate w3,1; (d) generalized coordinate w1,5; (e) generalized coordinate w3,3.
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It is important to analyze the results in the time domain. Fig. 7

(a)–(h) shows the time responses of the most significant (i.e. those

with larger amplitude) generalized coordinates for excitation fre-

quency o1 ¼ 0:937o1,1 with initial conditions to catch the stable

solution after the peak of the response, next to the loop in Fig. 5. Fig. 3

(zoomed part) depicts the exact location of o1. Results of the

generalized coordinates related to radial displacement w clearly

indicate that there is a strong asymmetry between vibration inwards

and outwards. In fact, the vibration is much larger inwards (negative)

than outwards (positive). Such effect, which is due to the curvature of

the panel, has been previously observed for shallow cylindrical shells

with simple shapes in Refs. [13,18–20] and for shallow shells with a

complex base in [33]. In particular, the generalized coordinate w1,1

has the largest amplitude; the inward displacement of w1,1 is about

30% larger than the outward displacement in this case. A significant

contribution of higher harmonics can be also observed in Fig. 7. In

particular, the generalized coordinates w1,3, w1,5 and w3,3 are more

affected by higher harmonics, while modesw1,3 andw1,1 (the last one

being the resonant mode, with u1,1 and v1,1) are almost perfectly

sinusoidal. In Fig. 8 phase plane diagrams are provided for better

understanding the asymmetry of inward and outward vibration; the

effect of higher harmonics is indicated by loops.

The same analysis has been performed at the excitation frequency

o2 ¼ 0:9o1,1. The exact location of o2 is shown in the zoomed part

of Fig. 3. Appropriate initial conditions have been chosen in order to

catch the highest amplitude solution. Results are given in Figs. 9

and 10 for time responses and phase-plane plots that show an even

more significant contribution of higher harmonics. All the 5 general-

ized coordinates in the expansion ofw give an important contribution

to the shell deflection, as plotted in Fig. 9. This shows that for large-

amplitude vibrations, an interaction among the different generalized

coordinates involving w is important and this is the reason for

inaccurate results obtained using a single mode in the expansion of

w. Fig. 9 shows also that the generalized coordinates w3,1, w1,5 and

w3,3 present an important contribution of super-harmonics in the

shell response. Higher harmonics give loops in the phase-plane plots

in Figs. 8 and 10. Instead, themain coordinatew1,1 shows a significant

displacement of the mean value (continuous component) in Fig. 9(b),

indicating that the displacement inwards is larger than the displace-

ment outward by about 20% for this coordinate.

4.2.2. Calculations with the Sanders–Koiter shell theory

Fig. 11 shows the comparison of the panel response in the

frequency neighborhood of the fundamental mode obtained using

the Sanders–Koiter and the Donnell non-linear shell theories.

Results have been computed for the refined models with 35 dofs.

Fig. 11(a) and (b) gives the maximum and the minimum of the

generalized coordinate w1,1, respectively, and show practically

coincident results. This indicates that, for the thin shallow shell

considered in the present study, there is no advantage in using a

more refined as the non-linear Sanders–Koiter shell theory; the

use of the Donnell non-linear shell theory retaining in-plane

inertia saves computational time in the present case. Similar

results comparing the Sanders–Koiter, the Donnell and several

other non-linear shell theories for shallow shells with simple base

has been observed and discussed by Amabili in Refs. [4,18–20].

5. Conclusions

An effective approach to build meshfree discrete models to

study forced large-amplitude vibrations of circular cylindrical

panels with arbitrary shapes is considered in the present study.

It consists in expanding the displacements using approximating

functions and the R-functions theory in order to satisfy the

boundary conditions on a complex domain. A two-step approach

is implemented in order to solve the problem: first a linear

analysis is conducted to identify natural frequencies and corre-

sponding natural modes to be used in the second step as a basis

for expanding of the non-linear displacements and building a

reduced-order model. Lagrange variational approach is applied to

obtain a system of ordinary differential equations on both steps.

The present approach has the advantage of being suitable for

constructing the system of admissible basis functions in an

analytical way in domains of arbitrary shape. The use of the

R-functions theory makes it also very flexible to be applied to a

variety of different boundary conditions.

Once the reduced-order model has been built, this has been

numerically studied using the pseudo-arclength continuation

method and bifurcation analysis. The convergence of the present

solution by increasing the number of degrees of freedom has been

studied and results from two different non-linear shell theories

have been compared.
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Fig. 11. Amplitude of the response of the panel versus excitation frequency; fundamental mode (1,1), f ¼ 0:034 and z1,1¼0.004; model with 35 dofs. NNN, Donnell theory; –

–, Sanders–Koiter theory. (a) Maximum of the generalized coordinate w1,1; (b) minimum of the generalized coordinate w1,1.
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Appendix. R-functions

Let us consider a boundary value problem of continuum

mechanics in the form:

Au¼ f in S ðA:1aÞ

Liu9@Si ¼ 0 i¼ 1,. . .,N, ðA:1bÞ

where A is a differential operator, Li are boundary operators and u

is the solution field function in the domain S. In Eq. (A.1b) qSi are

the boundary sections (or the whole boundary); f is the field

exciter [48,49].

In the 1950s Kantorovich [51] introduced a numerical techni-

que based on the observation that the solution of a differential

equations Eq. (A.1a) with homogeneous boundary conditions,

known as the Dirichlet problem

u9
@S
¼ 0 ðA:2aÞ

can be represented in the form

u¼OP: ðA:2bÞ

In the context of structural analysis, the solution field function

u is the displacement, and Eq. (A.2a) represents a boundary that

has zero displacements. In Eqs. (A.2a) and (A.2b) qS is the

boundary of the domain S; the function O vanishes at the

boundary (O9qS¼0) and is positive in the interior of S, and P is

an unknown function that allows us to satisfy the differential

equations governing the problem. Because O is identically zero at

the boundary qS, then no matter what the indefinite component P

(differentiable up to the required order) is, the function u given by

Eq. (A.2b) will satisfy the boundary condition (A.2a) exactly. The

function P is determined in order to satisfy the differential

equations; therefore, in general, it can be expressed in approx-

imate way using a series expansion of basis functions ci

P¼
X

N

i ¼ 1

Cici, ðA:2cÞ

where Ci are scalar coefficients. Thus, the solution takes the form

u¼O
X

N

i ¼ 1

Cici: ðA:2dÞ

The undetermined coefficients Ci can be found numerically, for

example, using Rayleigh–Ritz or Galerkin method. The function P

originally was represented in a global polynomial basis, but can

be also constructed using many other basis functions, such as

B-splines, radial basis functions, or trigonometric polynomials,

among others. In spite of the intrinsic advantage of this method,

which was able to give a clean and modular separation of the

geometric information represented by the function O from the

differential equation and numerical procedure used to determine

the analytic component P, Kantorovich’s idea did not have

particular success. In fact, (i) no available technique existed to

construct such real functions O for domains of complex shape,

and (ii) the same solution was not applicable to other types of

boundary value problems. Rvachev found the way to overcome

both of the obstacles by creating the R-functions theory. He

recognized Kantorovich’s representation of the field as a special

form of the Taylor series expansion of the function O and showed

that the solution structure can be practically generalized to any

type of engineering problem [27,50]. He also developed a theory

of R-functions specifically as a method for constructing the

functions O for arbitrary shapes [27,29,49].

R-functions are defined as functions whose sign is completely

defined by the sign of their arguments. Functions that satisfy

these properties are, for example, xyz, xþyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xyþx2þy2
p

and

xyþzþ9z�xy9. The best known system of R–functions is given by

the R–conjunction (x4ay) and the R–disjunction (x3ay), which

are defined as

x4ay¼
1

1þa
xþy�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2�2axy
q

� �

, ðA:3Þ

x3ay¼
1

1þa
xþyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2�2axy
q

� �

, ðA:4Þ

where a is a continuous function satisfying the condition

�1oa(x,y)r1; the denial function, simply given by a minus,

must be added to complete this system of R-functions.

R-functions behave as continuous analogs of logical Boolean

functions. Every Boolean function has infinity analog R-functions.

The R-conjunction (A.3) is an R-function whose companion

Boolean function is logical ‘‘and’’(4), whereas Eq. (A.4) has

companion Boolean function logical ‘‘or’’ (3). Note that the

precise value of a is not important in many applications, and it

is often set to a constant. If a¼1 is taken, Eqs. (A.3) and (A.4)

become the functions Min(x, y) and Max(x, y), respectively.

Setting a¼0 in (A.3) and (A.4) gives the simpler equations

introduced in Section 3.1.

R-functions are closed under composition. Therefore, the

function O(x,y) can be obtained for domains of complicate shape

whose boundary consists of sections of lines (surfaces) described

by known equations of the kind Zi(x,y)¼0 or Zi(x,y,z)¼0 in the

three-dimensional case, where Zi are elementary functions (or

other functions when necessary). Using R-operations, such as

R-disjunctions (x3ay), which has analog Boolean union [,

R-conjunction (x4ay), with analog Boolean intersection \ and

R-denial (�x), with analog Boolean absolute complement—(indi-

cated with an overline), it is possible to construct the analytical

expression of O(x,y) for almost any domain S with no concern of

its connectivity.

The first step in order to build O(x,y) for the domain S, it is

necessary to construct the so-called characteristic function (also

named two-valued predicate) of domain S, which is defined as

S¼ Sðx,yÞ ¼
0, 8ðx,yÞ=2S,

1, 8ðx,yÞAS:

(

ðA:5Þ

The domain and its characteristic function are usually denoted

with the same symbol.

In general, the characteristic function of domain S is obtained

by applying Boolean operations of intersection \, union [ and

absolute complement –, respectively, to subdomains Si, where a

characteristic function Si for each subdomain Si can be defined by

Eq. (A.5), when S is substituted by Si. Because SiAB2{0,1}, that is, to

the space of Boolean functions, then Si may be used as an

argument of the Boolean function F

S¼ FðS1,S2,. . .,SnÞ, ðA:6Þ

which is the characteristic function of domain S. It is obvious that

domain S is determined not only by the shape of subdomains Si,

but also by the type of Boolean functions involved in F (union,

intersection and absolute complement).

As next step in the determination of O, the functions Zi are
introduced as the continuous analog of the characteristic func-

tions Si. They may be lines (surfaces) described by known

equations and are defined as

Ziðx,yÞ40 8ðx,yÞASi,

Ziðx,yÞo0 8ðx,yÞ=2Si,

Ziðx,yÞ ¼ 0 8ðx,yÞA@Si:

ðA:7Þ

Let us assume that domain S is defined by the characteristic

function (two-valued predicate) represented in Eq. (A.6), where

F(S1,y,Sn) is a known Boolean function. Then, the inequality
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f(Z1,y,Zn)Z0 describes domain S, where O¼ f(Z1,Z2,y,Zn) is an

R–function that corresponds to the Boolean function F(S1,y,Sn).

To construct the function O(x,y), it is sufficient to perform a

formal substitution of the characteristic function Si with the

continuous function Zi and the Boolean operations Si \ Sj, Si [

Sj, Si (intersection, union, absolute complement) with the corre-

sponding symbols of R–operations, Zi4aZj , Zi3aZj, �Zi. Following

this substitution, the continuous function O of the domain S is

given by

O¼ f ðZ1,Z2,. . .,ZnÞ: ðA:8Þ
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