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Abstract 

 

 

A study has been done on different methods to solve the linear and non-linear problems with 

single or multi degrees of freedom structures. To do that direct time integration methods are 

used to solve the dynamic equilibrium equations. It has been tried to perform general 

methods to apply in most structures. In this thesis structures are made of cables and bars but 

the solution methods which is presented can be applied for any structure, and to utilize those 

implicit and explicit methods for all structures it is needed to know the tangent stiffness 

matrix and mass matrix for the structure. Then, it would be possible to analyze the dynamic 

response of structures under general loads and by general it can be understood that by 

application of arbitrary forces on different nodes of structure, the method generates result 

based on applied forces. It is crucial to get the right tangent stiffness matrix and mass matrix 

to know the dynamic equation in each node. Hence, the method will then work correctly to 

solve the dynamic problems. More, a parametric study has been done to see the effects of 

times step, stiffness of elements, length of elements, and other mechanical properties of 

elements, and this parametric study enables one to produce new results by changing every 

parameter. Also, continuation of the study on x-frame tensegrity has been done by solving 

them to check out dynamic response of structure with proposed methods of this thesis. 

Moreover, a method is presented to use the codes of solver methods of current thesis to apply 

them for other structures. Hence, as a future work, one can combine the codes of structures 

and solver codes of this thesis for dynamic response of structure.  In fact the main effort of 

this thesis is on presenting different methods to solve various structures. 
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Chapter 1: Introduction 

 
1.1. Background 

Dynamic response of structures is interesting for structural engineers and has high importance 

among earthquake engineers. Actually, the present study is continuation of response of 

structure in dynamics. First, a structure is presented, and that would be any kind of structure, 

one can indicate a structure like tensegrity that is the main structure in this thesis, but that can 

be any kind of structure to consider it for earthquake response. Since the subject of this 

project is non-linear vibration of tensegrity structures, the word of earthquake suits the 

meaning of whole project for a structure like tensegrity. Tensegrities are structures made of 

cables and bars which have specific usages like creating sculptures, domes and so on. In 

addition, tensegrity structures has low stiffness but studying this kind of structures enables 

one to calculate more complex structures in future because the procedure of calculations are 

the same just the elements of structures can change like changing bar to beam and so on. 

Apart from low stiffness of tensegrity structures, there are some topics like slackening of 

cables in structure which can be important and that must be taken into account.  

The reason for choosing a tensegrity structure is the experiences in this topic at the 

Department of Mechanics of Royal institute of Technology. As a result, a study on different 

methods of solving non-linear problems has been done to meet the expectations of this 

project.  

To solve the dynamics of tensegrity structures, direct time integration methods were used. 

Implicit and explicit method like Newmark’s method and central difference method are 
performed as most well know methods of direct time integration methods to solve tensegrity 

structures. Direct time integration methods have been used widely to capture dynamic 

response of structures. Most recently, Irfan Baig and Grätsch (2009) took a survey on 

recommendations for practical use of numerical methods for linear and non-linear dynamics 

but most of their research was on single degree of freedom systems. So, this thesis is a 

continuation their research on multi degrees of freedom systems to solve with numerical 

methods.  

Moreover, for tensegrity structures, to solve with direct time integration methods, it is 

important whether they are prestressed or not. For structure to be stable they should be 

prestressed and in both cases they can be analyzed with direct time integration methods. 

However, for obtaining stiffness of prestressed frameworks, Guest (2006) has presented a 

unifying approach to get the stiffness matrix of tensegrity structure. Furthermore, to prestress 

a tensegrity structure, Pellegrino and Calladine (1985) introduced a matrix analysis of 
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indeterminate frameworks, then Pellegrino (1993) presented SVD
1
 method to analyze 

equilibrium matrix of tensegrity structure. Most importantly, Géradin and Rixen (1994) 

published a book as Mechanical Vibration which is the main reference of this project as it 

includes algorithms which are used to solve for the dynamic response of structures. Also, 

Murakami (2000) has done a research on static and dynamic analysis of tensegrity structures 

with linearized Lagrangian equations. Furthermore, Tran and Lee (2010) introduced a method 

for initial self-stress design of tensegrity structure. Moreover, Oliveto and Siavaselvan (2011) 

performed dynamic analysis of tensegrity structure in the small displacement regime.  

In fact, there were many efforts to understand details of tensegrity structures in static and 

dynamic cases. Most efforts have been on prestressing, form-finding, statical and dynamical 

analysis of tensegrity structures. In this thesis, it is tried to find an applicable method to solve 

the tensegrity structures in the dynamic cases. So, the main effort of this thesis is finding a 

general method to solve the tensegrity structures to find dynamic responses with given 

external load. 

As a matter of fact, by taking previous efforts into account, it can be assumed that a 

tensegrity structure that could be or not to be prestressed, must be solved for dynamic cases. 

Then, direct time integration methods will be presented to solve tensegrity structures in 

dynamic cases. 

1.2. Motivation 

Capturing the response of tensegrity structures with different modules is the main motivation 

of this project but as it has been pointed out before if one is successful to analyze the dynamic 

behavior of tensegrity structure, it will be possible to perform the solution methods to more 

complex and complicated structures. In that case that is really crucial how to record the 

tangent stiffness matrix and mass matrix of complex structures. 

1.3. Objectives 

The objective of this thesis is to develop a numerical procedure for the dynamic analysis of 

tensegrity structures which are made of cables and trusses which are subjected to random 

external forces. The equations of motions of structure are derived from standard method of 

structural dynamics. Moreover, the study has been done to see the effects of time step, 

stiffness of bars, stiffness of cables, slackening of cables, and initial conditions of structure. 

Since, that is a parametric study; the effect of each parameter can be captured in the final 

result of the dynamic analysis of structure. 

                                                 
1 Singular Value Decomposition 
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1.4. Overview  

The solution of tensegrity structures is achieved by usage of implicit or explicit methods for 

tensegrity structures in dynamic problems. The implicit and explicit methods which have 

been used in this thesis are written and developed to calculate dynamic responses.  

In the second chapter, different points in matter of tensegrity are presented. In the third 

chapter, direct time integration methods have been introduced. Implicit and explicit methods 

with details of them are presented in third the chapter. More, in the fourth chapter, the 

problems of the study are presented. Actually, problems are defined to find out the 

differences between methods to solve the problems in single or multi degrees of freedom 

structures. Then, results are presented in fifth chapter. Finally, last two chapters are devoted 

to discussion and conclusions to find the final outcomes of this project. 
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Chapter 2: Tensegrity 

 
2.1. Definition 

There are many studies about concept of tensegrity. Tensegrity structures are spatial 

structural systems composed of struts and cables with pin-jointed connections, and their 

stability comes from the self-stress state in their tensioned and compressed members. 

Tensegrity structures can be used in modern structural engineering. To find a widely 

acceptable definition for tensegrity, the definition of Motro is more respectable which says: 

“A tensegrity is a system in stable self-equilibrated state comprising a discontinuous set of 

compressed components inside a continuum of tensioned components”. [1]  

One of the main requirements for a structure to be categorized as a tensegrity structure is that 

its initial prestressed configuration must be in stable equilibrium in absence of external 

forces. [2] 

2.2. Application 

These kinds of structures denoted tensegrity are interesting among architects and engineers. 

Tensegrity structures in most cases are very light and that is an important property to be used 

in space. Specially, if the structure inherited the deployability, that would be interesting to be 

used in space structures.  

Furthermore, stiffness of tensegrity structures is not great, and because of not being stiff, they 

have special usages. More, structural damping is low for this kind of structure, and that would 

lead to increase sensitivity with dynamic loading. 

The stability of tensegrity structures should be supported by self-stress of tensions and 

compressions in elements of structure. Moreover, non-linear behavior which comes from 

geometry non-linearity is expected when dynamic loading performed on the structure.   

2.3. Form-finding 

Form-finding is an expression which mostly used when subject is the tensegrity, and it is a 

procedure of finding self-stress state in whole structure of tensegrity and how to join different 

elements of structure together.  

Also, the procedures of defining forces in each element of structure are called designing of 

self-stress for initial condition. As it has mentioned before, in tensegrity, cables are used for 

tensions and bars to take compression forces. [3] 

Every structure made of a module or it can be multimodular. The modules of tensegrity can 

be x-module, T3 module or other types. 
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2.4. Equilibrium matrix 

Moreover, to solve the initial self-stress of tensegrity structures, the equilibrium matrix A 

must be defined. That can be a square matrix but in most cases it is a rectangular matrix and 

that can be obtained from the equilibrium equation:      
Where   is generalized stresses and l is the vector of generalized loads. In general, the 

coefficients of the equilibrium matrix are functions of the geometrical configuration of the 

assembly. The dimension of this matrix is very important by knowing the number of rows 

and columns,    and    can be defined. More, the size of l is   but the size of   is   . 

By defining the rank r of the equilibrium matrix, the key parameters which show behavior of 

structure can be written as:               

By deriving the parameters of m and s other properties of structure can be found in Table 2-1. 

The values of m and s do not have high importance but it is essential to know that those 

parameters are equal to zero or not.  

Then, to solve the formulation of initial self-equilibrium equations that must be noted that 

external and self-weight of the structure can be neglected. So, to solve the system, singular 

value decomposition (SVD) of equilibrium matrix is used. By using SVD, the equilibrium 

matrix will be changed to what can be seen below: 

       

Where U is an orthogonal matrix with dimension of       Likewise, W is an orthogonal 

matrix with dimension of       , and V is a matrix with dimension of        .  

More, to choose the rank of the equilibrium matrix it must be noted that: 
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Type Static properties 
Kinematic 

properties 

Statically 

determinate? 

Kinematically 

determinate? 

I s=0 m=0 
Statically 

determinate 

Kinematically 

determinate 

II s=0 m>0 
Statically 

determinate 

Kinematically 

indeterminate 

III s>0 m=0 
Statically 

indeterminate 

Kinematically 

indeterminate 

IV s>0 m>0 
Statically 

indeterminate 

Kinematically 

indeterminate 

Table 2-1: Classifications of structural assemblies [4] 

Also, the V matrix has r non-zero elements on the leading diagonal, and the rest of the 

elements of matrix are zero. Hence, the V matrix contains up to             singular values. 

[5, 6] 

To analyze static and dynamic responses of pre-stressed tensegrity structures, it is extremely 

important to compute infinitesimal mechanisms of tensegrity modules and to interpret global 

deformation modes of tensegrity structures in terms of infinitesimal mechanisms modes. [7] 

 

2.5. Tangent stiffness matrix 

After finding the equilibrium matrix, tangent stiffness of whole structure can be specified as:     ̂     

Where   is the equilibrium matrix for the whole structure,  ̂ is a diagonal matrix of modified 

axial stiffness, and   is the stress matrix for the entire structure. The tangent stiffness matrix 

consist of material stiffness and geometric stiffness which in first one, the structure is 

maintained in its initial geometry, and second one is about the time when stiffness changed 

because of reorientation of stressed members. Also, due to increase in axial forces. 

It is crucial to know that when external load and self-weight are ignored, the tensegrity does 

not need any fixed node, and geometry of the tensegrity structure can be defined by position 

of nodes, and the whole system can be assumed as free-standing, forming a rigid body in 

space.[8] 
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𝒖𝟐 𝒖𝟏 

𝑳 

2.6. Mass matrix 

For a linear bar element shown below 

 

 

 

Where the length is L, cross sectional area A, and the density  . A linear displacement 

function is assumed in the X direction as:              

The number of coefficients in the displacement function    is equal to the number of degrees 

of freedom associated with the element. Moreover, the displacement function in terms of 

shape function can be defined as below:   [       ]=,    -                 

The typical method to derive the consistent mass matrix is the principle of virtual work. By 

substitution of shape functions in the above equation, mass matrix equation gives: 

  ∫  [      ]  *          +      ∫ [      ] 
 *          +      ∫ [                                              ] 

  

Then, by evaluating the above integral, consistent mass matrix is computed as follow: 

      *    + 
By assuming that the length of bar is    and discretizing the bar into two elements with 

length   for each element, lumped mass matrix is defined as below: 

 

 

        *    +         *    + 
𝑳 𝑳 

𝟏 𝟐 𝟑 𝒆𝟏 𝒆𝟐 
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Then the global lumped mass matrix is defined as: 

      [         ] 
In general, the result of consistent mass matrix is closer to available analytical and 

experimental results than those which use the lumped mass matrix.  Surprisingly, for bar 

elements, the results of lumped mass matrix are as good as or even better than the result of 

those are used consistent mass matrix. However, from the mathematical point of view, 

consistent mass matrix approach yield an upper bound on the frequencies but for lumped 

mass matrix approach has no mathematical proof of boundless. 

As a general rule, the construction of the structure mass matrix   largely parallels that of 

tangent stiffness matrix  . Mass matrices for individual elements are formed in local 

coordinates then transformed to global, and merged into the tangent mass matrix following 

exactly the same techniques used for  . 

An important difference with the stiffness matrix is the possibility of using a diagonal mass 

matrix based on direct lumping. More, a lumped mass matrix entails significant 

computational advantages for calculations of     [20]. 

Mass matrix must satisfy special conditions and it can be used for verification and debugging. 

So, a mass matrix should have properties as follow:  

 Matrix symmetry, which means           . 
 Physical symmetry must be reflected in mass matrix. 

 Conservation. At a minimum, total element mass must be preserved. This is easily 

verified by applying a uniform translational velocity and checking that linear 

momentum is conserved. 

 Positivity, which shows   must be nonnegative. Also, for any nonzero velocity 

field defined by the node values  ̇      ̇      ̇   . 

Also, like the tangent stiffness matrix, mass matrices are developed in a local or element 

frame, and they must be globalized before assembling to tangent mass matrix. The 

transformation applied as follow:           ̅̅ ̅̅    

Where   ̅̅ ̅̅  is element’s mass matrix, referred to the local frame, and    is the local to global 

displacement transformation matrix, and it is derived from transformation which is used for 

stiffness globalization. Moreover, for stiffness matrices,    is often rectangular if the local 
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stiffness has lower dimensionality. Globalization to    and    involves application of     and     transformation matrices. 

It is important to know that unlike stiffness, translational masses never vanish. So, 

translational mass cannot be zero. Conclusion is that all translational masses must be retained 

in the local mass matrix.  

For a two node bar element which has two degrees of freedom each node, the local consistent 

and lumped mass matrices are shown below: 

  ̅̅ ̅̅       [                ]    ̅̅ ̅̅       [                ] 
Then by globalizing the local consistent and mass matrices by transformation matrix                 ̅̅ ̅̅     the results are       ̅̅ ̅̅   and       ̅̅ ̅̅  . Hence, the mass matrices 

repeat.  

           ̅̅ ̅̅                                        ̅̅ ̅̅   

And for consistent matrix is proved as can be seen below: 

  ̅̅ ̅̅   [ ̃    ̃] ,    [                ] ,  and  ̃      *    +     ,       ,        

    [                ] [ ̃    ̃] [                ]  [        ̃         ̃        ̃         ̃]  [ ̃    ̃]    ̅̅ ̅̅   

 

The same conclusion holds for 3D. So, the contents and order of  ̃ are irrelevant to the result. 

Hence, the following generalization follows [20]. 
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The repetition rule can be expected to fail in the following scenarios: 

 The element has non-translational degrees of freedoms. 

 The mass blocks are different in content or size. This occurs if different models are 

used in different directions. Examples are furnished by beam-column, element with 

curved sides or faces, and shell elements. 

 Nodes are referred to different coordinate frames in the global system. This can 

happen if certain nodes are referred to special frames to facilitate the application of 

boundary conditions. 
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Chapter3: Direct time integration method 

 
3.1. Definition 

To solve the structural dynamic equations of motion for arbitrary excitation, two methods are 

useful; modal superposition techniques and direct time-integration methods.   The modal 

superposition technique is based on results from linear modal analysis, and consists of 

expressing the dynamic response in an eigenmode series expansion, and that is an effective 

method since the fundamental modes predominate in the response but for a high number of 

modes, this technique should be replaced by direct integration method.   

The most general approach for the solution of the dynamic response of structural systems is 

the direct numerical integration of the dynamic equilibrium. Direct time integration 

techniques are not limited to the linear case as they can be easily extended to non-linear 

systems and this method makes it possible to use for high frequency components. In using 

direct time integration, the attempt is to satisfy dynamic equilibrium at discrete points in time, 

and to do that, most methods use equal time steps for each time interval. All methods are 

classified as implicit or explicit direct integration method.  

In general, direct multistep integration methods for first order systems of the form  ̇     

can be stated as: 

     ∑          
    ∑   ̇      

    

Where           is the computational time step,          and  

     *     ̇   + 
is the state vector which is calculated at time      from the state vector at the m preceding 

times, from their derivatives and from the derivatives of       itself. 

     leads to an implicit scheme which is a scheme where the evaluation       

requires the solution of system of equations. Actually, the state vector at time       is 

a function of its own time derivative. So, for the non-linear case the method will be 

iterative. Actually, an implicit method attempt to satisfy the differential equation at 

time t from the solution at time     . 
This method requires the solution of a set of linear equation at each time step, and larger time 

steps can be used.  
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     corresponds to an explicit scheme which is a scheme where the evaluation of      does not require the solution of any system of equations and instead can be 

concluded from the results of previous time steps. In fact, explicit methods use the 

differential equation at time t to predict solution at time     , and very small time 

steps are needed. An explicit method is conditionally stable with respect to size of 

time step. 

In fact, explicit methods do not involve the solution of linear equations at each step, and these 

methods use differential equation at time    to predict solution at time     . In reality for 

real structures with stiff elements, a very small time step is needed to reach a stable solution. 

Therefore, all explicit methods are conditionally stable and the stability depends on the 

chosen time step. 

On the other hand, implicit methods struggle to satisfy the differential equation at time   

when at time      the solution is found. Hence, at each time step, implicit methods require 

solution of a set of linear equations, and larger time steps can be used. Moreover, these 

methods can be conditionally or unconditionally stable. 

There are many accurate, higher orders, multi-step methods for numerical solution of 

differential equations, which are assuming that higher derivatives are smooth but the second 

derivative of displacement, which is acceleration, is not a smooth function, and that cause 

non-linearity of solutions for structures. So, the conclusion is that single-step, implicit, 

unconditional stable methods can be used to solve practical structures. 

For implicit method, an interesting and useful method is the Newmark method that can be 

called Newmark family of methods, and for the explicit one, an example is Central difference 

method. 

In order to obtain an effective solution of a dynamic response, it is important to choose an 

appropriate time integration scheme. This choice depends on the finite element idealization, 

which in turn depends on the actual physical problem to be analyzed. It follows therefore that 

the selection of an appropriate finite element idealization of a problem and the choice of an 

effective integration scheme for the response solution are closely related and must be 

considered together. The finite element model and time integration schemes are chosen 

differently depending on whether a structural dynamic or a wave propagation problem is 

solved. 

For structural dynamics, the basic consideration in the selection of an appropriate finite 

element model of a structural dynamics problem is that only the lowest modes of a physical 

system are being excited by the load vector. There is no need to represent the higher 
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frequencies of the actual physical system accurately in the finite element system because the 

dynamic response contribution in these frequencies is negligible. 

The observation that the use of higher order elements can be effective with implicit time 

integration in the analysis of structural dynamics problems is consistent with the fact that 

higher order elements have generally been found to be efficient in static analysis, and 

structural dynamics problems can be thought of as static problems including inertia effects. If 

the finite element idealization consists of many elements it can be more efficient to use 

explicit time integration with a lumped mass matrix in which case no effective matrix is 

assembled and triangularized but a much smaller time step must generally be used in the 

solution. [9] 

An important observation was that the cost of a direct integration analysis is directly 

proportional to the number of time steps required for solution. [10] 

 

 

3.2. Explicit methods 

3.2.1. Central difference method 

This method is an explicit method, and this method is Newark’s method with       

and    . So, two main equations of Newark’s method change to following equations by 
assumption of             : 

  ̇     ̇          ̈   ̈     
               ̇         ̈  

To write an algorithm for Central difference method, half-time interval is calculated as: 

               

Consequently, for a constant time step h, acceleration is calculated as: 

  ̈                     

Also, velocity at half-time interval is showed below: 
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  ̇      ̇ (     )                    
 

So, acceleration based on half-time is written as: 

  ̈        ( ̇      ̇    ) 

The stability domain is such        where the highest frequency in the model is    . This 

stability condition named as Courant condition, and     is taken as the highest of the 

eigenfrequencies of the individual elements since it corresponds to an upper bound to the 

eigenfrequencies of the complete model. 

Central difference method is generally much less computationally expensive and becomes 

almost trivial when the so-called lumped mass finite element formulation is used. The explicit 

methods are very effective at handling various non-linearities. Moreover, in implicit methods, 

non-linearity generally causes some residual imbalance between internal and external forces 

which is iterated to equilibrium because of using iterations in Newton-Raphson procedures. 

There are some advantages for explicit methods like simplicity and directness but 

disadvantages for stability and accuracy required very small time step which in implicit the 

time step can be large in comparison with explicit methods and they are stable. After all, here 

there are some advantages and disadvantages for explicit methods: 

Advantages for explicit methods [21]: 

 Robustness and efficient 

 Useful for more advanced materials 

 Directness of reaching to answer 

Disadvantages: 

 Small time step required for calculation 

 Expensive about computational speed 

 Solution can diverge  
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In the picture below, flowchart of the central difference method can be seen: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Flowchart for central difference method, [9]. 
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For single degree of freedom systems the central difference method is most accurate, and the 

linear acceleration method is more accurate than the average acceleration. If only single 

degree of freedom systems are to be integrated there is no need to use an approximated 

method. It appears that the modified average acceleration method with addition of minimum 

proportional damping is a general procedure that can be used for dynamic analyses of all 

structural systems. For earthquake analysis of linear structures, it should be noted that the 

direct integration of the dynamic equilibrium equations is normally not numerically efficient 

in comparison with superposition method using LDR vectors. [22] 

The advantage of using Newmark’s method over the central difference method are that 

Newmark’s method can be made unconditionally stable if       and      . Also, larger 

time steps can be used, and the results will be better and more accurate.  

From the computational point of view, central difference method can be computationally 

more efficient but to get more accuracy it is recommended to use accurate explicit methods 

like Runge-Kutta method which is approximating the slope of the secant of the solution, from 

one time step to the next one. However the Runge-Kutta method can be four times more 

expensive than central difference method for a given time step. 

However, for multi degrees of freedom systems the central difference method will not be the 

method of choice. Besides, for multi degrees of freedom systems, the choice of a time 

integration scheme depends on the nature of the problem. In cases which most part of the 

solution lies on lower modes, the Newmark method is generally preferred, because larger 

time step can be used. Unlikely, for problems like crash analysis which the solution lies on 

higher modes, explicit methods are useful. [23] 

 

3.3. Implicit methods 

3.3.1. Newmark family of methods 

The Newmark method is a single-step direct integration method. In 1959 Newmark presented 

a family of single-step direct integration method to solve structural dynamic problems. It was 

originally introduced for solution of second order differential equation arising from dynamic 

equilibrium in structural dynamics. In past 53 years, the method has been applied to dynamic 

problems to solve many practical engineering structures, and it has been modified and 
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improved by many researchers. However, the versatility of Newmark’s method is evidenced 
by its adaptation in many commercial available computer programs. 

Newmark method is by far the most popular tool for direct integration of deterministic 

dynamical systems. [11] 

To illustrate the use of Newark’s method consider the solution of the linear dynamic 
equilibrium equations as:   ̈    ̇         
For linear system [ ] [ ] and [ ] are independent of time and therefore remain unchanged 

during the integration procedure. 

The direct use of Taylor’s series provides a rigorous approach like this: 

             ̇          ̈       

 ̇   ̇         ̈          ⃛       

Newmark truncated equations like this: 

                         ̇          ̈          ⃛ 

  ̇   ̇         ̈           ⃛ 

By assumption of linear acceleration within the time step  ⃛ is: 

  ⃛    ̈   ̈        

Finally, standard form of Newmark’s equation becomes: 

              ̇     (    )    ̈          ̈    ̇   ̇              ̈           ̈  
So, for each DOF (Degree Of Freedom) of structural systems, the Newmark’s method is 

required iteratively. [9, 12, 13]  

3.3.1.1. Newmark’s method for linear problems  

For linear systems, iteration matrix is associated as: 
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[           ] 
In the flowchart below the Newmark method is introduced for linear systems: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Flowchart of Newmark’s method for linear cases [9]. 

The traditional Newmark family might exhibit deficiencies in the energy conservation and 

hence numerical stability when it is applied to non-linear transient problems. [14] 
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3.3.1.2. Newmark’s method for non-linear problem 

For the solution of non-linear equation of motion, direct numerical integration methods are 

generally recommended. The basic Newmark constant acceleration method can be extended 

to non-linear dynamic analysis which requires that iteration should be performed at each time 

step in order to satisfy equilibrium. Furthermore, the incremental stiffness matrix should be 

performed and triangularized at each iteration or selective points in time. To minimize the 

computational requirements, various kind of numerical tricks, including element by element 

methods, have been developed. Moreover, in some cases, the triangularization of the effective 

incremental stiffness matrix can be avoided by introduction of iterative solution method. In 

fact, many non-linear problems admit solutions by linear techniques by enlarging the domain 

of the problem. [17] In this section, the solution of the non-linear dynamic equations will be 

discussed without details of actual nature of non-linearities that can be geometric, material or 

other. So, the equation of motion in non-linear case can be defined as follow by assumption 

that    and  ̇  are given: 

  ̈       ̇         
The assumption is that the inertia coefficients do not depend on the configuration, and 

actually it means that the reference state is fixed and the motion is in Cartesian coordinates. 

Then, to start with implicit method in non-linear cases, the residual vector should be 

identified as r and can be written as follow: 

       ̈         ̇            

Where equations of Newmark’s method can be rewritten as follow: 

 ̈                  ∗   
 ̇     ̇   ∗        ̈             ∗   

Then predictors are defined below: 

 ̈      
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 ̇   ∗   ̇         ̈  

    ∗       ̇  (    )    ̈  

Residual vector is represented in terms of      as          . 

The iteration matrix is written by: 

                    

   is the tangent stiffness matrix,   is tangent damping matrix, and   is mass matrix. The 

non-linear system is solved by Newton-Raphson iteration method. Correction in time step k 

of time step n+1 is calculated by solving the linearized equation 

       (     ) 

 Also the corrections for acceleration and velocity is calculated as follow 

  ̈          

  ̇         

The Newmark constant acceleration method, with the addition of very small amount of 

stiffness proportional damping, is recommended for dynamic analysis of non-linear structural 

systems. It should be noted that in all direct integration methods, it is important to make sure 

that the stiffness proportional damping does not eliminate important high-frequency response. 

However, when problem is a non-linear one, one cannot prove that any one method will 

always converge, and the amount of error in conservation of energy for every solution must 

be checked. More, that is a predictor-corrector method which the method predict then if it did 

not converge, the method would correct the prediction. [9] 

In Figure 3-3, implicit integration of the response for a non-linear system can be seen. 
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Figure 3-3: Flowchart of Newmark’s method for non-linear cases [9] 

 

To explain the above algorithm, it should be noted that for each time step, iteration start from 

a perdition of displacement, velocity and acceleration which is zero. The reason to choose 

prediction of acceleration as zero is fairly stable iteration procedure, and to reach 
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convergence the Newton-Raphson is used. Moreover, for each time step, if the prediction was 

not correct, Newton-Raphson iteration would occur to reach the convergence. So, in the non-

linear case, the time step drives the accuracy of integration, and plays the main role in 

stability of iteration process. Hence, the size of time step is a crucial issue. 

3.3.1.3. Stability of Newmark’s method 

For zero damping this method is conditionally stable if: 

         ,       and          √     

And      is the maximum frequency in structure of system, and this method is 

unconditionally stable if: 

        

When   is larger than 
   errors are introduced. These errors are associated with numerical 

damping and period elongation. 

Also, for big structures with many degrees of freedom, the time step can be written as below:           √     

In real structures, computer models normally contain a large number of periods that are 

smaller than the integration time step. So, it is better to select a numerical integration method 

that is unconditional for all time steps.      is the minimum time period of structure. [22] 

The accuracy of the numerical response can be estimated by evaluating the variation of the 

energies. [19] 

3.4. Selection of direct integration method 

There are many different direct numerical integration methods, and the difference is using 

different integration parameters. Some of them can be seen in Table 3-1: 
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Method     Amplitude error         Accuracy 

Central difference     0 0        

Excellent for small    

Unstable for large    
Linear acceleration         0        

Very good for small    
Unstable for large    

Average acceleration         0   

Good for small     

No energy dissipation 

Fox & Godwin          0 ------ ------- 

Table 3-1: Summary of direct time integration methods 

The Fox & Godwin algorithm leads to a periodicity error of the third order, but is 

conditionally stable, and the average constant acceleration algorithm is the best 

unconditionally stable method. 

In Newmark family of methods, the average acceleration method is the most robust method 

since it is unconditionally stable, and it can be used for step by step dynamic analysis of large 

complex structural systems which has many degrees of freedom and large number of high 

frequencies and short periods. Also, the average acceleration method can be used to solve 

linear and non-linear problems. More, calculation of tangent stiffness matrix and forces from 

displacements at each time step can be quite complicated for non-linear multi degrees of 

freedom systems. However, there is a problem in performing average acceleration method, 

and the problem is short periods which are smaller than the time step, oscillate indefinitely 

after they are excited, and the oscillation in higher modes can be reduced by addition of 

stiffness proportional damping.[15] 

The choice of method for time-history analysis is strongly problem-dependent. The efficiency 

of a given method depends on whether the problem is of a wave propagation or a structural 

dynamics type, the time span for which analysis is required, whether response is linear or 

non-linear, and the topology of the finite element mesh. General speaking, direct integration 

methods are preferably for non-linear problems. [13] 
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Chapter4: Problems of study 

 
4.1. Problem with one degree of freedom 

4.1.1. Linear mass-spring problem 

4.1.1.1. Linear mass-spring system to solve with central difference method 

This problem is a single degree of freedom, spring- mass system. To start, in the figure below 

a spring mass system is shown with the one dimensional spring mass. 

 

 
Figure 4-1: SDOF problem of spring-mass system to solve with central difference 

method                                     [  ] 
 To solve this problem, first the Central difference method is used. Note that                  and after the time of       the      becomes zero. As it was mentioned in the 

part of introducing central difference method in 3.2.1,    and  ̇  must be known, and both of 

them are zero in the current example. So, by implementing the central difference method for 

the current single degree of freedom problem, it can be solved to get displacement, velocity, 

and acceleration of the system.  

To see the result, a graph has plotted in 5.1.1.1 and 5.1.1.2 in 5s to check out how the 

displacement, velocity, and acceleration of the system are changed. 

4.1.1.2. Linear mass-spring system to solve with Newmark’s method 

This problem is the same as previous problem but the parameters of mass, stiffness and force 

has changed as you see in Figure 4-2: 

 

K=100 lb/in 𝐹 𝑡  𝑀𝑎𝑠𝑠 
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Figure 4-2: SDOF problem of spring-mass system to solve with Newmark’s method                                       [  ]                                            [  ] 
After 2 seconds the      is zero. Like, the previous problem    and  ̇  are zero, and                        . 

4.2. Problem with two degrees of freedom 

4.2.1. Elastic pendulum 

4.2.1.1. Elastic spring pendulum 

 In this section a spring pendulum will be discussed which is fixed on one of its nodes. The 

problem is defined as it can be seen in the figure below. 

 

 

 

Figure 4-3: Elastic spring pendulum system 

It has two degrees of freedom with an absolute coordinates (x,y). Moreover,    is the initial 

length of the pendulum, and   √     . By writing the equations of motion, two 

equations are obtained as follow: 

K=70 lb/in 𝐹 𝑡  𝑀𝑎𝑠𝑠 

L 

y 

x 
mg 

K 
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  ̈                 

  ̈              

These equations are non-linear equations because of the length expression. Also, tangent 

stiffness matrix is given as below: 

   [  
                                             ]  

 
 

Additionally, some other parameters are given like      ,          ,          ,        ,            ,             ,      ,          , and  ̇   ̇     . 
By writing down the equations of motion in matrix form, stiffness matrix can be found as 

follow: 

*    + [ ̈ ̈]  [                  ] *  +  *   +    

This problem is solved with two methods of central difference method and Newmark’s 
method and they can be seen in the chapter of results. 

 

 

4.2.1.2. Elastic bar pendulum 

In this section, to show that the codes of implicit and explicit methods are versatile codes, the 

previous problem is redesigned by changing a stiff bar instead of loose spring. In point of 

fact, a stiff bar is used to check out that the code works for linear problems or not. This 

problem is solved with both central difference and Newmark’s method in 5.2.1.2. In figure 

below, elastic bar pendulum is shown. 
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Figure 4-4: The elastic bar pendulum system 

The only difference of current problem with previous one is that stiffness of spring (k ) 

changed with stiffness of bar which is     . So, the dynamic equations can be seen below: 

  ̈                   

  ̈                

Moreover, the initial conditions are defined as follow:      ,       , and  ̇   ̇    . 

All the rest of parameters are the same as parameters in problem 4.2.1.1 just k is changed to      except h which is time step. By choosing E=204     and A=19.6         , the 

problem is solved. In this case EA/L is much higher than stiffness of spring that was k=30 

N/m in previous problem. To understand the differences, in current problem the spring 

stiffness of bar is about 4      but in last problem the stiffness of spring was just 30    . 

Hence, the differences are so crystal clear and linear behavior is expected.  

 

4.2.2. Problem of bar- spring 

4.2.2.1. Problem of low stiff bar- spring 

 There is a bar and spring in this problem. Initial length of bar and spring are given. To solve 

the current problem, equations of motions should be calculated. Then by writing the 

equations of motions in matrix form, the stiffness matrix can be found. There are two 

methods to solve this problem, implicit and explicit method. However, explicit methods are 
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x 
mg 

K 
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faster than implicit method. However, implicit methods are more accurate than explicit 

methods. The geometry of the problem is defined in the figure below. 

 

 

 

 

 

 

 

 

 

Figure 4-5: The elastic spring-bar system 

Dynamic equations of system can be written as below. 

  ̈                                       

  ̈                                    

Above equations can be written in matrix form as follow: 

*    + [ ̈ ̈]  [   
                                                       ]   

 *  +  [   
                                    ]   

    

Stiffness matrix can be obtained from above equation: 

  [                
           

                 
          

] 

Also    √                , and    √     .  Furthermore, initial displacement 

and velocity of current two degrees of freedom are given. Initial conditions can be defined as      ,          ,          ,             ,         ,           , 

Mass 

 𝑶𝟏 𝑶𝟐  
x 

y 
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            ,          ,      √  ⁄    ,                       and  ̇   ̇     . Results are available in 5.2.2.1. 

4.2.2.2. Problem of stiff bar- spring 

In this part, problem of 4.2.2.1 is solved but two differences applied. First, stiffness of bar 

increased dramatically (           ). Secondly, stiffness of spring increased and instead 

of spring stiffness, EA/L has used which is stiffness of cable (             ). In the 

current problem, mass is 100kg. In fact, stiff spring is assumed to behave like a cable. 

Equations of motion are available in 4.2.3.1. It must be noted that just stiffness of spring (k) 

has changed with stiffness of cable (EA/L). In fact one can call this system a stiff bar-cable. 

However, in comparison with problem of 4.2.2.1, three items have changed as follow: 

stiffness of bar changed, stiffness of spring has changed, and instead of k for stiffness of 

spring, EA/L is used. In fact both elements are bar elements but because of low stiffness of an 

element in comparison with another one, we called them bar-spring system. 

 

4.2.3. Problem of cable-bar 

4.2.3.1. Problem of cable-bar with slackening 

This problem is like problems of spring-bar but instead of using a spring, a cable has used. 

The EA of cable has been chosen to be one tenth of the bar’s EA, and the mass is 115kg. 

Then, the geometry of this problem is presented below: 

 

 

 

 

 

 

 

 

 

Figure 4-6: The elastic cable-bar system 

 

Mass 

 𝑶𝟏 𝑶𝟐  
x 

y 
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Dynamic equations can be written like below equations. 

  ̈                                                          

  ̈                                                       

It is important to know that stiffness of spring (k) in problem 4.2.2.1, has changed to         ⁄  . There is a difference between how spring and cable are performing in problems. 

As the natural behavior of cable, a slackening condition must be added to the problem, and 

that can be seen below: 

if Lcable<L0cable 
    EAcable=0; 
else      
    EAcable=real EA of cable; 
end 

 Additionally, the initial conditions are: m=115kg,          ,      √  ⁄    ,               ,                and  ̇   ̇   . Results are available in 5.2.3.1. 

 

4.2.3.2. Problem of cable-bar with slackening and snapping 

This problem is like the problem of 4.2.3.1 but the cable snaps after specific elongation. 

Then, after snapping, stiffness of cable becomes zero. Also, initial conditions are defined as: 

m=115kg,        ,        ,               ,                and  ̇     ⁄  ,  ̇   . More, it can be defined that length of cable changes to zero after slackening (braking 

or tearing down). These conditions are added to the code of last problem. 

    if Ls<L0s 
       EAcable=0; 

      
    else if Ls<Lsnapping 
       EAcable=10000; 

          
    else if Ls>=Lsnapping 
       EAcable=0; 
       Ls=0; 
         end 
        end 
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To solve the problem it is needed to put above conditions after Newton-Raphson iteration for 

each time step .The effect of snapping and slackening of the cable can be seen in 5.2.3.2. 

 

4.3. Problem with multi degrees of freedom 

4.3.1. Problem of x-frame tensegrity 

4.3.1.1. Problem of x-frame tensegrity without snapping 

By putting three modules of x-frame tensegrity [16] on top of each other a structure can be 

made. To start the analysis there are some point that should be noted. First, the structure is 

not prestressed. So, the cable slackening is immediate. Secondly, the slackening condition 

which says if length of cable smaller than initial length of cable was true, the effect of that 

one would be calculated in the file of structure to generate the right tangent stiffness matrix 

and right mass matrix. Also, the effect of slackening should be in the file of structure to 

modify the tangent stiffness matrix in a case that there is snapping in the structure which adds 

another condition to the structure. In tensegrity x-frame module, it has assumed that the initial 

length of cable is 1m and for bar is √    . More,              ,                 . 
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After all, the initial position of structure can be seen in the picture below: 

 

Figure 4-7: System of tensegrity made of three modules of x-frame 

This structure is solved with central difference method as the first method to solve it.  

 

4.3.1.2. Problem of x-frame tensegrity with snapping 

In this section a condition must be added to problem of 4.3.1.1 for snapping. In fact the 

condition says that if length of cable became more than specific length, then snapping would 

happen. So, it affects tangent stiffness matrix of whole structure. Then, the structure can be 

solved by direct time integration methods. Therefore, the only difference of current problem 

with 4.3.1.1 is choosing snapping length for cable. Lastly, results are available in 5.3.1.2. 
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Chapter 5: Results 

 
5.1. Results of one degree of freedom problems  

5.1.1. Results of first spring-mass problem 

5.1.1.1. Solution with central difference method 

To solve a linear problem with spring-mass which was shown in 4.1.1.1, first the Central 

difference method is used. Note that                  and after the time of       the      
is zero. As it was mentioned in the part of introducing central difference method,    and  ̇  

must be known, and both of them are zero in the current problem. So, by implementing the 

central difference method for the current problem that is a single degree of freedom problem, 

it can be solved to get displacement, velocity, and acceleration of the system. To see the 

result, a graph is plotted in the Figure 5-1 in 5s to check out how the displacement, velocity, 

and acceleration of the system are changed. 

 

Figure 5-1: Results of central difference method for 5 seconds 

 

5.1.1.2. Solution with exact method 

To verify the results of 5.1.1.1, this problem has solved with ODE45 in Matlab which gives a 

very exact solution. In the pictures below, two pictures can be seen. The left one is solution of 

central difference method, and the right one is the almost exact solution with ODE45 in 

Matlab.  
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(a)                                                                   (b) 

Figure 5-2: Comparison of results with two methods of central difference and exact 

method for 5 seconds 

It is clear that they are very similar. Also, to have a closer look, first 0.2s of this example is 

magnified in pictures below, and like the last two pictures, the left one is solution with central 

difference method and the right one is the exact solution of current problem. 

 

(a)                                                                   (b) 

Figure 5-3: Comparison of results with two methods of central difference and exact 

method for 0.2 seconds 

It should be included that the time step for central difference method in above pictures was 

.0.0s but in exact solutions it was 0.005s. By putting two graphs of different solutions 

together below graph will be obtained. 
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Figure 5-4: Comparison of results with two methods of central difference and exact 

method for 5 seconds 

It is clear that there is not any difference between results of exact method and central 

difference method. So, the error of central difference method is negligible. 

 

5.1.2. Results of second spring-mass problem 

5.1.2.1. Solution with Newmark’s method 

In this section, problem of 4.1.1.2 is solved. After 2 seconds the      is zero. Like, the 

problem of 4.1.1.1,    and  ̇  are zero, and                . Lastly, after solving the 

problem by Newmark’s method, displacement, velocity, and acceleration are calculated, as 
can be seen in the figure below. 
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Figure 5-5: Figure 5-1: Results of 4.1.1.2 for 2 seconds 

In those two problems that they have solved with two different methods, the parameters were 

different. In next section, results of a pendulum will be discussed, and it will be solved with 

both Newmark and central difference method. Then, it would be possible to compare the 

calculation time and time steps which have used to solve the problem when the same 

parameters chose to solve the problem. 

5.1.2.2. Solution with exact method  

To compare the results of Newmark’s method in 5.1.2.1, by exact method, ODE45 of Matlab 

has used to get the exact solution. In the pictures below, in left side, results of Newmark’s 
method, and on the right side the exact solution are comparable. 

 

(a)                                                                         (b) 

Figure 5-6: Results of 4.1.1.2 with two methods of central difference and exact method 

for 2 seconds 
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By putting these two plot on each other, the below graph will be obtained for displacement 

and velocity of solutions with Newmark and exact method.  

 

Figure 5-7: Comparison of results for 4.1.1.2 with two methods of central difference and 

exact method for 2 seconds 

It is crystal clear that the error between those methods is negligible, and it must be mentioned 

that time step in Newmark’s method was 0.01s, and in exact method was 0.0001s. More, the 

Matlab code of exact method which is written by ODE45 in Matlab is available in appendix. 

 

5.2. Results of two degrees of freedom problems  

5.2.1. Results of pendulum problems 

5.2.1.1. Results of spring pendulum problem 

Solution with Newmark’s method 

In this part, problem 4.2.1.1 is solved . Therefore, to solve this problem, first the Newmark’s 
method is performed with                 . Plus, the matlab code of this example can 

be found in appendix. The results are available in figures below: 
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                                      (a)                                                                   (b)                                                                          

                       
(c)                                                                   (d) 

      
(e)                                                                   (f) 

Figure 5-8: Results of spring pendulum by Newmark’s method 

So, there are some points at the time of solving such problems which will be point out. 

Furthermore, if stiffness matrix used instead of tangent stiffness matrix in calculation of 

correction   , by iteration matrix        , then the results will not change, but that will 

dramatically affect the number of Newton-Raphson calculation, especially in multi degrees of 
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freedom problems. More, as it was mentioned in the algorithm of Newmark’s method for 
non-linear problems, to calculate iteration matrix         , tangent stiffness matrix has used 

but if iteration matrix         , calculated with stiffness matrix which can be found in matrix 

of equation of motion, the final result would not change. Then, by using stiffness matrix to 

calculate iteration matrix the result would be the same but the number of Newton-Raphson 

iterations in each time step is changed, as consequence, and it is changed like the figure 

below: 

 

Figure 5-9: Number of Newton-Raphson iteration in each time step 

In fact, by using tangent stiffness matrix to calculate iteration matrix        , number of 

Newton-Raphson iterations are between 1-2 but by performing stiffness matrix to calculate 

iteration matrix, the number of Newton-Raphson iterations changed between 2-3. It means 

more calculation is required to get the same results. Furthermore, it really crucial to use 

tangent stiffness matrix to calculate the right correction when Newmark’s method is used to 
solve the problem, specially that can be a reason to save huge time for calculations of large 

structures. 

In the Figure 5-10, change in length of spring is presented. The changes in length of spring 

show that problem is highly non-linear.  
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Figure 5-10: Change in length of spring pendulum for 20 seconds with Newmark’s 
method 

As the next step, current problem with the same parameters will be solved with explicit 

method of central difference method with exactly the same time step. Resultantly, the output 

of both methods can be compared to understand the differences. 

 

Verification of results 

In this part, initial condition of    on 4.2.1.1 has changed to 1m, and resolved. It is also 

solved with transient dynamic analysis of ANSYS. To model the problem in ANSYS, 

element of COMBIN14 has used which is an element to model spring and damper together 

but the damping assigned as zero. Also, MASS21 element on ANSYS is performed to model 

the mass element at the end of spring. More, to apply the transient dynamic analysis of 

ANSYS, three options are available to choose for analysis consisting of full, reduced, and 

mode superposition method. The full method is the most accurate one among those three 

methods, and does not need to define master degrees of freedom, and that can capture all 

types of non-linearities. In this thesis, full method of transient dynamic analysis of ANSYS 

has been used to verify the results of written Matlab codes because the full method can obtain 

the most accurate result among three available methods in ANSYS. Moreover, to see more 

details of transient dynamic analysis of ANSYS, manual of this section must be followed. On 

the left hand side of Figure 5-11 results of Newmark’s method with written codes on Matlab 
and on the right hand side results of ANSYS are shown.  
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                                     (a)                                                                    (b)                                        

 

                                     (c)                                                                    (d)                                        

 

                                     (e)                                                                      (f)                                        
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                                     (g)                                                                     (h)             

Figure 5-11: Verification of Newmark’s method with transient dynamic analysis of 
ANSYS for a spring pendulum 

                         

That must be noted that in Figure 5-11 in section of (c) and (d) in y direction the results of 

ANSYS on section (d) has started from 0 to -2m but on part (c), the range started from 1m to 

-1m. In fact they are the same figures but ANSYS has used relative coordinate on part (d) of 

Figure 5-11, and one can makes sure that both pictures of (c) and (d) are the same as each 

other just (c) is plotted with real assigned numbers but (d) is plotted with relative coordinate 

system.  

 

Solution with central difference method 

In the current section, the problem of 4.2.1.1 is solved with central difference method. Again, 

the Matlab codes are available in the section of appendix. After, by solving that with central 

difference method, below figures are obtained: 
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                                    (a)                                                                       (b)                                                       

 

 

  

                                    (c)                                                                      (d)                                                                             

 

 

   (e) 

Figure 5-12: Results of spring pendulum by central difference method 

Thus, it can be seen that the results are somehow the same, and the time step in both methods 

were 0.03s. In central difference method, Newton-Raphson itereation is not used. When, 

Newmark’s method is used to solve the problem the elapsed time was 0.052596s but in case 

of using central difference method the time was 0.011891s. So, by performing the same time 

step, central difference method is more than four times faster than Newmark’s method in this 
special case. However, the trajectory is not exactly the same, and the accuracy of central 

difference method can increase by choosing smaller time steps which spend more time to 

calculate the displacements, velocities, and accelerations. Also, the change of length versus 

time is plotted in Figure 5-13. 
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Figure 5-13: Change in length of spring for 20 seconds with central difference method 

In the picture below, the difference in change of spring’s length versus time has been 

compared between solutions of Newmark’s method, and central difference method. It can be 
seen that in the first 10 seconds they are somehow the same but after 10 seconds they started 

to deviate from each other. 

 

Figure 5-14: Comparison of changes in length of spring pendulum with Newmark and 

central difference method 
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5.2.1.2. Results of bar pendulum problem 

Solution with Newmark’s method 

In current part, the solution for problem of 4.2.1.2 is accomplished. It is so important to 

choose a right time step to keep the stability of method. As it has mentioned in 3.3.1.3 of this 

report, it is written how to choose magnitude of time step:      ,       and          √     

Then, by calculating the time step based on above parameters, the time step should be used to 

solve current problem, and that must be smaller than 0.001s. Hence, to keep the stability of 

method, the time step must be smaller than 0.001s. So, the time step of 0.0008s is used to 

solve the current problem. After all, below results are obtained: 

 

 

                                        (a)                                                                  (b)                                                                             

 

 

                                      (c)                                                                     (d)                                                                             
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   (e) 

Figure 5-15: Results of bar pendulum with Newmark’s method 

To solve a problem with this method, number of Newton-Raphson iterations for convergence 

plays the main role in time of calculation. Actually, the role of fast convergence is more 

important that having low time step, but they are two different separated concepts. However, 

fast convergence is needed to solve the problems. In current problem, length of bar is 

changing between 0.9999 and 1.0001. To see exactly what is happening during the time of 

solution, the animation is provided and it can be found in the appendix. That is actually data 

visualization, and by changing parameters the animation would change. 

 

Verification of results 

In this section results of bar pendulum with Newmark’s method are verified with transient 

dynamic analysis of ANSYS. Again, the full method of transient dynamic analysis type of 

ANSYS has used to verify the results of Matlab codes for Newmark’s method. To model the 

bar pendulum on ANSYS, element of LINK180 has used as a bar element and element of 

MASS21 has used as element of mass at the end of bar. Figure 5-16, it can be seen that the 

results are exactly the same. 
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                                    (a)                                                                      (b)                                        

                            

 

                                    (c)                                                                      (d)                                        

 

                                    (e)                                                                      (f)                                        
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                                    (g)                                                                      (h)              

Figure 5-16: Verification of Newmark’s method with transient dynamic analysis of 

ANSYS for a stiff bar pendulum 

 

Again, that should be noted that ANSYS figures have been plotted based on relative 

coordinate system. So, you may find a difference of numbering system on y directions of part 

(c) and (d) of Figure 5-16, but they interpret the same plot in two different coordinate 

systems. Moreover, right side pictures of Figure5-16 are plotted from TimeHist Postpro of 

ANSYS.                       

 

Solution with central difference method 

Problem of 4.2.1.2 is solved with central difference method, and the same results with results 

of bar pendulum with Newmark’s method are reached. Actually, the results were exactly the 

same as previous section. It can be concluded that for linear problems, the results of 

Newmark’s method and central difference method are the same and deviation between 
methods happen, when the problem is highly non-linear. Moreover, the deviation can be more 

evident as time goes from starting time of solution. 

5.2.2. Results of bar-spring problems 

5.2.2.1. Results of low stiff bar-spring 

Solution with Newmark’s method 

In this part, problem of 4.2.2.1 is solved. Furthermore, initial displacement and velocity of 

current two degrees of freedom are given. Then, just import the values to Matlab codes of 

Newmark’s method and solve it which can be found in the appendix. Results are available in 
figures below: 
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                                      (a)                                                                     (b)                                                                         

 

                                      (c)                                                                      (d)                                                                             

 

   (e) 

Figure 5-17: Results of low stiff bar-spring with Newmark’s method 

A considerable point to solve this problem is how to define the initial parameters like initial 

position of mass, initial length of bar, initial length of spring, and values for stiffness of 
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spring and elastic modulus, and area of bar. Actually, in this example, the trajectory and the 

whole problem are totally non-linear which came from definition of magnitude of the 

spring’s stiffness and EA of bar element. Those have been chosen very low. In fact, the bar is 

changed to a very loose spring with the stiffness of spring is higher than stiffness of bar in 

this problem, and this cause a non-linear behavior.  In next section exactly the same 

parameters will be used to capture the differences in non-linear solution of this problem but 

with central difference method which is an explicit method.  

Solution with central difference method 

In this part, solution with central difference method, for problem of 4.2.2.1 is available. 

Likewise, the geometry and every single part of problem is the same as before but the method 

to solve the problem has changed. After all, achieved results are available in figures below: 

  

                                     (a)                                                                      (b)                                                                             

 

                                     (c)                                                                       (d)                                                                             
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   (e) 

Figure 5-18: Results of low stiff bar-spring with central difference method 

It seems that the results of Newmark’s method are more accurate. However, the problem is 

highly non-linear, and magnitude of deviation of results is dependent on amount of non-

linearity of problem. Besides, in graphs of displacement and velocity the differences are so 

vital. Also, in graph of trajectory, it can be seen that the range in Y direction has changed, for 

the Newmark’s method it was between around -0.4m to 0.4m but in solution of central 

difference method it is between -0.15m to 0.2m.  

Additionally, if the time step in central difference method decreased, the final results of 

problem would not change that much. So, decreasing the time step in central difference 

method does not help to increase the accuracy of solving the current problem. Finally, to get 

more accurate results, usage of Newmark’s method is recommended for highly non-linear 

problems. 

However, the sensitivity of these kinds of calculations is high for highly non-linear problems. 

Since, the problem is highly non-linear, in Newmark’s method it is really crucial how to 
define the values specially stiffness of spring, elastic modulus, and area of bar because the 

results can end up in singularity. De facto, it is really crucial to choose logical numbers for 

parameters like stiffness of spring or bar. So, it is important to define the values in a way not 

to end up in singularity. Actually, the numbers for all parameters should be logical to get 

acceptable results. 

In a case that a cable has been used instead of spring in this problem, everything is the same 

but the stiffness matrix has changed. Moreover, in the code before calculation of residual 

these lines must be added which can be seen below (By assuming that cable is a kind of 

spring which has the stiffness of k: 
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    if Lcable <= L0cable 
     k=0; 
    else 
     K=the K that has defined to solve the problem 
    end 

 

Then the code will work. Also to add snapping, based on the mechanical properties of the 

cable, maximum length of cable should be calculated which the cable snaps in that length. 

Afterward, before calculation of every residual matrix, these lines should be added which can 

be seen below: 

if Lcable => LcableMAX 
     k=0; 
end 

 

In the next examples, these matters will be enlightened clearly. 

5.2.2.2. Results of stiff bar-spring (cable) 

Solution with Newmark’s method 

In this section, problem of 4.2.2.2 is solved. It is important to know that stiffness of spring in 

problem k, has changed to         ⁄  but in this problem the cable is used as a stiff spring. It 

means the cable is working like a stiff spring without any extra condition. Additionally, in 

next problem, one more extra condition will be added to current problem and will be solved 

to check out the differences in results. The time step of 0.0002s has chosen to solve this 

problem. Additionally, the initial conditions are:        ,       , and  ̇   ̇   . So, 

below results are obtained: 

 

                                    (a)                                                                    (b)                                                                           
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                                       (c)                                                                   (d)                                                                             

 

   (e) 

Figure 5-19: Results of stiff bar-spring with Newmark’s method 

 

Since the bar is stiff, one can draw a circle with center of (O1,O2), and the radius of 1m 

which is the initial length of bar. In this way, it can be seen that how the length of bar is 

changed during the problem, and the result can be compared by Figure 5-20: 
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Figure 5-20: Trajectory of stiff bar-spring in 4 seconds with Newmark’s method 

The green line is the circle and the blue line is the trajectory. By capturing the length, it is 

found that minimum and maximum of bar’s length are represented as 0.9977 and 1.0023. So, 

the blue line which is trajectory is very close to green line which is the trajectory of solid bar 

with stiffness of infinity. Then, it can be assumed that two degrees of freedoms changed to 

one, and it means x and y are dependent on each other and both together are making the 

problem to a single degree of freedom problem. Hence, the problem changes to a single 

degree of freedom problem.  

Besides, below Figure 5-21 is a closer look at the scene where max deviation of trajectory 

and green circle takes place. 

 

Figure 5-21: Trajectory of stiff bar-spring in a closer look 
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                                   (a)                                                                     (b)                                        

Figure 5-22: Changes in lengths of bar and cable in first second 

In Figure 5-22, change in length of bar and cable versus time is shown. In Figure 5-22 (b), it 

is evident that the length of bar does not change so much, and the elongation is so small 

which proves the high stiffness of bar. More, in Figure 5-22 (a) it can be seen that the length 

of cable changes much more that length of bar, and the reason is stiffness of cable which is 

one tenth of the bar’s stiffness. The data visualization (animation) of current problem can be 

found in appendix.  

Verification of results 

In this section results of stiff bar-cable with Newmark’s method are compared with results of 

dynamic analysis in ANSYS. Again, the full method of transient dynamic analysis of ANSYS 

performed. The verification process is done for first two seconds of analysis. Results are 

available on below pictures. To model the system, two elements of LINK180 and just one 

element of MASS21 have utilized on ANSYS. Verification of results for Matlab codes with 

results of ANSYS is vital on pictures below. 

 

                                        (a)                                                               (b)                                        
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                                        (c)                                                               (d)                                        

 

                                        (e)                                                               (f)                                        

 

                                        (g)                                                               (h)                  

Figure 5-23: Changes in lengths of bar and cable in first second 

Again, it must be noted that results of ANSYS are based on relative coordinate system. So, it 

can be understood that results of Figure 5-23, in part of (c) and (d) are the same. So, by 

verifying this problem, there is no need of verification for results of problems in section 4.2.3 
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because the base problem of them is problem 4.2.2.2 where the problem is solved with two 

bar elements but stiffness of a bar in system was much more than another one. So, we called 

them as stiff bar-spring problem but that was genuinely a bar-bar system with two different 

stiffness values.      

5.2.3. Problem of cable-bar 

5.2.3.1. Problem of cable-bar with slackening 

Solution with Newmark’s method 

In this part the problem of 4.2.3.1 is solved. The time step of 0.003 s has chosen to solve this 

problem. Since, there is a cable in the problem; a condition must be added to solve it. So, the 

condition can be seen as follow:  

    if Ls<L0s 
       EAcable=0; 
    else  
       EAcable=real EA of cable;  
    end 

 

 

                                     (a)                                                                    (b)                                        

  

   (c)                                                             (d)                                        
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   (e)                                                              (f)               

Figure 5-24: Results of cable-bar system with slackening by Newmark’s method                          

Again, by making a comparison between two figures above, it is clear that the differences in 

length of bar is much lower than changes in length of cable. Moreover, it can be seen that 

length of cable never became less than 1m , and the reason is the initial condition where the 

mass has left. If the initial conditions were like x0=1.5m, and y0=(  √  ) , then that 

would be possible to see more deviation for changes in length of cable. 

 

Figure 5-25:  Trajectory of cable-bar system with slackening by Newmark’s method 

Like the last problem, if one draw a green circle by center of (O1,O2), and radius of 1m that 

is initial length of bar, the trajectory in blue will be comparable with the green circle. 

Genuinely, both lines are not exactly on each other in Figure 5-25. So, there are some 

deviation between two lines of trajectory and a part of circle passes over the boundaries of 

trajectory, and the reason can be initial conditions of problem and a condition that is applied 

for definition of cable in current problem. 
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So, since the deviations are negligible, it can be assumed that two degrees of freedoms, 

changes to single degree of freedom, because the x and y are dependent of each other and can 

be used as parameters of circle’s equation which passes through the trajectory. In fact, 

trajectory is a part of circle. 

 

Solution with central difference method 

The problem of 4.2.3.1 has solved with central difference method and the same results like 

results of Newmark’s method has achieved. The reason for achievement of the same results is 

that the problem of 4.2.3.1 is not highly non-linear. Actually, the bar’s behavior in both 
results, was linear, and cable’s behavior was non-linear. Therefore, the whole system was not 

highly non-linear. So, the results of both central difference method and Newmark’s method 
were in agreement with each other.  

 

5.2.3.2. Problem of cable-bar with slackening and snapping 

Solution with Newmark’s method 

In current part, problem of 4.2.3.2 is solved and results are obtained in below figures. 

 

 (a)                                                                 (b)               
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  (c)                                                                 (d)               

Figure 5-26: Results of cable-bar system with slackening and snapping by Newmark’s 
method   

 

In above figures, it is obvious that when slackening happened which is before 2.8 s. After 

slackening, behavior of system changes dramatically. De facto, after slackening, the system 

changes into a bar with a mass at the end. Furthermore, it is assumed that initial length of 

cable is 1m, and the length of slackening is 1.5591m just to check out the behavior of system 

at the time of slackening (rupture of cable). So, it is easy to capture the effect of slackening in 

every system, and it is needed to put the condition when stiffness of system is calculating in 

each time step. 

 

      (a)                                                                    (b)               

Figure 5-27: Changes of lengths in bar and cable in cable-bar system with slackening by 

Newmark’s method 

More, in above figures, changes in length of cable and bar are shown. That is easy to see the 

effect of slackening in both figures. In fact, after slackening, the length of cable became zero 

and changes in length of bar became less than length of bar before the time of slackening. 
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However, changes in length of bar is not so much, and the reason is high stiffness of bar in 

comparison with stiffness of cable. 

Moreover, in figure below, it is evident that the deviation of trajectory from green line which 

is behavior of bar with infinite stiffness, happens when the system passes from bottom of 

circle. 

  

Figure 5-28: Trajectory of cable-bar system with slackening by Newmark’s method 

However, a problem with slackening and snapping can be solved with direct time integration 

methods. Indeed, slackening and snapping are conditions which can be added in structures, 

and that affects tangent stiffness of whole structure. So, they do not affect the procedure of 

solving problems with direct time integration methods. Besides, they affect the tangent 

stiffness of structure. Therefore, problems with or without slackening and snapping can be 

solved with direct time integration methods, and suitable method to choose for a structure 

among direct time integration methods depend on structure’s degree of non-linearity.   

5.3. Results of multi degrees of freedom problems 

5.3.1. Results of X-frame tensegrity 

5.3.1.1. X-frame without slackening 

Solution with central difference method 

Problem of 4.3.1.1 is solved with central difference method as the first method. Then the 

results of Newmark’s method can be calculated and compared with the results of central 

difference method. The main reason of using central difference method as the first method to 

solve the structure is no need for convergence. So, if the method worked, it would be possible 

to get more accurate results with an implicit method like Newmark’s method.  

To start solving the structure, on node seven of structure two forces has applied one to right 

side and on to upper side. Then the final results for 0.01s can be seen in picture below: 
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Figure 5-29: Results of tensegrity structure by central difference method without 

slackening 

The time step was     s to solve the problem. More, the time step of     s is also possible 

to use and the same results is achieved but smaller time steps would change the results. 

Choosing the right time step depends on the higher modes of problem and smaller times steps 

can be utilized to capture the higher modes, and those high modes can affect the stability of 

solution. Anyhow, for problems with dominancy of lower modes, Newmark’s method is 
more preferred. 

In figure below, changes in length of two cables between nodes of 5,6 and 6,7 are shown. 
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Figure 5-30: Changes of lengths for cables which connect node 6 to 7 and node 5 to 6, 

with central difference method and without snapping 

So, cable 5-6 was not in tension, and cable 6-7 was in tension. It is possible to draw all 

differences of changes in lengths of cables but they are some cables that their changes are so 

similar to each other. Hence, just two cables were selected to draw their changes in specific 

time. 

Besides, to get the higher order of accuracy and more smooth results, Newmark’s method can 
be performed. That’s also applicable for problems which are high degree of non-linearity 

Solution with Newmark’s method 

In this section problem of 4.3.1.1 is solved with Newmark’s method with the same time step 
and conditions of solution with central difference method but the method to solve the 

problem changed to Newmark’s method. The results of Newmark’s method were exactly the 

same as results of central difference method. So, it can be concluded that in problem of 

4.3.1.1 the results of central difference and Newmark’s method are the same each other for 
0.01s, and the results can deviate with each other in longer time like what happened for 

results of spring pendulum with central difference and Newmark’s method. Actually, the 
results of mentioned problem were the same in first 12 seconds but they started to deviate 

after that time. However, even with the same time step for those two methods, central 

difference method was faster than Newmark’s method, and that is because of convergence 
nature of Newmark’s method. Another reason for obtaining the same result is behavior of 
tensegrity system which was not highly non-linear.  
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5.3.1.2. X-frame with slackening 

Solution with central difference method 

In this section problem of 4.3.1.1 is a little bit changed to see more changes in length of 

cables to include the condition of slackening. First, central difference method is applied on 

problem to solve it. In fact the problem of 4.3.1.1 is changed by changing the magnitude of 

forces and adding one more force on node 8. So, the problem can be seen in Figure 5-31. 

 

 

Figure 5-31: System of tensegrity made of three modules of x-frame 

It can be assumed that if the length of cable became more than 1.1m then cable would snap. 

After putting that condition in structure, the problem can be solved. In figure below, on the 
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left side, result of problem without snapping and on the right side, result of problem with 

snapping is shown. 

 

(a)                                                          (b) 

Figure 5-32: Comparison of results with and without slackening. (a) without snapping, 

(b) with snapping 

It can be seen that cable which is located between nodes 7 and 8 breaks or snaps. To see the 

differences with condition of snapping and without snapping, figure 5-33 shows the changes 

in length of cable that is located between nodes 6 and 7, with and without snapping.   
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Figure 5-33: Elongation of cable to connect nodes 6 and 7, with and without snapping 

It should be noted that the red line in Figure 5-33, shows the distance between node 6 and 7. 

In reality, after snapping the stiffness of cable should be zero but to understand the difference 

between the conditions with and without snapping, the distance between node 6 and 7 

assumed as length of a cable between those nodes. However, after snapping, stiffness of 

slacked cable can be assumed as zero. Also, one can say that distance between two nodes can 

be imaginary length of snapped cable. 

Also, to see the effect of snapping, Figure 5-34 is plotted to show the difference in x and y 

displacement of node 7 before and after application of snapping. 
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(b) 

Figure 5-34: Displacement of node 9 with and without snapping 

In the last three figures, the deviation of two lines in each figure is obvious, and the reason is 

performing two different conditions, one with and another without snapping effect.  

It must be noted that to introduce snapping just add one more condition to the structure before 

calculation of tangent stiffness matrix in each time step. So, conditions like snapping or other 

conditions can be added to the problem and by taking those conditions into account, direct 

time integration methods are still able to solve such problems. In fact, the thing which plays 

the main role at the time of adding those conditions is the effect of added conditions on 

tangent stiffness matrix.  

Solution with Newmark’s method 

Results of this section are the same as results of X-frame with central difference method. It 

means that results of both central difference method and Newmark’s method are very similar. 

The reason is choosing small time steps for a very short time period. Also, in that short time 

period, the behavior of structure was not highly non-linear. So, very similar results have been 

achieved. 
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Chapter 6: Discussion 
 

In this chapter, results of problems are compared, and discussion of results is performed. As it 

has been mentioned, the main effort of this thesis is to find a method to solve different 

problems in different situations. In this project, problems of study can be categorized in 

single and multi-degrees of freedom. More, for the case of single degree of freedom which is 

available in 5.1.1, two problems were solved with implicit and explicit methods. Moreover, 

both of them have been verified by the code ODE45 of MATLAB, and results were very 

similar. Furthermore, Newmark’s method has an advantage over central difference method 

which can be unconditionally stable if       and      . However, Newmark’s method 
which is unconditionally stable for linear problems may start to show instability when used 

for non-linear problems, especially for long term simulations. So, smaller time steps can be 

used for better results. So, in non-linear problems, size of the time step plays the main role in 

stability of solution. In fact, the central difference method is the most useful method in single 

degree of freedom dynamic problems. Also, central difference method can be appropriate 

method for long time simulations but the time step must be specified based on the highest 

eigenfrequency of problem. 

Moreover, for multi degrees of freedom, first pendulum problems were solved in 5.2.1,  

spring pendulum and bar pendulum, both solved with Newmark and central difference 

method. They were linear and non-linear problems, and both solved with central difference 

method. For pendulum problems, Newmark’s method based on predictor-corrector method 

was applied, and it was shown that both Newmark and central difference method are 

applicable for linear and non-linear problems. However they were some differences in results 

and the differences depend on degree of non-linearity. It should be noted that Newmark’s 
method based on prediction-correction method with Newton-Raphson iteration has very high 

order of accuracy, and that can be more accurate than the central difference method. In Figure 

5-13 differences in changes of lengths of spring pendulum with two central difference and 

Newmark’s method were shown. It can be concluded that as time goes on, especially after 12 

seconds the results of both methods started to deviate but the range of minimum and 

maximum lengths were the same in both cases. It seems that Newmark’s method specially 

with energy evaluation and taking account of momentum, is better and more accurate than 

central difference method for long time simulation. In fact, one way to increase the accuracy 

of results is energy evaluation for each time step. Also, in 5.2.2.1 for problem of low stiff bar-

spring which was a highly non-linear problem with two degrees of freedom, the trajectories 

of two implicit and explicit methods were totally difference. However, it must be noted that 

because of high order accuracy in results of Newmark’s method in comparison with central 
difference method, the results of Newmark’s method is more reliable for such highly non-
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linear problem. De facto, problem of 4.2.2.1 is the problem that can show the most deviation 

between results of Newmark and central difference method because of high order of non-

linearity. Otherwise, in other linear problems or low order of non-linearity problems, results 

of central difference and Newmark’s method would not deviate much from each other. 

Besides, the exact solution for some of the solved problems may exist but a more general 

exact solution, may not be available in closed form. Further, it is obtained that effect of 

slackening or nature of cable’s behavior in tensegrity structures affect tangent stiffness 

matrix. Then, the tangent stiffness matrix must be calculated to capture the effect of 

slackening or zero stiffness for each cable which its length less than unstrained length. Apart 

from slackening, it can be concluded that matters like snapping, just add a condition to codes 

of structure. Then, when tangent stiffness matrix is calculated with or without conditions like 

slackening, direct time integration methods would calculate displacement, velocity, and 

acceleration for each time step. In fact, for explicit methods like central difference methods, 

that would be easier to apply them to solve problems, since they do not use Newton-Raphson 

iterations to converge. More, in explicit methods like central difference method, the tangent 

stiffness matrix must be updated in each time step before calculation of acceleration in that 

specific time step. Besides, the situation in usage of implicit methods like Newmark’s method 
is more complicated than explicit methods, and that’s because of convergence with Newton-

Raphson iteration. Furthermore, in Newmark’s method with Newton-Raphson iterations, it 

should be noted that in each time step a tangent stiffness calculated, then if it did not 

converge, the tangent stiffness matrix would be recalculated and updated until the 

convergence.   

So, many conditions like slackening can be added in structure’s codes but that is apart from 
the procedure of direct time integration methods, and those conditions affect the tangent 

stiffness of structure. Then, depend on properties of expected results, suitable implicit or 

explicit method can be applied to solve the problem.   

Further, choosing the right time step can guarantee the accuracy of solution and that can save 

calculation time. Also, stability of  implicit and explicit methods must be noted at the time of 

choosing time step to keep the method stable.  Otherwise, the method would be unable to 

capture different modes of problem. 
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Chapter 7: Conclusion 
 

Based on the problems of study in this thesis, Newmark’s method with Newton-Raphson 

iteration is recommended as a general method that is able to solve structures with linear or 

highly non-linear behavior. The central difference method is useful to solve linear and non-

linear problems but Newmark’s method is more powerful to capture details of non-linear 

structures. Also, the accuracy of Newmark’s method with Newton-Raphson iteration can be 

specified by choosing tolerance for convergence, and that is the advantage of this method 

which can change this method to capture high order of accuracy in results. 

Also, it must be concluded that conditions like slackening should be considered. 

Consequently, those conditions affect the tangent stiffness matrix, and those conditions do 

not affect the procedure of direct time integration methods. In fact, those are two separated 

concepts to solve a structure. 

More, it is recommended to pre solve a system, first with central difference method then 

solve it by Newmark’s method with Newton-Raphson iterations. Then, compare the results.  

If the system was highly non-linear, the results of Newmark’s method would deviate much 
from results of central difference method, and results of Newmark’s method can be more 
accurate. If the system was linear or the order of non-linearity was not so high, the results of 

both methods would not deviate much from each other. Then, depending on properties of 

expected results, level of accuracy, and time of calculation, suitable method can be applied to 

solve a problem. However, if solution of the problem contains low frequencies, Newmark’s 
method is more preferred since larger time steps may be utilized to save the calculation time. 
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