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Introduction 

The aim of this paper is to introduce the non-specialised reader to the field of non­

linear dynamics and its relation to environmental problems. For this purpose we will 

consider historical aspects and use a very simple logistic model, which can be easily 

simulated even on hand-calculators or spreadsheet-like software's. This in order to 

illustrate sorne basic concepts and to allow personal and self-convincing explorations. 

Non-linear dynamics and its more popularly known aspect "deterministic chaos" is and 

has been studied in very different areas of human knowledge, both at theoretical and 

experimentallevels. The interested reader is directed to this literature for more detailed 

discussions (Table 1). 

The way we perceive the natural world 1 universe has a determinant influence on the 

way we could imagine to operate or to interact with it. lt is a relatively modem opinion 

that the natural world could be pragmatically (rationally?) analysed by the physical 

sciences. This originates from the fact that physical sciences have successfully 

predicted and explained in efficient and comprehensive term's very important 

environmental phenomena as the movement of planets for instance. This scientific 

success-story has started as early as 1540 with two fundamental technological 

discoveries both made by Galileo. First, with his telescope and second with the 

pendulum which settled the basis for human activities synchronisation by dramatically 

increasing the precision of time measurement [25] and later allowed a novel (and 

precise) description 1 division of the geographical world [2,46]. The division oftime in 

small (infinitesimal: dt) fragments together with the formulation of the fundamental 

physical law of forces elaborated by Newton in 1687 [35] allowed the dynamical 

prediction of planet movements. It is crucial to mention here that the princip le is very 

simple, once the dynamical mathematical equations have been set in this very short 

time duration (dt), and knowing sorne important parameters (e.g. mass) and the related 

initial bodies positions, the mathematical tools available allowed to formulate and 

solve (integrate) the differentiai equations which could then be used to describe the 

movement (displacement) of the object in the future (and past ... ). In brief, dynamics 

could appear as being the art of predicting the future of a system by the present 

t This paper is dedicated in memoriam of A. Molinari (1908-1999). 
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Table 1. Sorne examples of fields (theoretical and experimental) where non-linear 
dynamics and deterministic chaos have been studied or evidenced. 

Domain References 

Exhaustive bibliography- 1990. [50] 

General books and reviews [1, 6, 8, 12, 16, 20, 31, 34, 36, 44] 

(multidisciplinary) 

Mathematics & Theroretical Physics [12, 13, 22, 32, 37, 38] 

Quantwn physics [23, 26] 

Physics [13, 27, 36, 44] 

Chemistry [1, 48, 49] 

Biology & human Physiology [9, 15, 18, 21, 43] 

Metabolism & cellular activities [9, 19] 

Epidemiology & Ecology [5, 14, 42] 

Environment ( climate) [3, 17, 30, 31, 40, 47] 

Astronomy [29] 

Economies [4, 33] 

instantaneous knowledge of sorne of its parameters once we can formulate the law of 

the forces acting upon it. With its "predicting power", it is retrospectively clear that the 

impact of this scientific success-story has diffused to other apparently unrelated fields 

including human sciences. This even if it was already known for "informed" people 

that numerous exceptions were existing even in the "exact" sciences ( e.g. 

hydrodynamics). This diffusion in other fields can be summarised by a typical opinion 

written by Laplace in 1814 [28] (the English translated text is from Holton and May 

[24]): 

The present state of nature is evident/y a consequence ofwhat it was in the preceding 

moment, and if we conceive of an intelligence which at a given instant comprehends of 

ali the relations of the entities of this universe, it could state the respected positions, 

motions, and general ejjècts of ali these entities at any time in the past or future. 

An earlier statement with the same content was already presented by Laplace in 1776 

(see Dalmedico [7]). With such a (linear) vision, our knowledge should be unlimited, 

the observed reality that sorne systems escape our understanding is only attributable to 

the difficulty of correctly knowing the very fine (and ali) details of the system. More 

precisely, the future outcome is limited by our ignorance. Moreover, to take account 

for the obvious and conunonly observed "erratic" behaviour of systems, a very 
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important and valid method was elaborated and used efficiently still nowadays: 

probability theory. However, as we shaH see it later, in sorne instances "noise" is not 

only generated by the complexity of the system but by the inherent properties of the 

system itself (even very simple) so to appear unpredictable at a given time horizon. An 

underlying organisation exists ( attractor ), but the outcome is somewhat un certain and 

appears as noisy [ 41]. Such behaviour is possible even with very simple non-linear 

fully deterministic systems. 

What is a non-linear system? 

There is no general agreement for a definitive definition of what precisely is a non­

linear system, but we shall introduce the concept with a broad definition frrst and then 

also with a simple mathematical example. As stated by Nicolis [36]: we leam 

traditionally that "a natural system in weil dejined conditions will follow a unique 

course, slight changes in these conditions will likewise induce a slight change in the 

system 's response". This is interesting because reproducibility is guaranteed, the 

predictability (determinism) is unlimited and the solutions are simple. This 

corresponds to a strong causality principle (see also Gasmann [16]). It is a linear view 

of the world: "the observed e.ffects are linked to the underlying causes by a set of laws 

reducing for al! practical purposes to a simple proportionality [. .. }, this idea is now 

challenged [. .. J simple observation shows radical, qualitative deviations from the 

regime of proportionality". 

Why was the linear view so successful? Besides historical reasons already presented, 

there are also practical ones. The methods used at these times (18-191h centuries) were 

mathematics, which were the only way to integrate differentiai equations. However 

literai integration was not al ways obviously possible ( e.g. the 3 bodies problem). In 

sorne cases a good solution consisted to linearise the equations (e.g. by a Taylor's 

development [27]) or to simply ignore the problem. In Figure 1 we present how we can 

solve the mathematical pendulum dynamical equation by linearisation. 

Among sorne other historical consequences of the linear approach, there was the fact 

that the solar system was presented as definitively stable. Everyone did not consider 

this conclusion as something proved. Indeed, it was known as early as from the 

Newton era that in sorne circumstances if 3 astronomical bodies were in gravitational 

interactions, there was no ways for describing the dynamics of the system (i.e. one 

could not know what will happen in the future). The equations could not be literally 

solved because of their non-linear nature. This problem was crucial, since it concemed 

the stability of the solar system in which we live. In order to find an answer to this 

question a prize was offered by the King Oscar of Sweden at about the tum of this 

century, the subject being to prove rigorously (mathematically) that the solar system 

was stable. The prize was won by Poincarré, who invented new methods to inspect 

"solutions" of dynamical differentiai equations which could not be solved literally and 

the conclusion was completely different from the Laplace (linear)view. Indeed 

Poincarré wrote in 1903 [38]: 
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Object: describe ()as function oftime 

m: mass, /: length, (): angle 

g: gravity constant 

Newton law: 

F = mg = ml iJ = -mg sin B 

ë : angular acceleration 

d 2B =- g sine 
dt 2 1 

. . 

mg 

1 
1 

'o 
1 

' 1 
1 

e: 
--~ 

' ' 1 

' 1 

' • 
1 
1 
1 

' .......... ;_ ........ ~ 

The dynamical differentiai equation is non-linear with respect to B(sin B). 

Linearisation: 

for small 0, then: 

sine= e , so that 

,' 
' ' 

The dynamical differentiai equation is linear with respect to ()(constant term x 0). 

The solution is: 

O(t) = B0 cos( aV+ r/J) where {1)0 = Jf is the angular frequency from initial 

condition 00 ,and rjJ is the phase. 

Figure 1. linearisation of the dynamical differentiai equation of 

movement of the mathematical pendulum. 

A very small cause which escapes our notice determines a considerable effect that we 

cannat fa il to see . .. even if the case that the na tura! laws had no longer secret for us, 

we could on/y know the initial situation approximately .... ft may happen that small 

differences in initial conditions produce very great ones in the final phenomena. 

This is a notable change from Laplace view in the way that "noise" or 

unpredictability can be generated even by totally exhaustively known ( deterministic) 

systems. This view was not accepted widely. Even Einstein sentence "God doesn't play 

with dices" is significant in this respect. Nevertheless, it is clear that this vision was 

different from the classical one. To be more precise, it was not different but more 

exhaustive since the non-linear view includes the linear view, whereas the linear one 

excludes the precedent. Meanwhile, it is important to say that in the mathematical field 

important progresses were done, particularly at the beginning of this century by the 

Russian school [10], but the diffusion ofknowledge in other scientific fields was very 

poor. lt is only with the advent of computers that things have changed. The reason is 

very simple: computers can solve almost any dynamical sets of equations by the 
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method of numerical integration. Thus, simulation of very complex or simple non­

linear dynamics became progressively possible. In this respect one of the most 

important papers was written in 1963 by Lorenz [30]. lt was shown that in a very 

simple mathematical model, the solutions were dramatically different depending on 

very small initial different conditions. The behaviour of the system was soon becoming 

unpredictable even if the equations were deterministic (deterministic chaos). Other 

simple and historical examples have been provided by May in 1976 [32] using iterative 

discrete ecological equations models for growth as, for example, the logistic equation. 

The logistic equation: 

N0 = 100, K= 5000, r= 1.5 N0 = 2000, K = 5000, r = 0.95 

2000 

1500 1500 

:;( 1000 :;( 1000 

500 500 

0 f------·T---------·----.,-------f 

0 20 40 60 20 40 
Tl me Tl me 

Figure 2. The logistic equation (see text, equation (1 )) with different parameters. 

On the left a growing population and on the right side a decaying one. 

60 

The growth of a population of organisms with reproduction at a unique and common 

epoch has been modelled by the logistic equation (discrete time formulation): 

N 
N = rN (1 - ___!::!._) 

r t-1 K (1) 

where Nt is the population at time t, r is the growth rate and K is the carrying capacity 

of the medium. In Figure 2 we present sorne examples of this equation with different 

values of the r, N 0 and K parameters. We will use this equation to illustrate sorne basic 

properties of non-linear systems. It is possible to transform the logistic discrete 

equation into a normalised form. Indeed, if we transform Nt as follows: 

X =Nt 
t K (2) 

then we obtain: 

-------------------------- Page267 



R. degli Agosti & H. Greppin 

(3) 

It is a non-linear dynamical equation since there is a X 1
2 tenn in it. The numerical 

calculation of this function is elementary. For example: if Xo = 0.01 and r = 2.5, then 

X] = 2.5xO.Olx(l-O.Ol) = 0.02475, then X2 = 2.5x0.02475x (1-0.02475) = 

0.060343 ... and so on. The Figure 3 shows the transition from order to deterministic 

chaos when the r parameter is changed (bifurcation's can be observed). At a critical 

value, the system becomes chaotic. In the chaotic regime of there are "isles" of 

stability and also of particular behaviour (see Ekelund; May [12,32]). An example is 

shown in Figure 4 at a value of r = 3. 8284, a so-called intermittent dynamics is 

observed. 

3.6, 3.9 2.5 r = 1.5, 2.0,3.0, 3.4, 3.5, 
1 

• • .- • e ••. • • • •• • • • • 

•• •••••••e• •• • • • o • .--········ ... ·... . . . . . .. 
• . 

>( 0.5 -• • • • e • 
••• ••• • 

~· ... • • • • • • 
• -,........ 

• • 

•••e•••• o ..... 
•• 

• • 0 •• • 

e • • • • • 

• .... -
0 4--------~~------~~------~~------~----~ 

0 50 100 150 200 
Ti me 

Figure 3. From "order" to chaos in the deterministic logistic equation (3). 

A very important concept is the sensitivity to initial conditions, this can also be 

considered as the sensitivity to extemal 1 environmental conditions. As already stated, 

a small change willlead to completely different solutions. The change can be as small 

as possible, since in practice it would never be possible to control or to measure a 

system's initial conditions with an infinite precision (see also Prigogine [39] for a more 

detailed discussion of this aspect and its implications). An exponential law whose 

power is called the Liapounov exponent and gives a measure on how fast the solutions 

will diverge govems the divergence. Figure 5 illustrates this aspect. 

An interesting consequence from the sensitivity to extemal conditions just discussed 

is the property of chaos control. If small changes have strong effects, then it could be 

possible by appropriately inserting perturbations to control the chaotic regime and to 

stabilise it. Indeed, this has been shown to be both theoretically and experimentally 

possible in very different systems [5,11,15,21,43,45]. We will provide here the 

interested reader with the theory and algorithm to achieve control of the logistic 

equation. The object is to stabilise the dynamics on periodic (p) trajectories ( e.g. if p = 
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2, then Xt+ 2 = Xt), once it is in a chaotic regime by changing the control parameter r. 

For this purpose, consider the function: 

(4) 

p 

where f{;ft) is the logistic function according to (3). It is necessary to fmd the value x* 
that satisfies: 

r= 3.8284 

0 --- -------,-------,-----------,---------1 

0 500 1000 
Ti me 

1500 2000 

Figure 4. Diversity of dynamics in the chaotic regime of the logistic 

equation (3). Strange "behaviour" with r = 3.8284 (intermittence). 

~-
~&.0.5 

0 

50 60 70 80 90 

Ti me 

Figure 5. Sensitivity to initial conditions, or sensitivity to environmental 

changes. Two logistic equation (X1t and X2t) are represented both with r = 
3.95. At time 50, a small change has been introduced in one of them (10-s). 

At time 70 the divergence appears and the 2 dynamics will definitively differ. 

(5) 
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within a lirniting error factor E. To obtain the numerical value of x* it is possible to 

use the bisectrix algorithm: 

1. Choose xg and xd so that g(xg) x g(xd) < 0 

2. Compute xm = (xd+xg)/2 as a frrst approximation of x* 

3. If g(xm) has the same signas g(xg), then replace xg by xm, else replace 

xdby xm 

4. Repeat step 2 and 3 until E. 

The method to apply control to the logistic function is: 

1. Obtain for a wanted stable periodicity p, the corresponding x* as 

described before, with a r0 value 

2. Iterate the lofistic function until its Xt value is near x*, by a factor E 

(i.e. lx1 -x* s s 

3. Start the control by adjusting the ro value with dr: 

cx·)(l- x·) 
dr = r --'-----'-'----'-

0 ((X,(l- X,)) 

This means, iterate Xt+ 1 with ro + dr. Then wait Xt+p and continue 

with step 3 

4. To stop the control reset r to rû-

In Figure 6 we present the result of chaos control of the logistic equation. It has 

generally been observed that control can be achieved with a very small quantity of 

energy [5,11,15,21,43,45]. This might be an advantage, however to correctly achieve 

this control it is on the other way necessary to obtain information (measurements) on 

the system and to reinject at appropriate rime point with appropriate intensity specifie 

signais. The gain in energy need is counterbalanced by the need of a higher intelligent 

information- action regulation loop! 

Conclusion 

It is often said that living organisms and environment are non-linear systems (see e.g. 

Gasmann, [ 17]). This is typically because the se systems work with regulation. Once a 

regulation is operating ( e.g. feedback) there is little escape from non-linearity. This 

does not mean that the systems will not work in a linear-like way. Indeed, if we 

compare to the logistic equation presented as an example, much of its dynamics regime 

is govemed in a "linear-like way" with respect to change in the r controlling factor (0 

to -3.6). However, in sorne circumstances (r>3.6) a chaotic behaviour typically 

characteristic of non-linear systems appears. In this regime, there is the possibility of a 

very great diversity and original behaviours. However, stability and the predictability 

horizon is very poor, whereas as a counterbalancing factor, control is necessitating 
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Control 0 0 5 0 

.. ~. -.. ::-;· . . ... ·. ~ ·:. :: . ... ·.:.···::·.: ... · ..•. -· :·.;· . 
•• • ·"" .. ..-. "'. ; • • • • "•'•,.! 

::.: .. . 1: '· ... 

9 

. · .. 
. . ·. - . . . . . . . .· .. : . .. . 

~---- .· ... ·. . ........................................................... .. 
\ •• 1 :~·~ -~ 

•• ri' • 

:: ·::. · .. ·· .. : .. 
.. ,..,.· ......... . 

~ :. . ' ': . ... .. . .. . ·· .... 
JI: .... ·· .. ."1' •• : :·: .. • ••• .... :· • ............................................................... . 

.. .. ·-----· .. . ·.· .. ... . .. , .... 

~---------------------------·------~---~-----======~========~ 

X coord. :( 0 2000 ) Y coord.:( 0 1.3) Contr.:(-.05 .OS ) 

Figure 6. Controlling the dynamics of the logistic equation (3) in a chaotic 

regime. The controlling factor ris set to 3.8. The number 0 represents the 

dynamics without control. The numbers 1 , 5 and 9 represent the starts of an 
automatic algorithm (described in the text) to very slightly change r 
continuously (regulation) to fix the chaotic dynamics on stable periodic 

trajectories of period 1, 5 and 9 respectively. 

lower energy inputs (but higher information level). This points to the necessity for 

understanding the physical nature of environment with an as exhaustive as possible 

measuring 1 monitoring approach. Indeed, non-linear systems need more measurements 

in order to be characterised. This has to be coupled to both exhaustive and minimal 

modelling approaches. 

As stated by Prigogine [39] the non-linear nature of systems seems to be the rule 

rather than the exception, considering this aspect as a kind of fundamental nature of 

matter and forces goveming the world 1 universe. The reader could be also convinced 

by the few examples provided in Table 1, which spans theoretical and experimental 

fields over mathematics and from atomic to astronomical levels (including 

environmental issues). There is little doubt that this aspect should somehow be 

correctly integrated to understand environmental problems. 
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