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Abstract—Exploiting both RGB (2D appearance) and Depth
(3D geometry) information can improve the performance of
semantic segmentation. However, due to the inherent differ-
ence between the RGB and Depth information, it remains
a challenging problem in how to integrate RGB-D features
effectively. In this letter, to address this issue, we propose a Non-
local Aggregation Network (NANet), with a well-designed Multi-
modality Non-local Aggregation Module (MNAM), to better
exploit the non-local context of RGB-D features at multi-stage.
Compared with most existing RGB-D semantic segmentation
schemes, which only exploit local RGB-D features, the MNAM
enables the aggregation of non-local RGB-D information along
both spatial and channel dimensions. The proposed NANet
achieves comparable performances with state-of-the-art methods
on popular RGB-D benchmarks, NYUDv2 and SUN-RGBD.

Index Terms—Convolutional neural network, RGB-D semantic
segmentation, Multi-modality feature fusion.

I. INTRODUCTION

IMAGE semantic segmentation, aiming at assigning a se-

mantic category to each pixel in an image, is a fundamental

task of computer vision. With remarkable achievements [1]–

[3], it has been widely applied in autonomous driving [4],

virtual reality [5] and medical diagnosis [6] to name a few. In

recent years, the development of commercial RGB-D sensors

has leveraged additional 3D geometric information to further

improve the performance of semantic segmentation.

The pioneering work of RGB-D semantic segmentation,

FuseNet [7], makes use of convolutional neural networks

(CNNs) to incorporate complementary depth information into

a semantic segmentation framework. Recently, some works

achieve great progress by adaptively extracting or fusing

RGB-D features. RDFNet [8] proposed to capture multi-

scale RGB-D features via multi-modality feature fusion blocks

and multi-scale feature refinement blocks. Jiao et al. [9]

proposed to improve the quality of semantic segmentation by

distilling geometry-aware embedding. [10] adaptively fused

RGB-D features by replacing identity mappings with idem-

potent mappings, but the mapping matrix is hard to choose.

ACNet [11] proposed an Attention Complementary Module
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to extract weighted features from RGB and Depth branches,

but it lacks long-range cross-modality dependencies. Chen et

al. [12] proposed an SA-Gate unit to ensure cross-modality

features aggregation via channel-wise attention mechanism,

but it lacks non-local spatial cross-modality interaction, which

is profoundly important for RGB-D semantic segmentation.

CANet [13] proposed to take advantages of long-range cross-

modality interdependencies via position and channel attention

modules, but it only aggregates the non-local cross-modality

features at the final stage of the encoder, which cannot exploit

multi-scale non-local cross-modality information.

In this letter, we propose a Non-local Aggregation Network

(NANet) to better exploit the non-local context of RGB-D fea-

tures at multi-stage. Particularly, a new Multi-modality Non-

local Aggregation Module (MNAM) is designed to capture

both spatial and channel-wise long-range dependencies in the

NANet. In detail, the MNAM enlarges the receptive fields

along the horizontal and vertical spatial dimensions to capture

non-local spatial context. Furthermore, we adopt channel-wise

global average pooling and multi-layer perceptron (MLP) to

capture cross-modality channel-wise dependencies. By repeat-

ing this aggregation process several times, comprehensive

long-range dependencies can be built over the whole RGB-

D image. Extensive experiments on two challenging RGB-D

semantic segmentation benchmarks, NYUDv2 [14] and SUN-

RGBD [15], confirm the effectiveness of our NANet.

In short, the main contributions of our work are two-fold.

1) We propose a non-local aggregation network called NANet,

which achieves comparable performances with state-of-the-art

methods on popular RGB-D benchmarks, NYUDv2 and SUN-

RGBD. 2) We propose a novel multi-modality non-local aggre-

gation module called MNAM, which can effectively integrate

non-local RGB-D features along different dimensions.

II. METHOD

This section first presents an overview of the proposed

NANet, and then explains technical details about how to ef-

fectively aggregate non-local RGB-D features via the MNAM.

A. Overview of Non-local Aggregation Network

As shown in Fig. 1, the NANet incorporates several MNAM

into a two-stream backbone network, which enables a multi-

stage exploitation of non-local RGB-D information. Addition-

ally, we also use the intermediate non-local RGB-D features,

from the MNAM at the fourth stage, to generate coarse seg-

mentation results supervised by an auxiliary loss to facilitate

the learning.
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Differing from [8]–[13], the proposed NANet has two

novelties. First, the MNAM, in the NANet, has a strong

capability of modeling both spatial and channel-wise long-

range dependencies. Secondly, the NANet fully exploits multi-

stage RGB-D features for non-local information aggregation.

MNAM: Multi-modality Non-local Aggregation Module
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Fig. 1. Non-local Aggregation Network.
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Fig. 2. Schematic diagram of the MNAM.

As illustrated in Fig. 2, the MNAM first models the RGB-

D long-range dependencies in the spatial dimension by a

Spatial Fusion Module (SFM), and then models the cross-

modality context dependencies along the channel dimension

by a Channel Fusion Module (CFM).
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Fig. 3. Schematic diagram of the Spatial Fusion Module.

1) Spatial Fusion Module: As shown in Fig. 3, given raw

RGB-D features (Frgb ∈ RC×H×W and Fd ∈ RC×H×W), where

C is the channel number and H and W are the spatial height

and width, for each spatial location, the SFM is first used

to aggregate long-range contextual information of RGB and

Depth features along the horizontal and vertical spatial di-

mensions, respectively. The non-local information for features

(F ∈ RC×H×W) along vertical dimension (Fv ∈ RC×1×W)

and horizontal dimension (Fh ∈ RC×H×1) can be obtained

via global average pooling as

F v(c, 1, j) =
1

H

H−1∑

i=0

F(c, i, j), (1)

Fh(c, i, 1) =
1

W

W−1∑

j=0

F(c, i, j). (2)

Then, 1×3 and 3×1 convolutions are used to enlarge the re-

ceptive fields along vertical and horizontal spatial dimensions,

respectively. And these global priors are expanded into the

original dimension via bilinear interpolation. In this way, each

locations in Fv and Fh can build relationships with the pixels

in F that are with the near horizontal or vertical coordinate.

After aggregating the non-local features of raw RGB and

Depth features, respectively (i.e., Frgb → Fv
rgb, Fh

rgb; and Fd

→ Fv
d, Fh

d), we use a softmax function to adaptively get the

weight (wv
rgb, wv

d , wh
rgb, and wh

d ) for Fv
rgb, Fv

d, Fh
rgb, and Fh

d

according to their spatial responses (Eq. 3-Eq. 6). Then, the

merged non-local features (Fv
rgb-d and Fh

rgb-d) can be obtained

as the weighted sum (Eq. 7 and Eq. 8), respectively. In this

way, the modality (RGB or Depth), having a stronger response,

will make more contribution to the Fv
rgb-d and Fh

rgb-d. This

mechanism effectively exploits the complementarity of cross-

modality features.

wv
rgb(c, i, j) =

eF
v
rgb(c,i,j)

eF
v
rgb

(c,i,j) + eF
v
d
(c,i,j)

, (3)

wv
d(c, i, j) = 1− wv

rgb(c, i, j), (4)

wh
rgb(c, i, j) =

eF
h
rgb(c,i,j)

eF
h
rgb

(c,i,j) + eF
h
d
(c,i,j)

, (5)

wh
d (c, i, j) = 1− wh

rgb(c, i, j). (6)

F v
rgb−d(c, i, j) = wv

rgb(c, i, j) · F
v
rgb(c, i, j)

+ wv
d(c, i, j) · F

v
d(c, i, j),

(7)

Fh
rgb−d(c, i, j) = wh

rgb(c, i, j) · F
h
rgb(c, i, j)

+ wh
d (c, i, j) · F

h
d(c, i, j),

(8)

Finally, the non-local RGB-D spatial features (Fs) can be

written as

Fs = F v
rgb−d + Fh

rgb−d. (9)

That is, we eventually embed the non-local RGB-D spatial

features (Fs) into the raw RGB-D features (Frgb and Fd) to

integrate the local RGB-D information flow and the non-local

RGB-D spatial information (Fig. 3).

To facilitate the understanding of the SFM, we illustrate the

receptive fields on the SFM in Fig. 4. Each position in the raw

RGB-D features (Frgb and Fd) is allowed to build relationships

with various positions (in the red bounding box) via the SFM.
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Fig. 4. Illustration of the receptive fields on the SFM.

Repeating this aggregation process several times, during the

features extraction stage, will enable us to build long-range

dependencies over the whole RGB-D image.

2) Channel Fusion Module: We also propose a CFM to

exploit cross-modality channel dependencies.

GAP

: Element-wise Addition

: Concatenation

: Element-wise Multiplication

Channel Fusion Module

Sigmoid(!)

Sigmoid(!)

!!"#
%

&

'

!!"#&$
(

⨁

⨂

⨂

⨁

⨂

⊛

⊛

!$
%

!(#)

%(#)

Fig. 5. Schematic diagram of the Channel Fusion Module.

As shown in Fig. 5, the proposed CFM first captures RGB-

D channel-wise responses (C ∈ R2C×1×1):

C = GAP (Cat(F
′

rgb,F
′

d)), (10)

where Cat(·) denotes the concatenation operation along the

channel dimension, and GAP (·) denotes the global average

pooling along the channel-wise dimension.

Then, the CFM models the dependencies weight (α ∈
RC×1×1 and β ∈ RC×1×1) between cross-modality channels.

The α and β can be written as

α = Sigmoid(φ(C)), (11)

β = Sigmoid(ρ(C)), (12)

where Sigmoid(·) is the activation function, and φ(·) and ρ(·)
are two fully connected layers which can adaptively transform

C to different embeddings (R2C×1×1 → RC×1×1).

Finally, the fused RGB-D features (Frgb−d ∈ RC×H×W) can

be written as

Frgb−d = α⊗ F
′

rgb + β ⊗ F
′

d, (13)

where ⊗ is the channel-wise multiplication.

The proposed CFM can learn a nonlinear interaction

between cross-modality channels, which models the cross-

modality channel-wise dependencies comprehensively.

III. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to verify

the effectiveness of the proposed method.

1) Datasets: We conduct experiments on two popular

benchmark datasets: NYUDv2 [14] and SUN-RGBD [15].

The NYUDv2 dataset contains 1,449 RGB-D images with 40

classes, in which 795 images are used for training, and the rest

654 images are for testing. The SUN-RGBD dataset has 37

categories and contains 10,335 RGB-D images (5,285 images

for training and 5,050 for testing).

2) Metrics: To evaluate the performance of different

methods, we use the prevailing pixel accuracy

(Pixel Acc. =
∑

i
nii

s
) and mean Intersection-over-Union

(mIoU = 1
nc

∑
i

nii

si−nii+
∑

j
nji

), where nij is the number of pixels

with ground-truth class i predicted as class j; nc is the total

number of classes; si is the number of pixels with ground

truth class i; and s is the total number of all pixels.

3) Implementation Details: We use the PyTorch frame-

work. The Depth images are encoded into HHA [16] images.

For a fair comparison, following [10]–[12], [17], we use the

DeepLab V3+ [1] as the baseline. All the backbone networks

(ResNet-50 [18] and ResNet-101) are pre-trained on ImageNet

dataset [19]. For training, we set the initial learning rate as

0.02, weight decay as 0.0005, crop size as 480×480. We use

a batch size of 16 and train the proposed model for 400/100

epochs on the NYUDv2 [14]/ SUN-RGBD [15], respectively.

Notably, we choose the polynomial learning rate policy with

factor (1− iter
itermax

)0.9. Our loss function is composed by two

cross entropy losses. The weight on the final output loss is 1,

and the weight on the auxiliary loss (the output layer of the

fourth MNAM) is 0.2. For data augmentation, we use random

horizontal flipping, scaling with scale ∈ {0.75, 1, 1.25}. When

compared with state-of-the-art methods, we adopt flipping and

multi-scale inference strategies as a test-time augmentation.

A. Comparisons with State-of-the-arts

As shown in Table I, the proposed NANet achieves leading

performance. The ResNet-101 based NANet achieves an mIoU

score of 52.3% on the NYUDv2 dataset. Moreover, our

ResNet-50 based model still outperforms many ResNet-101

or ResNet-152 based models, indicating the effectiveness of

aggregating the non-local RGB-D features. In addition, as

shown in Table II, our ResNet-101 based NANet also performs

well on the SUN-RGBD dataset, achieving an mIoU score of

48.8%.

B. Ablation Studies

To demonstrate the proposed MNAM’s effectiveness, we

conduct various ablation studies on the NYUDv2 dataset.

In the first ablation study, we gradually embed MNAM

behind different stages of ResNet50 to verify the impact of

MNAM at different stages. We average the predictions of two
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TABLE I

COMPARISONS WITH THE STATE-OF-THE-ARTS ON THE

NYUDV2 [14] DATASET. TOP TWO ARE IN BOLD.

Method Input Backbone mIoU(%) Pixel Acc.(%)

RefineNet [2] RGB ResNet-152 46.5 73.6
Jiao et al. [9] RGB ResNet-50 59.6 84.8

ACNet [11] RGB-D ResNet-50 48.3 -
D-CNN [17] RGB-D ResNet-152 48.4 -
RDF-101 [8] RGB-D ResNet-101 49.1 75.6
PAD-Net [20] RGB-D ResNet-50 50.2 75.2

PAP [21] RGB-D ResNet-50 50.4 76.2
Xing et al. [10] RGB-D ResNet-101 50.6 76.3

CANet [13] RGB-D ResNet-101 51.2 76.6
Chen et al. [12] RGB-D ResNet-50 51.3 -

NANet RGB-D ResNet-50 51.4 77.1
NANet RGB-D ResNet-101 52.3 77.9

TABLE II

COMPARISONS WITH THE STATE-OF-THE-ARTS ON THE

SUN-RGBD DATASET [15]. TOP TWO ARE IN BOLD.

Method Input Backbone mIoU(%) Pixel Acc.(%)

RefineNet [2] RGB ResNet-152 45.9 80.6
Jiao et al. [9] RGB ResNet-50 54.5 85.5

Kong et al. [22] RGB-D ResNet-50 45.1 80.3
3DGNN [23] RGB-D ResNet-101 45.9 -
RDF-152 [8] RGB-D ResNet-152 47.7 81.5
RedNet [24] RGB-D ResNet-50 47.8 81.3

CFN [25] RGB-D ResNet-152 48.1 -
ACNet [11] RGB-D ResNet-50 48.1 -
CANet [13] RGB-D ResNet-50 48.1 81.6

NANet RGB-D ResNet-50 48.0 82.1
NANet RGB-D ResNet-101 48.8 82.3

TABLE III

ABLATION STUDIES ON THE NYUDV2 DATASET FOR

MNAM BEHIND DIFFERENT STAGES OF RESNET-50.

Method Stage1 Stage2 Stage3 Stage4 mIoU(%)

ResNet50 46.3
ResNet50 X 47.8
ResNet50 X 48.1
ResNet50 X 47.7
ResNet50 X 47.1
ResNet50 X X 48.3
ResNet50 X X X 48.8
ResNet50 X X X X 49.4

parallel ResNet-50 as the final segmentation result. As shown

in Table III, when stacking MNAM stage by stage, the ResNet-

50 can be boosted continuously, indicating the effectiveness of

using multi-scale non-local cross-modality features.

In the second ablation study, we average the predictions

of two parallel ResNet-50 based DeepLab V3+ [1] as the

baseline. As shown in Table IV, both the CFM and the SFM

TABLE IV

ABLATION STUDIES ON THE NYUDV2 DATASET FOR CFM,

SFM AND MNAM.

Method mIoU(%) Pixel Acc.(%)

Baseline 47.8 75.2
Baseline + CFM 49.6 76.4
Baseline + SFM 50.5 76.8

Baseline + MNAM 51.4 77.1

can boost performance via aggregating cross-modality non-

local dependencies. Moreover, by embedding the MNAM at

multi-stage, the baseline’s performance can be boosted by

about 3.6% in mIoU (from 47.8% to 51.4%).

DepthRGB Baseline Baseline + MNAM Ground Truth

Fig. 6. Visualization of results on the NYUDv2 dataset. The

red boxes mark where our method (fourth column) is superior

to the baseline method (third column).

Finally, in Fig. 6, we display some qualitative results on the

NYUDv2 dataset, which clearly demonstrate that adding the

MNAM to the baseline can effectively improve the semantic

consistency. For example, the baseline is troubled with local

inconsistency on large objects like sofa (first row), wall

(second row) and cabinet (third row), window (fourth row),

etc., while our method can mitigate this issue.

IV. CONCLUSION

In this letter, we propose a non-local aggregation network

(NANet) to better exploit the non-local context of RGB-D

features at multi-stage for RGB-D semantic segmentation. Par-

ticularly, a new multi-modality non-local aggregation module

(MNAM), embedded in multi-stage of the NANet, is well

designed to capture both spatial and channel-wise long-range

dependencies in RGB-D features. Extensive experimental re-

sults confirm the effectiveness of our method on the popular

NYUDv2 and SUN-RGBD datasets.
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