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Abstract 
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fields. In ihe lasf par? of fhe work, we discuss the resulfs obtained and quesiions which are 
still open. 
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1 Introduction 

In [PF88] the authors analysed the non-linearity of permutations as one of the indicators of 
their quality for cryptographic use. They have given the upper boundary on non-linearities. Of 
course an application of permutations of the maximum non-linearity does not guarantee that an 
encryption algorithm based on them generates a "strong" cipher. For example the well-known 
DES algorithm is built using 32 permutations [each S-box consists of four permutations) and 
none of them attains the maximum non-linearity. Of course the selection of permutations in the 
DES has been made using a collection of properties (some of which may still remain unidentified). 
For the most complete list of such properties see [Bro88]. 

It has been shown in [PF88] that there are permutations whose non-linearity attains the 
upper bound for Galois fields GF(23),  GF(24), and GF(25).  Unfortunately, i t  is not know if 
such permutations exist for larger binary fields (for n > 5) .  Experiments we have done point 
out that such permutations exist and can be easily obtained using exponentiation. 

2 Background 

Consider a Boolean function f E 3, where Fn is the set of all Boolean functions of n variables. 
Its non-linearity N j  is defined as the Hamming distance between the function f and the set of 
all linear functions L,, existing in 3, i.e. 

For a given permutation f E P,,, where P,, is the set of all permutations over GF(2"), we 
define its non-linearity a s  

where f = (fl ,B, ...,f,,) and f-' = (fT',f;', ...,f;') are coordinates of the original and the 
inverse permutation, respectively. 

In [PFSS], i t  has been shown that there is a bound on non-linearity which can be attained 
by permutations for a given dim,ension n. The dimension n also can be seen as the number of 
binary inputs of a permutation block. The bound N ,  is expressable by the following formula 

We note that all permutations in F2 are linear so their non-linearities are equal to zero. 
When designing cryptographic algorithms, one looks for those permutations which are both 

easy to implement and demonstrate a satisfactorily high non-linearity. Although the defini- 
tion given in ( 2 )  is good to  characterize non-linearity, we can also determine non-linearity of a 
permutation f E P,, as folIows: 

For example (see [PFSS]) all permutations applied in the DES have the same non-linearity 
measured by the formula (2) and equal to 2 which is a half of the possible maximum. If we take 
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the definition (4), then they have different non-linearities which vary from 3.73 (there are 6 of 
them; one in Sl and Ss and two in S2 and S6) to 3.00 (there are 4 of them; single permutations 
in $2, s6, S7, and Ss). T h e  average non-linearity of permutations in the DES is equal to 3.408 
and is close to the maximum tha t  is 4. For details see [PF88]. 

In fact in DES, all the permutations are used in their original form (their inverses are never 
applied during either enciphering and deciphering process). So if we count non-lineaxities of 
coordinates of the original permutations only, we find only 14 out of 32 that reach the masimum 
non-lineari t y. 

The non-linearity of permutations given in ( 2 )  can be calculated differently as we can apply 
the following theorem. 

T h e o r e m  2.1 Given a permutation f ,  its non-linearity can be calculated as 

where L: is a set of all linear permutations, and  (f*a)i stands for i-th coordinate of the composite 
permutation f * a. 

Proof: Clearly the set of all coordinates of all linear permutations creates the set C,, - {O,l}. 
For our permutation f ,  we can define the following set 

where a; are binary elements and the set 

Lf-1 = (9 E 7,; 9 = a0 @ alf;' @ ... @ an!;'} ( 7 )  

The both sets consist of all Boolean functions which are coordinates of compositions €*  a and 
f-' * a, respectively. Notice that as a is a linear permutation, non-linearities of f and f * a 
coordinates are the same. 

Observe that the relation between two sets (L,, L f )  and (L,, , &-I) is symmetric. This is to  
say that if we create a composition off  *f-' the set .&f plays the same role to the inverse as the 
set L, to the original. If we take the second possibility f-'*f, we can draw the same conclusion 
for sets Lf-1 and C,. In other words, the non-linearity of a permutation can be espressed as a 
distance between two sets Ln and L f  or equivalently between t f - 1  and C,. 

0 
We can conclude from the theorem that if there is at least one permutation coordinate that 

may be expressed by linear combination of the rest of the coordinates, this permutation ha5 "0" 
non-linearity. It means that the inverse has at least one linear coordinate. 

It has been shown [PFSS] that it is easy to generate permutations of the masimum non- 
linearity at random for G F ( F )  and GF(Z4).  Unfortunately, the generation of such permutations 
becomes more and more difficult as the dimension of Galois field grows. 

Ideally, we would like to have a method that would generate permutations of the maximum 
non-linearity or at least close enough to it. We are going to examine an exponential function 
and its application to  the generation of non-linear permutations for different dimensions n of a 
Galois field. 
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3 Walsh transform and non-linearity 

Spectral tests are useful tools for detecting non-randomness in binary strings. Originally the 
first such test was proposed by Gait [Gai77] who used the discrete Fourier transform to  examine 
binary strings generated by the DES. At the same time Yuen [Yue77] suggested another test 
based on the Walsh transform which was later improved by Fddman [Fel87]. As Forre PorSS] 
has shown the Walsh transform can also be used to estimate the strict avalanche criterion of 
Boolean functions. 

Before we show the relation between the Walsh transform and non-linexities of Boolean 
functions, we give the necessary definitions and notions. Assume we have a Boolean function 
f E 3, of n variables F==(q, ...,z,,). As the Walsh transform may be applied to real-valued 
functions only, we treat j (Z )  as such a function. It is taken as 0 if it is false and 1 if i t  is true. 
The Wdsh transform F(i3) of f (F) is defined as (see [Bea75]): 

F ( G )  = c f (5)(-1)G.? 
PE2,” 

where 2; is a space of all binary sequences of length n, f(f) is the transformed function (con- 
sidered as a real-valued function), and G . Z stands for the dot-product of 3 and Z : 

ij . z = W l X l  @ w2z2 @ .  . . @ W,Z,. (9) 

Having F(G) ,  we can recreate the function f (5) using the inverse Walsh transform that is: 

f ( F )  = rn c F ( G ) ( - l ) G . Z .  
ij€Z,” 

First notice that the Wdsh  spectrum of a linear Boolean function has a specific form which 
is described by the following theorem. 

Theorem 3.1 The W a k h  transform F(G)  of a linear Boolean function has two non-zero com- 
ponents only. 

Proof: Clearly, the first non-zero component is 

as 3.Z=O for G=O and therefore (-l)G‘z=l. In other words F(0)  gives the number of 1’s (the 
number of TRUE values) in the function f .  

Notice that for a fixed G, its dot product G .  5 indicates the linear function 

L ( S )  = W l Z l  @ ... a3 wnz,. 

Clearly, (3 generates a half of all linear functions of n Boolean variables (recall that  we assign 
value ”0” to the FALSE and value ”1” to the TRUE). The rest may be obtained using negation 

I,o = W l Z l @  ... a3 W*Z, 

W l l Z l  @ ... @ W1,X,  

1. 

So if we have a linear function f, i t  is either of the form 
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or 

for a suitable sequence of 9 = (dl ,  ..., w',). There are three possible cases: 

W l l q  !B ... @3 W/,Zn @3 1 

f is different from a linear function generated by the dot product given by (3". In that 
case the Hamming distance between f and the linear function l w n ( Z )  is equal to 2" - 1. It  
means that 

F ( 3 " )  = c f ( q ( - l ) Z " . ?  = 0; 
fEZ," 

f is equal to a linear function lwV7(F)  generated by the dot product then the Hamming 
It implies that f=1 while 3"'2 = 1 SO distance between these two is equal t o  0. 

F(3)=-2"-'  . 

j is a complement of lwn(S)  generated by the dot product, then d(f ,!)=2" and f=1 while 
l,v(Z)=O so F(ij")=f2n-l ; 

One of the last two gib-es the second non-zero component of the Walsh spectrum. 
0 

The next theorem esplains the interrelation between non-linearity of a Boolean function and 
its Walsh spectrum. 

Theorem 3.2 I f  a given Boolean function f(q, ..., T,) has its non-linearity equal to 9, then 

Proof: As we know the dot product generates a half of all linear functions. If the non-linearity 
of f is equal to 77, then there is a linear function CY such that 

9 = d(J,a) .  
Therefore we consider two cases. 

Case I - the dosest linear function a can be espressed by an element of the dot-product 
set, that is 

so  
a(Z)  = (3/ . z. (14) 

F($)  = c f(Z)(-l)Z'.? 
%Z,- 

- c (-I)* + c (-1)O. 
I;f(f!)#Cr(f);G'.i=1 ?;I( P) #a (?);G'.?= 0 

As the first part  of the formula 

and the rest is equal t o  9, we get 



85 

case I1 - the closest linear function can be expressed by a negation of an element of the 
dot-product set. It means that 

g = 4f,a (1s) 

and 

The first part of the formula is given by 

and the rest is equal to  g. So, we get 

Considering both cases, we can write that 

7] = 2-1- I F(G1) I * (22) 

Finally, if we consider the case for 3=0, we obtain the result. 
0 
Theorem 3.1 says that any linear Boolean function is easily identified by looking at its Walsh 

spectrum. In general any linear permutation over GF(2") has a specific Walsh spectrum. Before 
we present the relation between linear permutations and their Walsh spectra, let us consider the 
following theorem which expresses the dependence between Walsh spectra of permutations and 
their coordinates. 

Theorem 3.3 Given a permutat ion f E Pn. If F;(G) is the Walsh transform of i - th  coordinate 
of the pennutation (i=i, ..., n), then the Walsh transform off  is expressable as 

n 
F ( 3 )  = c 2 ' - ' 4 ( w )  

i= 1 

where f = ( f 1 ,  ..., f n )  and F; + 1,. 

Proof For any value of 5, f(S) = fi + 2f2(.')+ ... + 2"-' f n ( Z ) .  Using the definition of the Wdsh 
transform (8), we get the final result. 
0 
The above theorem gives us, the following conclusion. 
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Collorary 3.1 If a permutalion f E Pn is linear, then its Walsh transform has n - 1 non-zero 
components. The first component is given by 

n 

and the other n components create a permutation of n integers (&Zn-', kZn, ..., kZ'(''-')) 

Example. Consider the identity permutation over GF(Z3). The permutation f = (f1, f2, f3) 

is shown in the table below. Its Walsh spectrum is given in the same table where F', F*,& 
are Wdsh spectra of the Boolean functions f l , f i , f3 ,  respectively, and F is the spectrum of the 
permutation. 

001 (1) 
010 (2) 
011 (3) 
100 (4) 
101 ( 5 )  
110 (6) 
111 (7 )  

- 
F 
28 
-4 
-8 
0 
-16 0 

0 
0 

- - 

4 Exponent permutations 

In [PF88] it  has been shown tha t  there are permutations of the maximum non-linearity for 
n=3,4,5 and 6. For n 2 7, it is very hard to find such permutations. I t  would be interesting if 
we could find such permutations using a simple method. Experiments have shown exponentiation 
generates permutations whose non-linearities tend to be close to the maximum. 

In general, we have dealt with permutations of the form: 

f(r) = ( h ( r ) ) k m o d g ( z )  (25) 

where g(z) is an irreducible polynomial of degree n which generates a Galois field GF(2")  and 
h(x) represents elements of GF(2").  

Example. Consider GF(Z3) generated by 9(z)=z3 + z2 + 1 and two permutations: the first 

f l ( Z )  = ( h ( a ( m o d g ( z ) )  (26) 

and the second 
f2(2) = (144)3(mod dz)) 

The permutations along with their Walsh transforms are presented in the tables below: 
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2'JG f 
0 0 4  
1 
2 

Fi Fz F3 F 
4 4 28 

1 - 4 0  0 -4 
4 0 0 0 0  

and 

The first permutation is linear. The  second, however, attains the maximum non-linearity for 
all its coordinates. The  W&h transforms F of the whole permutation can be easily computed 
from Walsh transforms of its coordinates (Fi,FZ,1"3) according to F(w')=FI + 2F2 + 4F3. 

The first permutation in the example illustrates the general property of exponent permuta- 
tion that can be expressed as 

Collorary 4.1 Any pennuta t ion  
(+)Ik mod s(z) ( 2 8 )  

where g(z) is  a generator o fGF(2" ) ,  is a linear pennutation for k=i,Z,4, . . . ,2"-'  

The collorary results from the well-known fact that  squaring in any binary field GF(2") is a 
linear operation - for details see [BerG8]. 

The second permutation has a very regular pattern of integers in its Walsh transforms. It is no 
coincidence. In other words (see [PF88]), the space of all linear functions C, may be divided into 
two sets with respect to any coordinate. The first subset consists of all linear functions whose 
Hamming distances to the given coordinate are equal 2"-* (corresponding Walsh transforms 
are equal 0). The second subset comprises all linear functions whose distances to the given 
coordinate are either 2"-' - 2("-')/2 or 2"-' + 2("-1)/2. It  means that the corresponding IValsh 
components are equal 52(n-1)/2 and therefore their non-linearities are equal to 2("-') - 2("-')/2. 
This observation is valid for n odd and greater than 1. 



Concatenation of exponential blocks gives the identity permutation if and only if the  product 
of all exponents is equal t o  1 modulo (2" - 1). Consider squaring. Exponents after using 
subsequent squaring are as follows: 

Xote that the last element 2" = 1 m o d  (2" - 1) and it  corresponds to concatenation of n blocks. 
In general, if we deal with an exponential permutation described by an esponent 2' where 
i = 2,3,  ..., R - 1, then we may construct the following sequence of exponents: 

22, 23, . . . Y  (29) 

2', 22 i ,  ... ,2"j = 1 (mod2" - 1) 

This leads us to the nes t  conclusion (see [BerGS]). 

Col lorary  4.2 If n is prime,  then  all linear exponents (2 ,4 ,8 ,16 ,  ...) have the same minimal 
length of concatenation n afier which we have got the identity permutation. 

Col lorary  4.3 If n is  not prime,  then  for any linear permutation described b y  its exponent 2', 
we can find such an  integer k (k < n) that 2ki = 2", where k and i are factors of n.  It means 
that we can use a smaller number of exponential blocks to create the identity permutation. 

Consider an exponent permutation f(a) = aa in GF(2") given by its exponent a.  Any 
concatenation of the same 4(2" - 1) esponential blocks (permutations) gives the identity per- 
mutation, where d ( N )  is the Euler &function or the Euler totient function - see [BerGS]. SO 
all exponents can be divided into several disjoined classes depending upon their orders modulo 
2" - 1 that have to be factors of d(2" - 1). 

If 2" - 1 is a prime, then 4(2" - 1)=2" - 2  and there is always an esponent e that generates, by 
exponentiation, all other nonzero exponents. It is called a primitive element of the cyclic group 
CG created by all nonzero elements of G F ( 2 " )  and with multiplication as the group operation. 
In other words the sequence of esponents 

e ,  e2,  e3, ... e2"-2 (31) 

generates all possible esponential permutations. Thus we have got the following conclusion. 

Col lorary  4.4 If 2" - 1 is u pr ime,  then concatenation of 
primitiue element e of CG generates a linear permutation. 

exponential blocks de,'ined by a 

Take an exponent e of order m modulo 2" - 1 ( e  has order rn modulo 2" - 1 if em = 1 m o d 2 "  - 1 ) 
and m is different from 2, then we can create concatenation of two blocks: the first expressed 
by e ,  and the second by 2'; i = 1, ..., n - 1 and its order is R. m but its non-linearity stays the 
same. 

We have experimented extensively, starting the search with n=3. The set of all exponent 
permutations is modest and i t  splits into two subsets. Elements of {1,2,4) give linear permuta- 
tions. The set {3,5,6) consists of all non-linear permutations and corresponding permutations 
share the same, maximum non-linearity which is equal to 2. In fact, we use the only independent 
non-linear exponent e = 3 .  Exponent 5 is the inverse of 3 so 5=3-', but 6=6- '=2 .3 .  Therefore 
all three exponent must have the same non-linearity. 

In space GF(2')), we can identify the set of linear exponents {1,2,4,S} and the set of non- 
linear ones {7,11,13,14}. The rest of exponents do  not give permutations - they are factors of 
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24 - 1=15 and they do not have their inverses. Non-linear esponent permutations have the same 
maximum non-linearity equal to 4. 

For n=5, 2’ - 1 is a prime and 4(31)=30, so there are four basic subsets of esponents 
(elements of CG). Each basic set contains elements of the same order modulo 2” - 1. The  basic 
sets u e  as follows: 

21 = {I} 
2 2  = (30) 
Z3 = {5,25} 
2 5  = {2,4,8,16} 

and they correspond to the factorization of the integer 4(31). Sets 2, and 21 contain all linear 
esponents. 2 2  has the only element which gives a permutation of non-linearity 10. The set 2 3  

consists of two permutations of the maximum non-linearity (equal to 12). The rest of exponents 
(permutations) can be seen as a product of exponents from the basic sets 2 2 ,  2 3 ,  and 2 5 .  If we 
create them using 2, and 23, we have Z6=Z2 x 23={14,26} - both elements have non-linearity 
12, where 2 2  x Z3 means the set whose elements are of the form e = e’ x e” ; e’ E 22, e” E Z3. 

Finally, we obtain 

210 = 2 2  x 2s = { 15,23,27,29} 
21s  = X 25 = {7,9,10,14,18,19,20,2S} 

2 3 0  = 2 2  X 2 3  X 2s = {3,11,12,13,17,21,22,24} 

Kon-linearities are 10,12,12 for 210, Z15, 2 3 0 ,  respectively. 

esponents must be factors of 6. Therefore we get 
The case of n=6 is especially interesting. As 26 - 1=63 and 4(63)=36=6 . 6, all orders of 

2 1  = (1) 
2 2  = {8,55,62} 
2 3  = {4,16,22,25,37,43,46,58} 
Z6 = {2,5,10,11,13,17,19,20,23,26,29,31, 

32,34,35,40,41,44,47,50,52,53,59,61} 

The set 22 consists of one linear exponent and two of the maximum non-linearity (equal to 24). 
-411 non-linear elements of 2, share the same non-linearity 20. The set 2 6  has a mixture of 
esponents of different non-linearities (0, 20, 24). 

Consider GF(2’). In this field Z7 - 1=127 is prime and 4(127)=126=2 - 32 + 7. The set of all 
esponents splits up into following subsets: 

21 = (1) - n o n  - l ineari ty  0 
Zz = (126) - n o n  - l ineari ty  54 
2 3  = {19,107} - n o n  - l ineari ty  44 
2.i = {2,4,5,16,32,64} - non - linearity 0 

2 9  = 
2 6  = Z2 x Z3 - non - l ineari ty  56 

{22,37,52,6S,99, 103} - non - linearities 44 and 56 
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214 = 2 2  x 27 - n o n  - l ineari ty  54 
218 = 
22, = 2 3  x 2 7  - non - l ineari ty  44 

Z42 = 2 6  x 27 - n o n  - l ineari ty  56 

Z a  = 
= 

22 x Z g  - n o n  - linearities 44 and 56 

29 x ZT - n o n  - linearities 44 and 56 
Z2 x 263 - non - l ineari t ies  44 and 56 2126 

For example exponents 3 and 7 belong to  Z126 (they are primitive elements of CG) but their non- 
linearities are different. The  exponent e=3 yields the permutation of the maximum non-linearity 
(which is 56) while e=7 produces the  permutation of non-linearity 44. 

Our esperiments, let us draw the  following conclusions: 

non-linearity of exponent permutations does not depend on the primitive polynomial that 
generates GF(2") ,  

non-linearity of exponent permutations does depend upon the internal structure of CG, 

non-linearity of the permutation for a given exponent that is a primitive element of CG 
does not necessarily attain the maximum, 

1(2"-1) concatenation of 7 the same exponent permutations generates a linear permutation. 

5 Conclusions 

Boolean functions can be characterized by their non-linearities. We have assumed a definition of 
non-linearity as the minimum distmce between a given function and the set of all linear Boolean 
functions. Non-linearity of a function can be determined by looking at its Wdsh transform. In 
general, the Walsh transform of a Boolean function can be seen as a projection of the function 
into the vector basis created by linear functions. Functions of the maximum non-linearity have 
a specific pattern of their W d s h  spectra. It means that they are pretty rare in the space of 
all Boolean functions of a given dimension n.. The probability of choosing such a function at  
random diminishes as the space dimension grows. 

Walsh transforms can be applied to  generate Boolean permutations of the maximum non- 
linearity. Clearly, a permutation is a collection of n Boolean functions (coordinates). Any such 
a function has its Walsh spectrum which consists of 2"-' - 1 zeros, 2"-' elements are equal 
&(2"-' - 7) where 7 is the maximum non-linearity, and the last element F ( 0 )  is always equal 
to 2"-'. Among themselves, Walsh spectra of coordinates have to fulfil the same conditions as 
Boolean functions do. So, for any pair of coordinates, a pair of suitable nonzero Walsh spectrum 
elements F(G) (w' # 0) must overlap for 2n-2 elements (signs do not matter). 

Exponentiation is an convenient way to produce permutations of the maximum or close to 
maximum non-linearity. The  production of non-linear Boolean function or non-linear permu- 
tations in GF(2") is required in many applications for example while designing cryptographic 
algorithms, pseudorandom generators, etc. Squaring is always a linear operation in GF(2") 
but cubing provides a permutation of the maximum non-linearity for n=3,5,7,0, note that for 
n=4,6,S, ... , i t  does not generate a permutation as 3 divides 2" - 1. It seems that any generator 
of a multiplicative group CG should share the same non-linearity as each generator produces 
by concatenation all possible exponent permutations. We have found that this statement is not 
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true in general. There are, however, many still open questions about exponent permutations 
and their non-linearities. Some of them are listed below. 

1. What is the relation between the value of an exponent and its permutation non-linearity 
? 

2. What is the dependence between the order modulo 2n - 1 of an exponent and i t s  permu- 
tation non-linearity ? 

3. What is the non-linearity spectrum of all exponents which produce permutations ? 

4. What is the non-linearity spectrum of primitive generators of CG ? 

5. Do permutations for e = 3 attain the maximum for all GF(2"),  where n is odd ? 

6. Does non-linearity of exponent permutations depend upon a field generator for larger n or 
not ? 

There is a common consensus tha t  non-linearity is a desirable cryptographic feature. HOW- 
ever, in practice, while choosing non-linear permutations for a DES-like cryptographic algorithm, 
we face the question of whether permutations of the maximum non-linearity are "good" from a 
cryptographic point of view or permutations of the average non-linearity are better. Although 
exponent permutations are sucessfully being used in both the Rivest-Shamir-Adleman and the 
Diffie-Hellman cryptosystems and exponentiation itself is difficult to invert if you are dealing 
with large enough instance (large enough GF(2")), i t  is difficdt to say if exponent permutations 
for small parameters n could generate a "strong" enciphering algorithm. 

exponent permutations generates a 
linear one, we notice that a well known iteration attack (see [SN77] or [SPSS]) on exponential 
cryptosystems is more efficient in GF(2"). The iteration attack has always worked weII if there 
is a small number of concatenations of exponent permutations (the exponent permutation is 
given by a public key) tha t  give the  identity permutation. In GF(2"), however, it  is sufficient 
to create a concatenation of exponent permutations which produces a linear permutation. As 
the set of all linear permutations is closed according to the inversion operation, we can easily 
find the inverse linear permutation and generate the identity permutation. 

Considering the fact that concatenation of any 
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