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NON-LOCAL APPROXIMATION OF FREE-DISCONTINUITY PROBLEMS
WITH LINEAR GROWTH

Luca Lussardi1 and Enrico Vitali1

Abstract. We approximate, in the sense of Γ-convergence, free-discontinuity functionals with linear
growth in the gradient by a sequence of non-local integral functionals depending on the average of
the gradients on small balls. The result extends to higher dimension what we already proved in the
one-dimensional case.
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1. Introduction

A number of variational problems recently under consideration involves integral functionals with “free dis-
continuities” (according to a terminology introduced in [20]): the variable function u is required to be smooth
only outside a surface K, depending on u, and both u and K enter the structure of the functional. Hence, a
typical form is:

F (u,K) =
∫

Ω\K

φ(|∇u|) dx +
∫

K∩Ω

ϑ(|u+ − u−|) dHn−1 ,

where Ω is an open subset of Rn, K is a (n− 1)-dimensional compact set, |u+ − u−| is the jump of u across K,
while φ and ϑ are given positive functions (and Hn−1 denotes the (n− 1)-dimensional Hausdorff measure).

The natural weak formulation is obtained looking at K as the set of discontinuities of u, thus working in
spaces of functions allowing hypersurfaces of discontinuities, such as the space BV (Ω) of functions of bounded
variation.

The main difficulty in the actual minimization of F is the presence of the (n− 1)-dimensional integral: the
need of suitable approximations (leading to the convergence of minimum points) by means of more manageable
functionals naturally arises. The method introduced in [12], when φ(t) = t2 and ϑ is constant, makes use of
integral functionals whose density depends on the average of the gradient on small balls. Here we apply this
model to the case of φ having linear growth at infinity.

The aforementioned weak form of F in BV (Ω) takes the form:

F (u) =
∫

Ω

φ(|∇u|) dx +
∫

Su

ϑ(|u+ − u−|) dHn−1 + c0|Dcu|(Ω) , (1.1)
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where Du = ∇u dx+(u+−u−) dHn−1+Dcu is the decomposition of the measure derivative of u in its absolutely
continuous, jump and Cantor part, respectively, and Su denotes the set of discontinuity points of u. Assuming
that φ is convex and ϑ is concave, with

lim
t→+∞

φ(t)
t

= c0 = lim
t→0+

ϑ(t)
t

, (1.2)

it turns out that F is lower semicontinuous with respect to the L1-topology. Note that if φ has superlinear
growth at infinity then c0 = +∞ and F (u) is finite only if Du has no Cantor part (i.e. u belongs to the so-called
space of special functions with bounded variation). The well-known Mumford-Shah functional falls within this
case:

∫
Ω |∇u|2 dx+ Hn−1(Su).

As pointed out in [12], it is not possible to obtain a variational approximation of F by usual integral functionals
of the form

Fε(u) =
∫

Ω

fε(∇u) dx

on Sobolev spaces; indeed, passing to the lower semicontinuous envelopes, this would lead to a convex limit,
which contrasts with the non-convexity of F .

Heuristic arguments suggest that to get around the difficulty we have to prevent the consideration or the
optimality of approximation gradients which are “too large” (with respect to 1/ε), or to prevent that the effect
of “large” gradients is concentrated on “small” regions. Several approximation methods fit this requirements:
see, e.g., the case where the functionals Fε are restricted to finite elements spaces on regular triangulations of
size ε [9, 13, 23]; or the implicit constraint on the gradient through the addition of a higher order penalization
[1, 3, 22]; or the study of non-local models, where the effect of a “large” gradient is “spread” onto a set of size
ε: this is the method which was first applied to the Mumford-Shah functional by Braides and Dal Maso in
[12] (see also [11, 14–16, 18]), and that we follow in this paper for the case of linear growth. We also have to
mention the Ambrosio and Tortorelli approximation (see [6] and [7]) of the Mumford-Shah functional via elliptic
functionals, where an additional variable, say v, which approaches the characteristic function of the complement
of the discontinuity set, is introduced.

A variant of this last method was studied in [25,26] and [2] for functionals with linear growth in the gradient:
the attempt is to unify the curve evolution method used in Computer Vision to detect boundaries, and the
pre-processing of the image to provide an “edge-strength” function v, which indicates the likelihood of an
object boundary being present at any point of the domain (compare with the additional variable v in the
Ambrosio-Tortorelli functional). Indeed, in the method of shape recovery by curve evolution, we try to detect
the boundaries as curves Γ where the image intensity gradient (hence v) is high; therefore, we apply gradient
descent to the functional

∫
Γ(1− v)2 dH1 (see [25] and [26]). Following Osher and Setian [24] it is convenient to

embed the initial curve in a surface (the graph of a function u) as a level curve, and to apply the evolution to
the surface, so that all of its level curves evolve simultaneously. Hence the functional

∫ +∞
−∞
∫
{u=c}(1−v)2 dH1 dc

is taken into account. By the coarea formula this is nothing but∫
Ω

(1 − v)2|∇u| dx.

In [25] and [26] a new segmentation functional was proposed by inserting this term in place of the square-gradient
term of the Ambrosio-Tortorelli functional. In [2] the limit functional is proved to be of the form (1.1), with φ
satisfying (1.2).

Here we tackle the problem of the approximation of a functional F as in (1.1) with φ of linear growth, by
the method of non-local functionals. More precisely, we consider the problem of the convergence of

Fε(u) =
1
ε

∫
Ω

f

(
ε

∫
Bε(x)∩Ω

|∇u(y)|dy
)

dx
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as ε→ 0 (here Bε(x) denotes the ball of centre x and radius ε). Unlike the one-dimensional case we dealt with
in [21], here we restrict the study to a fixed integrand function f , independent of ε. In the limit (see Th. 3.1) the
bulk and Cantor parts are completely determined by the behaviour of f at 0 (namely, we get f ′(0)(|Dau|(Ω) +
|Dcu|(Ω)) while the surface energy density can be explicitely computed as ϑ(s) = 2

∫ 1

0 f
(

ωn−1
ωn

s(
√

1 − t2)n−1
)

dt

(here ωk denotes the volume of the k-dimensional ball in Rk).

2. Notation and preliminaries

Let n ≥ 1 be a fixed integer. The scalar product of x, y ∈ Rn is denoted by 〈x, y〉 and the euclidean norm
by |x|. The open ball with centre x and radius r is indicated by Br(x); the boundary of the unit ball B1(0) is
denoted by Sn−1. The Lebesgue measure and the (n−1)-dimensional Hausdorff measure of a Borel set B ⊆ Rn

are denoted by |B| (or Ln(B)) and Hn−1(B), respectively. We use standard notation for Lebesgue spaces Lp(Ω)
and Sobolev spaces W 1,p(Ω).
Functions of bounded variation. For a thorough treatment of BV functions we refer to [5]. Let Ω be an open
subset of Rn. We recall that the space BV (Ω) of real functions of bounded variation is the space of the functions
u ∈ L1(Ω) whose distributional derivative is representable by a measure in Ω, i.e.,∫

Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

ϕdDiu for every ϕ ∈ C∞
c (Ω) and i = 1, . . . , n

for some Rn-valued measure Du = (D1u, . . . , Dnu) on Ω. Clearly, the Sobolev space W 1,1(Ω) is contained in
BV (Ω).

Let u ∈ BV (Ω). We say that u has approximate limit at x ∈ Ω if there exists z ∈ R such that

lim
�→0+

∫
B�(x)

|u(y) − z| dy = 0.

The set Su where this property fails is called approximate discontinuity set of u. The vector z is uniquely
determined for any point x ∈ Ω \ Su and is called the approximate limit of u at x and denoted by ũ(x).

We say that x is an approximate jump point of the function u ∈ BV (Ω) if there exist a, b ∈ R and ν ∈ Rn

with |ν| = 1, such that a 
= b and

lim
�→0+

∫
B+

� (x,ν)

|u(y) − a| dy = 0, lim
�→0+

∫
B−

� (x,ν)

|u(y) − b| dy = 0 , (2.1)

where B+
� (x, ν) = {y ∈ B�(x) : 〈y − x, ν〉 > 0} and B−

� (x, ν) = {y ∈ B�(x) : 〈y − x, ν〉 < 0}. The set of
approximate jump points of u is denoted by Ju. The triplet (a, b, ν), which turns out to be uniquely determined
up to a permutation of a and b and a change of sign of ν, is denoted by (u+(x), u−(x), νu(x)). On Ω \Su we set
u+ = u− = ũ.

Theorem 2.1 (Federer-Vol’pert). For any u ∈ BV (Ω) the set Su is countably (n−1)-rectifiable and Hn−1(Su \
Ju) = 0. Moreover, Du Ju = (u+ − u−)νuHn−1 Ju, and νu(x) gives the approximate normal direction to
Ju for Hn−1-a.e. x ∈ Ju.

For a function u ∈ BV (Ω) let Du = Dau + Dsu be the (Lebesgue) decomposition of Du into absolutely
continuous and singular part. We denote by ∇u the density of Dau; the measures

Dju := Dsu Ju , Dcu := Dsu (Ω \ Su)

are called the jump part and the Cantor part of the derivative, respectively. Since Du vanishes on Hn−1-
negligible Borel sets (see [5], Lem. 3.76), from the Federer-Vol’pert Theorem we can write:

Du = ∇uLn + (u+ − u−)νuHn−1 Su +Dcu.
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Finally, let us recall the following important compactness Theorem in BV (see Th. 3.23 and Prop. 3.21 in [5]):

Theorem 2.2. Let Ω be a bounded open subset of Rn with Lipschitz boundary. Every sequence (uh) in BV (Ω)
which is bounded in BV (Ω) admits a subsequence converging in L1(Ω) to a function u ∈ BV (Ω).

Spaces SBV and GSBV . Let Ω be an open subset of Rn. We say that a function u ∈ BV (Ω) is a special
function of bounded variation (u ∈ SBV (Ω)) if |Dcu|(Ω) = 0.

We say that a function u ∈ L1(Ω) is a generalized function of bounded variation (u ∈ GBV (Ω)) if uT :=
(−T ) ∨ u ∧ T belongs to BV (Ω) for every T ≥ 0.

If u ∈ GBV (Ω), the function ∇u given by

∇u = ∇uT Ln-a.e. on {|u| ≤ T }, (2.2)

turns out to be well-defined ([5], Th. 4.34). Moreover, the set function T �→ SuT is monotone increasing;
therefore, if we set 1 Su =

⋃
T>0 SuT , by the Federer-Vol’pert Theorem, for Hn−1-a.e. x ∈ Su we can consider

the functions of T :
(uT )−(x) , (uT )+(x) ,

which turn out to be monotone; then the traces:

u−(x) = lim
T→+∞

(uT )−(x) , u+(x) = lim
T→+∞

(uT )+(x) (2.3)

are well-defined for Hn−1-a.e. x ∈ Su.
Finally, for a function u ∈ GBV (Ω), we define (see [5], Def. 4.33) |Dcu| as the supremum (in the sense of

measures) of |DcuT | for T > 0. It can be proved that for any Borel subset B of Ω

|Dcu|(B) = lim
T→+∞

|DcuT |(B) . (2.4)

Slicing. Let us now recall some basic properties of one-dimensional sections of BV functions; they will enter
the so-called slicing methods to reduce to lower-dimensional statements (see, e.g., [4]). We first introduce some
notation. Let ξ ∈ Sn−1, and let ξ⊥ = {y ∈ Rn : 〈y, ξ〉 = 0} be the linear hyperplane orthogonal to ξ. If
y ∈ ξ⊥ and E ⊆ Rn we set Eξ,y = {t ∈ R : y + tξ ∈ E}. Moreover, for any given function u : Ω → R we define
uξ,y : Ωξ,y → R by uξ,y(t) = u(y + tξ). For the results collected in the following theorem see [5], Section 3.11.

Theorem 2.3. Let u ∈ BV (Ω). Then uξ,y ∈ BV (Ωξ,y) for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ ξ⊥. For
such values of y we have (denoting by u′ξ,y the absolutely continuous part of the measure derivative of uξ,y):

u′ξ,y(t) = 〈∇u(y + tξ), ξ〉 for a.e. t ∈ Ωξ,y ; Suξ,y
= (Su)ξ,y .

Moreover, for every open subset A of Ω we have∫
ξ⊥

|Dcuξ,y|(Aξ,y)dHn−1(y) = |〈Dcu, ξ〉|(A) ,

and for every positive Borel function g∫
ξ⊥

∑
t∈Suξ,y

g(y + tξ)dHn−1(y) =
∫

Su

g(x)|〈νu, ξ〉|dHn−1.

1It turns out that if x ∈ Ω \ Su then u has an approximate limit (in the sense of Federer) at x, i.e. there exists z ∈ R such that
for any ε > 0 the set {y ∈ Ω : |u(y) − z| > ε} has density 0 at x.
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Conversely, if u ∈ L1(Ω) and for all ξ ∈ {e1, . . . , en} and for a.e. y ∈ ξ⊥, uξ,y ∈ BV (Ωξ,y) and
∫

ξ⊥
|Duξ,y|(Ωξ,y)dHn−1(y) < +∞,

then u ∈ BV (Ω).

Relaxation. We recall that the relaxed functional F of a given functional F is the largest lower semicontinuous
functional smaller than F . We will need the following relaxation theorem, which can be obtained from the
results contained in [8] (see, in particular, the proof of Theorem 3.1 and use the case f(t) = t + t2, too); see
also [2], Theorem 3.2. Here SBV 2(Ω) = {u ∈ SBV (Ω) : |∇u| ∈ L2(Ω), Hn−1(Su) < +∞}.
Theorem 2.4. Let ϑ : R → [0,+∞) be a continuous, concave function with ϑ(0) = 0 and limt→0 ϑ(t)/t = 1 .
Let Ω be a bounded open subset of Rn, and consider the functional F : BV (Ω) → [0,+∞] defined by

F (u) =

⎧⎨
⎩
∫

Ω

|∇u(x)|dx +
∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1 if u ∈ SBV 2(Ω) ∩ L∞(Ω),

+∞ otherwise.

Then the relaxed functional F of F on BV (Ω) with respect to the L1-topology is given by

F (u) =
∫

Ω

|∇u(x)| dx +
∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1 + |Dcu|(Ω).

Γ-convergence. For the general theory see [19]. Let (X, d) be a metric space. Let (Fj)j∈N be a sequence of
functions X → R. We say that (Fj) Γ-converges, as j → +∞, to F : X → R, if for all u ∈ X we have:

i) (lower semicontinuity inequality) for every sequence (uj) converging to u

F (u) ≤ lim inf
j→+∞

Fj(uj);

ii) (existence of a recovery sequence) there exists a sequence (uj) converging to u such that:

F (u) ≥ lim sup
j→+∞

Fj(uj).

If Fj equals the same functional G for every j, then the Γ-limit is nothing but the relaxed functional of G.
The lower and upper Γ-limits of (Fj) in u ∈ X are defined as

F ′(u) = inf
{
lim inf
j→+∞

Fj(uj) : uj → u
}
, (2.5)

F ′′(u) = inf
{
lim sup
j→+∞

Fj(uj) : uj → u
}
, (2.6)

respectively.
We extend this definition of convergence to families depending on a real parameter. Given a family (Fε)ε>0

of functions X → R, we say that it Γ-converges, as ε → 0, to F : X → R if for every positive infinitesimal
sequence (εj) the sequence (Fεj ) Γ-converges to F .

If we define the lower and upper Γ-limits of (Fε) as

F ′(u) = inf
{
lim inf

ε→0
Fε(uε) : uε → u

}
, (2.7)

F ′′(u) = inf
{
lim sup

ε→0
Fε(uε) : uε → u

}
, (2.8)
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respectively, then (Fε) Γ-converges to F in u if and only if F ′(u) = F ′′(u) = F (u). Both F ′ and F ′′ are lower
semicontinuous on X . In the estimate of F ′ we shall use the following immediate consequence of the definition:

F ′(u) = inf
{
lim inf
j→+∞

Fεj (uj) : εj → 0+, uj → u
}
. (2.9)

It turns out that the infimum is attained.
We will also use the fact (see [19], Prop. 6.11) that the lower and upper Γ-limits of a sequence of functionals

coincide with the lower and upper Γ-limits, respectively, of the sequence of the corresponding relaxed functionals.
An important consequence of the definition of Γ-convergence is the following result about the convergence of

minimizers (see, e.g., [19], Cor. 7.20):

Theorem 2.5. Let Fj : X → R (j ∈ N) be a sequence of functions which Γ-converge to some F : X → R;
assume that infv∈X Fj(v) > −∞ for every j. Let (εj) be a positive infinitesimal sequence, and for every j let
uj ∈ X be an εj-minimizer of Fj , i.e.

Fj(uj) ≤ inf
v∈X

Fj(v) + εj .

Assume that uj → u for some u ∈ X. Then u is a minimum point of F , and F (u) = lim
j→+∞

Fj(uj).

Remark 2.6. We also point out the following property, which is a direct consequence of the definition of
Γ-convergence: if Fε

Γ→ F then Fε +G
Γ→ F +G whenever G is continuous.

In conclusion we recall the following useful tool, which can be found in [10].

Lemma 2.7 (supremum of measures). Let Ω be an open subset of Rn and denote by A(Ω) the family of its open
subsets. Let λ be a positive Borel measure on Ω, and µ : A(Ω) → [0,+∞) a set function which is superadditive
on open sets with disjoint compact closures (i.e. if A,B ⊂⊂ Ω and A ∩B = ∅, then µ(A ∪B) ≥ µ(A) + µ(B)).
Let (ψi)i∈I be a family of positive Borel functions. Suppose that

µ(A) ≥
∫

A

ψidλ for every A ∈ A(Ω) and i ∈ I;

then

µ(A) ≥
∫

A

sup
i
ψidλ for every A ∈ A(Ω).

Corollary 2.8. Let µ be as in Lemma 2.7. Let λ1, λ2 be mutually singular Borel measures, and ψ1, ψ2 positive
Borel functions. Assume that

µ(A) ≥
∫

A

ψidλi for every A ∈ A(Ω) and i = 1, 2 .

Then

µ(A) ≥
∫

A

ψ1dλ1 +
∫

A

ψ2dλ2 for every A ∈ A(Ω) .

Proof. Let E ⊆ Ω be such that λ1(Ω \ E) = 0 and λ2(E) = 0. Then we can suppose that ψ1 = 0 on Ω \ E and
ψ2 = 0 on E. Then ψ1 ∨ ψ2 = ψ1 + ψ2. We now conclude by applying the preceeding lemma with λ = λ1 + λ2.

�
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3. Statement of the results

Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary, and f : [0,+∞) → [0,+∞) be a non-decreasing,
strictly concave and C2 function such that

lim
t→0+

f(t)
t

= 1 .

For every ε > 0 let Fε : L1(Ω) → R, be defined by

Fε(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ε

∫
Ω

f

(
ε

∫
Bε(x)∩Ω

|∇u(y)|dy
)

dx if u ∈W 1,1(Ω)

+∞ otherwise.

(3.1)

The main result is the following theorem:

Theorem 3.1. The family (Fε)ε>0, defined in (3.1), Γ-converges, in the L1-topology as ε→ 0, to the functional
F : L1(Ω) → [0,+∞] given by

F(u) =

⎧⎨
⎩
∫

Ω

|∇u(x)|dx +
∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1 + |Dcu|(Ω) if u ∈ GBV (Ω)

+∞ otherwise,

with

ϑ(s) = 2
∫ 1

0

f

(
ωn−1

ωn
s(
√

1 − t2)n−1

)
dt (s > 0), (3.2)

where ωk denotes the volume of the k-dimensional ball in Rk (with ω0 = 1).

If n = 1 and Ω = (a, b), this result follows as a particular case of Theorem 3.3 in [21]; the corresponding form
of the jump energy density is

ϑ(s) = 2f
(s

2

)
.

Theorem 3.2 (compactness). Let (εj) be a positive infinitesimal sequence, and let (uj) be a sequence in L1(Ω)
such that ‖uj‖∞ ≤ M, and Fεj (uj) ≤ M for a suitable constant M independent of j. Then there exists a
subsequence (ujk

) converging in L1(Ω) to a function u ∈ BV (Ω).

As an example of application of these results we consider the following corollary.

Corollary 3.3. Let (εj) be a positive infinitesimal sequence and g ∈ L∞(Ω). For every u ∈ L1(Ω) and j ∈ N,
define:

Gj(u) = Fεj (u) +
∫

Ω

|u(x) − g(x)| dx ,
and

G(u) = F(u) +
∫

Ω

|u(x) − g(x)| dx .
For every j let uj be a σj-minimizer of Gj in L1(Ω) (with σj ↘ 0), i.e. Gj(uj) ≤ infL1(Ω) Gj + σj . Then (uj)
converges, up to a subsequence, to a minimizer of G in L1(Ω).

Proof. Since g ∈ L∞(Ω) and Fεj decreases by truncation, we can assume that (uj) is equibounded. By
Theorem 3.2 there exists u ∈ BV (Ω) such that (up to a subsequence) uj → u in L1(Ω). By Theorem 2.5, since
(Gj) Γ-converge to G (recall Rem. 2.6), u is a minimum point of G on L1(Ω). �
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Remark 3.4. We will need the following “localization” of the functional Fε: for every open subset A of Ω,
we set

Fε(u,A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ε

∫
A

f

(
ε

∫
Bε(x)∩Ω

|∇u(y)|dy
)

dx if u ∈W 1,1(Ω)

+∞ if u ∈ L1(Ω) \W 1,1(Ω).

Clearly, Fε

(·,Ω) coincides with the functional Fε defined in (3.1). The lower and upper Γ-limits of
(
Fε(·, A)

)
(see Sect. 2) will be denoted by F ′(·, A) and F ′′(·, A), respectively.

Note that, if A ⊂⊂ Ω, the lower and upper Γ-limits of (Fε(·, A)) do not change by replacing Ω with any
Ω′ ⊃⊃ A.

Remark 3.5. The one-dimensional version of Theorem 3.1 will be used in the volume estimate of the lower
Γ-limit (see Prop. 4.7) when applying the so-called slicing method. Actually, we will need the stronger form of
the lower Γ-limit estimate contained in Remark 3.4 of [21]: if n = 1 and Ω = (a, b), then

F ′(u,A) ≥
∫

A

|u′(x)| dx + 2
∑

x∈Su∩A

f

(
1
2
|u+(x) − u−(x)|

)
+ |Dcu|(A)

for every u ∈ GBV (Ω) and A open subset of Ω. The extension to an arbitrary bounded open subset Ω of R and
A ⊂⊂ Ω is immediate.

In the computation of the upper Γ-limit we will use the following result. Here the Lipschitz regularity of ∂Ω
guarantees that a function u ∈ BV (Ω) admits a BV -extension on a neighborhood of Ω (see, e.g., [5], Prop. 3.21);
and that there exists a constant γ > 0 such that:

|Bε(x) ∩ Ω| ≥ γεn (3.3)

for any x ∈ Ω and ε < diam(Ω).

Proposition 3.6. For every ε > 0, the relaxed functional of Fε in the L1-topology is given by

F ε(u) =
1
ε

∫
Ω

f

(
ε

|Bε(x) ∩ Ω| |Du|(Bε(x) ∩ Ω)
)

dx (3.4)

for every u ∈ BV (Ω).

Proof. Denote by Hε the functional on the right-hand side of (3.4), defined with value +∞ on L1 \ BV . Let
cε(x) = ε/|Bε(x) ∩ Ω|. It is easy to prove the L1-lower semicontinuity of Hε at every u ∈ BV . Indeed: let
(uh) be a sequence in L1(Ω) converging to a function u ∈ BV (Ω); we can suppose that lim infh→+∞Hε(uh) is
finite and is a limit, and that each uh is in BV ; then by Fatou’s Lemma, the monotonicity of f and the lower
semicontinuity of the total variation, we have:

lim inf
h→+∞

Hε(uh) ≥ 1
ε

∫
Ω

lim inf
h→+∞

f
(
cε(x)|Duh|

(
Bε(x) ∩ Ω

))
dx

≥ 1
ε

∫
Ω

f

(
cε(x) lim inf

h→+∞
|Duh|

(
Bε(x) ∩ Ω

))
dx

≥ 1
ε

∫
Ω

f
(
cε(x)|Du|

(
Bε(x) ∩ Ω

))
dx = Hε(u).
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Since Hε(u) ≤ Fε(u) for all u ∈ L1(Ω), the relaxed functional F ε is estimated from below by Hε on BV (Ω).
Consider now the opposite inequality. Given u ∈ BV (Ω), if (vh) denotes the sequence obtained from u (extended
to a neighborhood of Ω) by standard mollification, then vh → u in L1(Ω) and

|Dvh|
(
Bε(x) ∩ Ω)

)→ |Du|(Bε(x) ∩ Ω
)

for a.e. x ∈ Ω (see, e.g., [5] Prop. 3.7 and Rem. 3.8: note that Dcu vanishes on the sets with finite Hn−1

measure; moreover, if S is σ-finite with respect to Hn−1, then {x ∈ Ω : Hn−1(S ∩ ∂Bε(x)) > 0} is at most
countable). Then by the dominated convergence Theorem (recall (3.3) and that f(t) ≤ t):

lim
h→+∞

Fε(vh) =
1
ε

∫
Ω

f
(
cε(x)|Du|

(
Bε(x) ∩ Ω

))
dx = Hε(u).

This shows that Hε coincides with the relaxed functional F ε on BV (Ω). �

Remark 3.7. From the preceeding proposition we easily deduce that F ′′(u) < +∞ if u ∈ BV (Ω). Indeed, the
upper Γ-limit of (Fε) coincides with the upper Γ-limit of (F ε); therefore, since f(t) ≤ t, if we set µ = |Du|, we
have:

F ′′(u) ≤ lim sup
ε→0

F ε(u) ≤ lim sup
ε→0

∫
Ω

1
|Bε(x) ∩ Ω|

∫
Ω

1Bε(x) dµ dx ,

where 1Bε(x) is the characteristic function of Bε(x); therefore, by (3.3):

F ′′(u) ≤ lim sup
ε→0

1
γεn

∫
Ω

dµ(y)
∫

Ω

1Bε(x)(y) dx ≤ ωn

γ
µ(Ω) < +∞ .

4. Compactness. Lower bound in terms of the volume and Cantor parts

In [12] a crucial point in the proof of a lower bound for the Γ-limit of (Fε) in terms of the volume part
of the Mumford-Shah functional is the estimate from below of Fε(u) through (1 − δ)

∫
Ω |∇v|2 dx, where v is

a function close to u in L1 and δ is arbitrary in (0, 1) (see [12], Prop. 4.1). The presence of the L2-norm of
the gradient yields, via the SBV compactness theorem, separate semicontinuity inequalities for the absolutely
continuous and the singular parts of the derivatives, thus giving the required bound in terms of the volume part.
The proof of the cited proposition relies on a delicate partitioning of Rn by means of coordinate squares which
are well-behaved with respect to the balls over which the gradients are averaged. In a L1-context a perfectly
analogous result, contained in Lemma 4.1 below, can thus be obtained with essentially the same proof, but now
this does not imply the needed lower semicontinuity inequality for the volume parts. However, from Lemma 4.1
the compactness property of Theorem 3.2 for (Fε) easily follows.

The proof of the correct lower bound for the Γ-limit (see Prop. 4.7) will be obtained by a slicing technique.
The main difficulty is that Fε(u), due to its non-local character, can not be simply expressed through the one-
dimensional sections of u. Thus, for any direction ξ ∈ Sn−1 we estimate Fε(u) through a suitable functional
where the average on balls is replaced by the average on squares with a face orthogonal to ξ (Lem. 4.3); this
allows to split the average itself into a part along ξ and another in the orthogonal space ξ⊥. A slicing method
can now be applied: the one-dimensional sections of u are replaced by its averages along ξ⊥ (see Lem. 4.4).

For every open subset A of Ω and � > 0 we set:

A� = {x ∈ A : d(x, ∂A) > �} .
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Lemma 4.1. Let A be an open subset of Ω, and let u ∈ W 1,1(Ω) ∩ L∞(Ω). For every ε > 0 and δ > 0, there
exists a function v ∈ SBV (A) ∩ L∞(A) such that:

(1 − δ)
∫

A

|∇v(x)|dx ≤ Fε(u,A) , Hn−1(Sv ∩A6ε) ≤ cFε(u,A),

‖v‖L∞(A) ≤ ‖u‖L∞(A) , ‖v − u‖L1(A6ε) ≤ cεFε(u,A)‖u‖L∞(A),

where c is a constant depending only on n, δ and f .

Proof of Theorem 3.2. Let A ⊂⊂ Ω, with ∂A smooth. By Lemma 4.1 there exists a sequence (vj) in SBV (A) and
a constant C independent of A such that ‖vj‖BV (A) ≤ C and ‖vj‖L∞(A) ≤ M ; moreover, ‖vj − uj‖L1(A) → 0.
Therefore, there exists a subsequence (vjk

) which converges to a function u ∈ BV (A), with ‖u‖BV (A) ≤ C.

Hence u ∈ BV (Ω), too. Clearly, also (ujk
) converges to u in L1(A). The arbitrariness of A and a diagonal

argument allow to find a subsequence (ujk
) which converges in L1

loc(Ω) to a function u ∈ BVloc(Ω); the uniform
bound of ‖uj‖L∞(Ω) implies the L1(Ω)-convergence of (ujk

) to u. �

Corollary 4.2. Let (εj) be a positive infinitesimal sequence and let (uj) be sequence in L1(Ω) which converges
to a function u. If

(
Fεj (uj)

)
is bounded, then u ∈ GBV (Ω). In particular, if F ′(u) < +∞ then u ∈ GBV (Ω).

Proof. For each T > 0 apply Theorem 3.2 to uT
j = (−T ) ∨ uj ∧ T : we get (−T ) ∨ u ∧ T ∈ BV (Ω); hence

u ∈ GBV (Ω). �

Let ξ ∈ Sn−1 and let ν1, . . . , νn be an orthonormal basis of Rn, with ν1 = ξ. For every r > 0 and x ∈ Rn,
define:

Qξ
r(x) = {y ∈ Rn : |〈y − x, νi〉| < r, i = 1, . . . , n}.

Lemma 4.3. There exists a sequence (ch)h∈N of positive real numbers, with ch
h→ 1, such that, for every

u ∈ W 1,1(Ω), ξ ∈ Rn and A,A′ open subsets of Ω, with A′ ⊂⊂ A, and for every ε < d(A′, ∂A)/2, the following
inequality holds:

Fε(u,A) ≥ 1
hσh

ε

∫
A′
fh

⎛
⎝σh

ε

∫
Qξ

σh
ε
(z)

|∇u(y)|dy
⎞
⎠ dz,

where fh(t) = f(chht) and σh
ε = ε/h.

Proof. For ease of notation we drop the superscript ξ in Qξ
r(z) (ξ ∈ Sn−1 is fixed). For every h ∈ N let

Zh = {α ∈ Zn : Q1/h(2α/h) ⊆ B1(0)}, Nh = #Zh.

Clearly

ch :=
2nNh

ωnhn

h→ 1 ,

and, for every ε > 0 and x ∈ Rn

Zh = {α ∈ Zn : Qh
ε (x, α) := x+Qε/h(2αε/h) ⊆ Bε(x)}.

Fix now u ∈ W 1,1(Ω); then for every ε > 0 and x ∈ Ω, with d(x, ∂Ω) > ε:

∫
Bε(x)

|∇u(y)|dy ≥
∑

α∈Zh

(
2ε
h

)n
ωnεn

∫
Qh

ε (x,α)

|∇u(y)|dy =
∑

α∈Zh

ch
Nh

∫
Qh

ε (x,α)

|∇u(y)|dy.
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By the concavity of f :

f

(
ε

∫
Bε(x)

|∇u(y)|dy
)

≥
∑

α∈Zh

1
Nh

f

(
εch

∫
Qh

ε (x,α)

|∇u(y)|dy
)
.

Let A′ ⊂⊂ A, and 2ε < d(A′, ∂A); we can find an open subset A′′ of A such that

A′ ⊂⊂ A′′ ⊂⊂ A, d(A′, ∂A′′) > ε, d(A′′, ∂A) > ε.

Thus, if we set σh
ε = ε/h, we get:

Fε(u,A′′) ≥
∑

α∈Zh

1
Nh

(
1
hσh

ε

∫
A′′

fh

(
σh

ε

∫
Qh

ε (x,α)

|∇u(y)|dy
)

dx

)
,

with fh as in the statement of the lemma. The change of variables z = x+ 2σh
εα now yields:

Fε(u,A) ≥
∑

α∈Zh

1
Nh

(
1
hσh

ε

∫
A′
fh

(
σh

ε

∫
Q

σh
ε
(z)

|∇u(y)|dy
)

dz

)
.

Since the Nh terms of the sum do not depend on α, we conclude. �

Given y ∈ Rn−1 and r > 0, define

Q̃r(y) = {z ∈ Rn−1 : |zi − yi| < r, i = 1, . . . , n− 1}. (4.1)

Lemma 4.4. Let (εj) be a positive infinitesimal sequence. Let A be an open subset of Rn−1, and a, b ∈ R, with
a < b. Let uj, u ∈ L1

(
(a, b)×A

)
(j ∈ N) and uj → u in L1

(
(a, b)×A

)
. For a.e. t ∈ (a, b), for every y ∈ A and

j ∈ N with εj <
1√
n−1

d(y, ∂A) we can define

vj(t, y) =
∫

Q̃εj
(y)

uj(t, z) dz.

Then there exists a subsequence (vjk
)k such that vjk

(·, y) → u(·, y) in L1(a, b) for a.e. y ∈ A.

Proof. There exists N ⊆ (a, b), with |N | = 0 such that uj(t, ·), u(t, ·) ∈ L1(A) for every t ∈ (a, b) \ N . In
particular, vj(t, y) is well-defined for every t ∈ (a, b) \N , y ∈ A, and εj < d(y, ∂A)/

√
n− 1. Let

φj(z) =
1

|Q̃εj (0)|χQ̃εj
(0)(z),

where χQ̃εj
(0) denotes the characteristic function of Q̃εj (0). We have

∫
A

(∫ b

a

|vj(t, y) − u(t, y)| dt
)

dy =
∫

A

dy
∫ b

a

∣∣∣∣
∫

Rn−1
uj(t, z)φj(z − y) dz − u(t, y)

∣∣∣∣ dt
≤
∫

A

dy
∫ b

a

dt
∫

Rn−1
|uj(t, z) − u(t, z)|φj(z − y) dz +

∫
A

dy
∫ b

a

∣∣∣∣
∫

Rn−1
u(t, z)φj(z − y) dz − u(t, y)

∣∣∣∣ dt.
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Denote these two integral terms by I ′j and I ′′j respectively. Then

I ′′j ≤
∫ b

a

dt
∫

A

dy
∫

Rn−1
|u(t, z) − u(t, y)|φj(z − y) dz =

∫ b

a

dt
∫

A

dy
∫

Rn−1
|u(t, y + w) − u(t, y)|φj(w) dw

=
∫

Rn−1
φj(w)‖u(·, · + w) − u‖L1((a,b)×A)dw ≤ sup

|w|≤εj

√
n−1

‖u(·, · + w) − u‖L1((a,b)×A) .

Since translation is continuous in the L1 norm, I ′′j tends to 0 as j → +∞. Let us now consider I ′j ;

I ′j =
∫

A

(∫ b

a

(|uj − u|(t, ·) ∗ φj)(y) dt

)
dy ≤

∫ b

a

‖(uj − u)(t, ·)‖L1(A)‖φj‖L1(Rn−1)dt = ‖uj − u‖L1((a,b)×A),

which tends to 0 as j → +∞. Thus we conclude that for every A open subset of Rn−1

lim
j→+∞

∫
A

(∫ b

a

|vj(t, y) − u(t, y)| dt
)

dy = 0.

In particular, there exists a subsequence (vjk
)k such that vjk

(·, y) → u(·, y) in L1(a, b) for a.e. y ∈ A. �

Remark 4.5. The result of the previous lemma can be immediately generalized to the case where (a, b) is
replaced by any bounded open subset of R.

Remark 4.6. Given u ∈ L1(a, b), the set functions A �→ Fε(u,A) are increasing and superadditive. Conse-
quently, also the set function A �→ F ′(u,A) is increasing and superadditive, i.e.

(i) F ′(u,A1) ≤ F ′(u,A2), whenever A1 ⊆ A2 ⊆ Ω;
(ii) F ′(u,A1 ∪A2) ≥ F ′(u,A1) + F ′(u,A2), whenever A1 ∩A2 = ∅.

Proposition 4.7. For every u ∈ BV (Ω) and A ∈ A(Ω)

F ′(u,A) ≥
∫

A

|∇u(x)|dx , F ′(u,A) ≥ |Dcu|(A).

Proof. Let (εj) be a positive infinitesimal sequence and let (uj) be a sequence in W 1,1(Ω) converging to
u ∈ L1(Ω) and such that Fεj (uj, A) → F ′(u,A) as j → +∞. Let ξ ∈ Sn−1. By Lemma 4.3, applied with ε = εj

and u = uj , and by Fubini’s Theorem, if A and A′ are open subsets of Ω, with A′ ⊂⊂ A, and 2εj < d(A′, ∂A),
we have (here σh

j = εj/h):

Fεj (uj , A) ≥ 1
hσh

j

∫
A′
fh

⎛
⎝σh

j

∫
Qξ

σh
j

(z)

|∇uj(x)|dx
⎞
⎠ dz

=
∫

ξ⊥

⎛
⎝ 1
hσh

j

∫
A′

ξ,y

fh

⎛
⎝σh

j

∫
Qξ

σh
j

(y+tξ)

|∇uj(x)|dx
⎞
⎠ dt

⎞
⎠dHn−1(y)

where ξ⊥ and A′
ξ,y stand for the subspace orthogonal to ξ and for the one-dimensional section of A′ in the

direction ξ, as in Theorem 2.3. It is not restrictive to assume ξ = e1 (and we will drop the superscript ξ). Then
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we can rewrite:

Fεj (uj , A) ≥
∫

Ã′

⎛
⎝ 1
hσh

j

∫
A′

y

fh

⎛
⎝σh

j

∫
Q

σh
j
(t,y)

|∇uj(x)|dx
⎞
⎠ dt

⎞
⎠dHn−1(y) ,

where A′
y = {t ∈ R : (t, y) ∈ A′} and Ã′ = {y ∈ Rn−1 : A′

y 
= ∅}. In view of the definition (4.1) of Q̃, for every
(t, y) ∈ A′: ∫

Q
σh

j
(t,y)

|∇uj(x)|dx ≥
∫

Q
σh

j
(t,y)

∣∣∣∣∂uj

∂x1
(x)
∣∣∣∣ dx

≥
∫ t+σh

j

t−σh
j

∣∣∣∣∣∣
∫

Q̃
σh

j
(y)

∂uj

∂s
(s, z) dz

∣∣∣∣∣∣ds ;
(4.2)

Consider uj extended with value 0 outside A. Then, as in Lemma 4.4, for a.e. s ∈ R and for every y ∈ Rn−1

we can define

vy
j (s) = vj(s, y) =

∫
Q̃

σh
j
(y)

uj(s, z) dz .

It turns out that if y ∈ Ã′, then vy
j ∈W 1,1(Vy) for a suitable open neighborhood Vy of A′

y (recall that A′ ⊂⊂ A);
furthermore, (4.2) gives: ∫

Q
σh

j
(t,y)

|∇uj(x)|dx ≥
∫ t+σh

j

t−σh
j

∣∣∣∣∣dv
y
j

ds
(s)

∣∣∣∣∣ ds.

By Lemma 4.4 and Remark 4.5, the sequence (vy
j ) converges (up to a subsequence, which does not affect the

rest of the proof) to uy := u(·, y) in L1(Vy) for a.e. y ∈ Ã′. By Fatou’s Lemma:

lim inf
j→+∞

Fεj (uj , A) ≥
∫

Ã′

1
h

(
lim inf
j→+∞

1
σh

j

∫
A′

y

fh

(
σh

j

∫ t+σh
j

t−σh
j

∣∣∣∣∣dv
y
j

ds
(s)

∣∣∣∣∣ ds
)

dt

)
dy;

thus, taking the one-dimensional Γ-convergence result (Rem. 3.5) into account:

lim inf
j→+∞

Fεj (uj , A) ≥
∫

Ã′

1
h

(∫
A′

y

chh|(uy)′(s)|ds+ chh|Dcuy|(A′
y)

)
dy.

By Theorem 2.3 we deduce that

lim inf
j→+∞

Fεj (uj , A) ≥ ch

(∫
A′

|〈∇u(x), e1〉|dx+ |〈Dcu, e1〉|(A′)
)
.

As mentioned above, this result holds with any ξ in place of e1; therefore, since ch → 1 as h → +∞ and
A′ ⊂⊂ A is arbitrary, we get

F ′(u,A) ≥
∫

A

|〈∇u(x), ξ〉|dx , F ′(u,A) ≥ |〈Dcu, ξ〉|(A) (4.3)

for every ξ ∈ Sn−1. From the first inequality, the superadditivity of F ′ and Lemma 2.7 we get F ′(u,A) ≥∫
A |∇u(x)|dx for every A.
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Let λ = Dcu and λξ = 〈λ, ξ〉; note that:

|λξ| =
∣∣∣∣ dλξ

d|λ|
∣∣∣∣ d|λ| =

∣∣∣∣
〈

dλ
d|λ| , ξ

〉∣∣∣∣ d|λ| .
The second inequality in (4.3) can now be rewritten as F ′(u,A) ≥ ∫

A
ψξ d|λ|, where ψξ = |〈dλ/d|λ|, ξ〉|; an

application of Lemma 2.7 yields:

F ′(u,A) ≥
∫

A

sup
ξ

∣∣∣∣
〈

dλ
d|λ| , ξ

〉∣∣∣∣ d|λ| ≥
∫

A

∣∣∣∣∣sup
ξ

〈
dλ
d|λ| , ξ

〉∣∣∣∣∣ d|λ| = |λ|(A) = |Dcu|(A) .

This concludes the proof. �

5. Lower bound in terms of the surface energy

In this section for any sequence (Fεj ) and any given function u ∈ BV we apply Besicovitch’s differentiation
Theorem, with respect to Hn−1 Su, to the (inner regular envelope of the) lower Γ-limit considered as a set
function (Prop. 5.1). Through a rescaling argument the density of this bound will be estimated in terms of F ′

on the functions u0 obtained by “blowing-up” u around the jump points (Prop. 5.2 and subsequent corollary).
We next need to express this bound in terms of F ′(u0, C

ν
1 (x0)) where Cν

1 (x0) is a cilinder of unit size with axis
normal to the jump set in x0 (Prop. 5.5): this allows an explicit computation of the lower bound (see Prop. 5.6
together with 5.7).

Denote by A(Ω) the family of the open subsets of Ω. Let (εj) be a positive infinitesimal sequence and, for
every A ∈ A(Ω), let Φ′(·, A) be the lower Γ-limit of

(
Fεj (·, A)

)
. We define the inner regular envelope of Φ′ as:

Φ′
−(·, A) = sup{Φ′(·, B) : B ∈ A(Ω), B ⊂⊂ A} .

It is easy to see that Φ′
−(·, A) is lower semicontinuous in L1(Ω) for every A, and that Φ′

−(u, ·) is superadditive
for every u.

Proposition 5.1. For every u ∈ L1(Ω) the function Φ′
−(u, ·) : A(Ω) → R is the trace on A(Ω) of a Borel

measure on Ω; moreover, for every A ∈ A(Ω) and u ∈ BV (Ω):

Φ′
−(u,A) ≥

∫
Su∩A

h(x)dHn−1 ,

where, for Hn−1 a.e. x ∈ Su:

h(x) = lim
�→0

Φ′
−(u,B�(x))
ωn−1�n−1

·

Proof. An increasing set function α : A(Ω) → [0,+∞], which satisfies α(0) = 0 and which is subadditive,
superadditive and inner regular, can be extended to a Borel measure on Ω: see, e.g. [19], Theorem 14.23. The
result can be applied to Φ′

− if we check the subadditivity: this can be shown following the proof of Proposition 4.3
and Theorem 4.6 of [14] (these results are established in the case p > 1, but the same arguments work if p = 1).

Given u ∈ BV (Ω), for every k ∈ N let Sk = {x ∈ Su : |u+(x) − u−(x)| > 1/k}. Clearly, Hn−1(Sk) < +∞;
let νk = Hn−1 Sk, and denote by µ the Borel measure which extends Φ′

−(u, ·): in view of Remark 3.7, µ is a
finite measure. By Besicovitch’s differentiation Theorem (see, e.g. [27], Th. 4.7), the limit

g(x) = lim
�→0

µ(B�(x))
νk(B�(x))
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exists and is finite for νk-a.e. x ∈ Ω, and is νk-measurable; moreover, the Radon-Nikodym decomposition of µ
is given by µ = gνk + µs, with µs ⊥ νk. Since Sk is Hn−1-rectifiable, for Hn−1-a.e. x ∈ Sk we have

νk(B�(x))
ωn−1�n−1

=
Hn−1(B�(x) ∩ Sk)

ωn−1�n−1
→ 1, �→ 0

(see, e.g., [5] Th. 2.63). Thus, for Hn−1-a.e. x ∈ Sk

g(x) = lim
�→0

µ(B�(x))
ωn−1�n−1

= lim
�→0

Φ′
−(u,B�(x))
ωn−1�n−1

= h(x).

Taking into account that µs is non-negative, we deduce that for every A ∈ A(Ω)

Φ′
−(u,A) ≥

∫
A

h(x)dνk =
∫

Sk∩A

h(x)dHn−1.

The conclusion follws by considering the supremum for k ∈ N. �

When considering F ′ for the blow-up u0 on a unit ball B1 as below (or on a cilinder C1 of unit size, as in
Prop. 5.5), we assume as Ω any set strictly containing B1 (or C1): see Remark 3.4.

Proposition 5.2. For every u ∈ BV (Ω)

lim inf
�→0

Φ′−(u,B�(x0))
�n−1

≥ F ′(u0, B1(x0)), for Hn−1-a.e. x0 ∈ Su,

where u0 is the function given by

u0(x) =
{
u+(x0) if 〈x− x0, ν〉 ≥ 0 ,
u−(x0) if 〈x− x0, ν〉 < 0 ,

with ν = νu(x0).

Proof. Let δ ∈ (0, 1) and note that Φ′
−
(
u,B�(x0)

) ≥ Φ′(u,Bδ�(x0)
)

for every �; then

lim inf
�→0

Φ′
−(u,B�(x0))

�n−1
≥ δn−1 lim inf

r→0

Φ′(u,Br(x0))
rn−1

· (5.1)

Let us now estimate the lower limit in the right-hand side.
We can assume x0 = 0. Let (rk) be a decreasing infinitesimal sequence; for every k ∈ N there exists

wj ∈ W 1,1(Ω) such that wj → u in L1(Ω) and

lim inf
j→+∞

Fεj (wj , Brk
(0)) ≤ Φ′(u,Brk

(0)) +
rn−1
k

2k
·

Let j̄ = j(k) be such that εj̄/rk ≤ 1/k and

Fεj̄
(wj̄ , Brk

(0)) ≤ Φ′(u,Brk
(0)) +

rn−1
k

k
,

‖wj̄ − u‖L1(Ω) ≤ 1
k
,

∫
B2(0)

|wj̄(rkx) − u(rkx)|dx ≤ 1
k
·
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Let uk = wj(k). We can suppose that the sequence
(
j(k)
)

is increasing, and we set σk = εj(k); then uk → u in
L1(Ω) and

Fσk
(uk, Brk

(0)) ≤ Φ′(u,Brk
(0)) +

rn−1
k

k
,

∫
B2(0)

|uk(rkx) − u(rkx)|dx ≤ 1
k
·

The first inequality gives:

lim inf
k→+∞

Φ′(u,Brk
(0))

rn−1
k

≥ lim inf
k→+∞

Fσk
(uk, Brk

(0))
rn−1
k

;

while, from the second inequality and the definition (2.1) of u± we obtain:

∫
B2(0)

|uk(rkx) − u0(rkx)|dx ≤ 1
k

+
∫

B2(0)

|u(rkx) − u0(rkx)|dx k→ 0 .

If we define vk(t) = uk(rkt), then vk → u0 in L1(B2(0)); moreover, for every x ∈ Brk
(0)

∫
Bσk

(x)

|∇uk(y)|dy =
rn−1
k

ωnσn
k

∫
Bσk/rk

(x/rk)

|∇vk(t)| dt.

Therefore, setting x/rk = z, we have:

Fσk
(uk, Brk

(0))
rn−1
k

=
1

σk/rk

∫
B1(0)

f

(
σk

rk

∫
Bσk/rk

(z)

|∇vk(t)|dt
)

dz .

Since γk := σk/rk → 0, and vk → u0 in L1(B2(0)), by the arbitrariness of (rk) and the definition of F ′, we
conclude that

lim inf
r→0

Φ′(u,Br(0))
rn−1

≥ F ′(u0, B1(0)) .

This, together with (5.1) and the arbitrariness of δ, yields the conclusion. �

From the two propositions we have just proved the next result immediately follows.

Corollary 5.3. Let u ∈ BV (Ω) and let A be an open subset of Ω. Then

F ′(u,A) ≥
∫

Su∩A

σ(x) dHn−1,

where
σ(x0) = ω−1

n−1F
′(u0, B1(x0)

)
, for Hn−1-a.e. x0 ∈ Su,

with (ν = νu(x0))

u0(x) =
{
u+(x0) if 〈x− x0, ν〉 ≥ 0 ,
u−(x0) if 〈x− x0, ν〉 < 0 .

Let ν ∈ Sn−1. For any y ∈ Rn denote by yν and yν⊥ the projections onto the subspaces V = {tν : t ∈ R} and
V ⊥, respectively. For � > 0 and x ∈ Rn define

Cν
� (0) = {y ∈ Rn : |yν | < �, |yν⊥ | < �}, Cν

� (x) = x+ Cν
� (0).

The next lemma proves that the “‘transition set” between two constant values shrinks onto the interface.
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Lemma 5.4. Let ν ∈ Sn−1 and

u0(x) =
{
a if 〈x, ν〉 ≥ 0,
b if 〈x, ν〉 < 0 . (5.2)

Let Ω′ ⊃⊃ Cν
1 (0). For any A open subset of Cν

1 (0), there exist a positive infinitesimal sequence (εj) and a
sequence (uj) in W 1,1(Ω′) converging to u0 in L1(Ω′) and such that

lim
j→+∞

Fεj (uj , A) = F ′(u0, A) ,

uj(x) = a if 〈x, ν〉 ≥ aj ; uj(x) = b if 〈x, ν〉 ≤ −bj,
where (aj) and (bj) are suitable positive infinitesimal sequences.

Proof. It is not restrictive to assume ν = e1. Fix A open subset of Cν
1 (0).

Step 1. Let 0 < ε < d(Cν
1 (0), ∂Ω′), and σ > 0. Let ϕ be the continuous function given by

ϕ(x) =

⎧⎨
⎩

0 if x1 ≤ −2ε− σ
affine if − 2ε− σ < x1 < −2ε
1 if x1 ≥ −2ε.

Clearly, |∇ϕ| ≤ 1/σ. Define:

Aε = {x ∈ Rn : x1 < −3ε− σ} , Bε = {x ∈ Rn : x1 > −ε} ,

Sε = {x ∈ Rn : −3ε− σ < x1 < −ε} .
Let u1, u2 ∈ W 1,1(Ω′) and v = ϕu1 + (1 − ϕ)u2; then

εFε(v,A) =
∫

A∩Aε

f

(
ε

∫
Bε(x)

|∇u2(y)|dy
)

dx

+
∫

A∩Bε

f

(
ε

∫
Bε(x)

|∇u1(y)|dy
)

dx+
∫

A∩Sε

f

(
ε

∫
Bε(x)

|∇v(y)|dy
)

dx.

By the subadditivity of f ,

∫
A∩Sε

f

(
ε

∫
Bε(x)

|∇v(y)| dy
)

≤
∫

A∩Sε

f

(
ε

∫
Bε(x)

[
ϕ(y)|∇u1(y)| + (1 − ϕ(y))|∇u2(y)|

+ |u1(y) − u2(y)||∇ϕ(y)|
]
dy
)

dx ≤
∫

A∩Sε

f

(
ε

∫
Bε(x)

ϕ(y)|∇u1(y)|dy
)

dx

+
∫

A∩Sε

f

(
ε

∫
Bε(x)

(1 − ϕ(y))|∇u2(y)| dy
)

dx+
∫

A∩Sε

f

(
ε

∫
Bε(x)

|u1(y) − u2(y)||∇ϕ(y)|dy
)

dx.

Then, since f(t) ≤ t,

Fε(v,A) ≤ Fε(u1, A ∩ (Bε ∪ Sε)) + Fε(u2, A ∩ (Aε ∪ Sε)) + Iε (5.3)

with

Iε ≤ 1
σ

∫
Cν

1 (0)∩Sε

∫
Bε(x)

|u1(y) − u2(y)| dy dx.
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A simple application of Fubini’s theorem now gives

Iε ≤ 1
σ

∫
Ω′

−

|u1(y) − u2(y)| dy,

where Ω′
− = {x ∈ Ω′ : x1 < 0}.

Step 2. Let (εj) be a positive infinitesimal sequence, and (uj) in W 1,1(Ω′) converging to u0 in L1(Ω′) such
that Fεj (uj , A) → F ′(u0, A). For every j ∈ N apply estimate (5.3) with ε = εj, u1 = uj and u2 = b. If
vj = ϕuj + (1 − ϕ)b, since Fεj (b, A) = 0, we have:

Fεj (vj , A) ≤ Fεj (uj , A) +
1
σ

∫
Ω′

−

|uj(y) − b| dy.

Note that ∫
Ω′

−

|uj(y) − b| dy =
∫

Ω′
−

|uj(y) − u0(y)| dy j→ 0 .

Therefore, if (σh) is a positive infinitesimal sequence, we can find a strictly increasing sequence (jh) in N such
that

1
σh

∫
Ω′

−

|ujh
− b| dy h→ 0 .

Then
lim sup
h→+∞

Fεjh
(vjh

, A) ≤ lim sup
h→+∞

Fεjh
(ujh

, A) = F ′(u0, A).

Moreover,

vjh
(x) =

{
b x1 ≤ −2εjh

− σh

ujh
x1 ≥ 0 .

Clearly vjh
→ u0 in L1(Ω′), and lim inf Fεjh

(vjh
, A) ≥ F ′(u0, A). An analogous procedure allows to modify vjh

so that, while mantaining the convergence of the functionals to F ′(u0, A), it takes the value a at the points x
with x1 positive and outside a neighborhood of 0, shrinking to 0. �

Proposition 5.5. For Hn−1 a.e. x0 ∈ Su

F ′(u0, B1(x0)) = F ′(u0, C
ν
1 (x0))

where ν = νu(x0) and u0 is as (5.2).

Proof. Clearly, the non-trivial inequality is F ′(u0, B1(x0)) ≥ F ′(u0, C
ν
1 (x0)). It is not restrictive to assume

x0 = 0 and ν = e1. Fix 0 < δ < 1. Let (εj) and (uj) be given by the previous lemma, applied with A = B1(0).
Then uj(x) = a if x1 ≥ aj , and uj(x) = b if x1 ≤ −bj, where (aj) and (bj) are suitable positive infinitesimal
sequences. Let Sj = (−bj, aj)×Rn−1; then, for j sufficiently large, we have Cν

δ (0)∩Sj ⊂⊂ B1(0), and therefore
Fεj

(
uj, C

ν
δ (0) ∩B1(0)

)
= Fεj

(
uj , C

ν
δ (0)
)
. Hence:

Fεj (uj, B1(0)) ≥ Fεj (uj, B1(0) ∩ Cν
δ (0)) = Fεj (uj , C

ν
δ (0)) . (5.4)

Moreover, if we set vj(x) = uj(δx), then Fεj (uj , C
ν
δ (0)) = δn−1Fεj/δ(vj , C

ν
1 (0)), as one can easily check by a

change of variable. Thus, passing to the limit in (5.4), we get F ′(u0, B1(0)) ≥ δn−1 lim infj Fεj/δ(vj , C
ν
1 (0)) ≥

δn−1F ′(u0, C
ν
1 (0)). The conclusion now follows by taking the supremum on δ ∈ (0, 1) . �
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Proposition 5.6. Let u0 be as in (5.2), with a 
= b and ν = e1. Then

F ′(u0, C
e1
1 (0)) ≥ ωn−1 inf

X
G ,

where

G(v) =
∫

R

f
(
an

∫ 1

0

[
v(ξ +

√
1 − η2, η) − v(ξ −

√
1 − η2, η)

]
ηn−2dη

)
dξ ,

an = (n − 1)ωn−1/ωn, and X is the space of all functions v ∈ W 1,1
loc (R × (0, 1)) which are non-decreasing in

the first variable, such that there exists ξ0 < ξ1 (depending on v) with v(ξ, η) = b if ξ ≤ ξ0, and v(ξ, η) = a if
ξ ≥ ξ1.

Proof. Denote Ce1
1 (0) by C. We can suppose a > 0 and b = 0.

Let (εj) and (uj) be the sequences given by Lemma 5.4, applied with A = C and any Ω′ ⊃⊃ C. In particular,
uj(x) = 0 if x1 ≤ −bj, and uj(x) = a if x1 ≥ aj , for some positive aj , bj → 0.

Let

αj(x1, x2, . . . , xn) =
∫ x1

−1

(
∂

∂t
uj(t, x2, . . . , xn)

)+

dt ,

and vj = αj ∧ a. Then vj ∈ W 1,1(Ω′), vj(x) = u0(x) if x1 /∈ (−bj, aj), and vj is non-decreasing in the first
variable. Moreover

|∇uj| ≥
∣∣∣∣∂uj

∂x1

∣∣∣∣ ≥ ∂vj

∂x1
≥ 0.

Then, for j sufficiently large,

Fεj (uj , C) ≥ 1
εj

∫
C

f

(
εj

∫
Bεj

(x)

∂vj

∂s1
(s)ds

)
dx.

Let Bn−1
� be the (n− 1)-dimensional ball of centre 0 and radius �. Since C = (−1, 1)×Bn−1

1 , we have

Fεj (uj , C) ≥ 1
εj

∫
Bn−1

1

dx2 · · ·dxn

∫ 1

−1

f

(
εj

∫
Bεj

(x)

∂vj

∂s1
(s)ds

)
dx1.

Let (x̄2, · · · , x̄n) be in the closure B
n−1

1 of Bn−1
1 be such that

∫ 1

−1

f

(
εj

∫
Bεj

(x1,x̄2,··· ,x̄n)

∂vj

∂s1
(s)ds

)
dx1 = min

(x2,··· ,xn)∈B
n−1
1

∫ 1

−1

f

(
εj

∫
Bεj

(x1,··· ,xn)

∂vj

∂s1
(s)ds

)
dx1 .

In the argument below it will not be restrictive to assume x̄i = 0 for every i. Then

Fεj (uj , C) ≥ ωn−1

εj

∫ 1

−1

f

(
1

ωnε
n−1
j

∫
Bεj

(x1,0)

∂vj

∂s1
(s)ds

)
dx1 .

By Fubini’s Theorem,∫
Bεj

(x1,0)

∂vj

∂s1
(s)ds =

∫
Bn−1

εj

[
vj

(
x1 +

√
ε2j − |y|2, y)− vj

(
x1 −

√
ε2j − |y|2, y)] dy .

Define
v̂j(t, �) =

∫
∂Bn−1

�

vj(t, y)dHn−2(y), � ∈ (0, εj) .
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Then

∫
Bεj

(x1,0)

∂vj

∂s1
(s)ds =

∫ εj

0

d�
∫

∂Bn−1
�

[
vj

(
x1 +

√
ε2j − |y|2, y)− vj

(
x1 −

√
ε2j − |y|2, y)]dHn−2(y)

=
∫ εj

0

Hn−2(∂Bn−1
� )[v̂j(x1 +

√
ε2j − �2, �) − v̂j(x1 −

√
ε2j − �2, �)]d� .

By the change of variables x1/εj = ξ and � = εjη, we obtain, for j sufficiently large:

Fεj (uj , C) ≥ ωn−1

∫ 1/εj

−1/εj

f

(
(n− 1)ωn−1

ωn

∫ 1

0

[v̂j(εjξ + εj

√
1 − η2, εjη)

−v̂j(εjξ − εj

√
1 − η2, εjη)]ηn−2dη

)
dξ .

Let wj(x) = v̂j(εjx). Clearly wj is non-decreasing in the first variable, and there exist ξ0 < ξ1 such that
wj(x) = a if x ≥ ξ1 and wj(x) = 0 if x ≤ ξ0. Then wj can be extended to all R × (0, 1) (with values 0 and a)
and thus wj ∈ X . Hence F ′(u0, C) ≥ ωn−1G(wj). �

We now need a precise estimate of the infimum of the functional G introduced in Proposition 5.6. To bypass
the problem of the existence of the minimum of G we consider a discrete version Gk (k ∈ N) of G. This leads
to a minimum problem in a finite dimensional space, and a careful analysis of the properties of the minimizers
allows to compute explicitely the infimum.

Proposition 5.7. With the notation of Proposition 5.6 we have

inf
X
G ≥ ϑ(|a− b|) ,

where ϑ is defined in (3.2).

Proof. We can suppose a > 0 and b = 0. For each k ∈ N we now consider a discrete version Gk of G defined
on the space of the functions on S = R × [0, 1] which are constant on each of the squares determined by a
coordinate partition of S and with sides of length 1/k. We also require the monotonicity in the first variable
and the constant value 0 and a on the left and right of [ξ0, ξ1] × [0, 1], respectively, for some ξ0 < ξ1.

Clearly, we can deal only with the values on the nodes; thus, for any N ∈ N, we define Y N
k as the set of the

functions
v = (vi,j)i,j : Z × {1, . . . , k − 1} → [0, a],

such that:
a) for every j the function i �→ vi,j is increasing;
b) vi,j = 0 if i < −Nk and vi,j = a if i ≥ Nk.

We think vi,j as the value in (i/k, j/k) of the input function of G. Let Yk =
⋃

N∈N
Y N

k , and let Gk : Yk → R be
defined by:

Gk(v) =
∑
i∈Z

1
k
f

(
an

k−1∑
j=1

1
k

[v]i,j

)
,

where
[v]i,j =

(
vi+ĵ,j − vi−ĵ,j

)
(j/k)n−2,
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with ĵ denoting the integer part of
√

1 − (j/k)2/(1/k) =
√
k2 − j2 (see Fig. 1 below).

Figure 1. A sketch for the definition of [v]i,j .

Note that:

Gk(v) =
(N+1)k∑

i=−(N+1)k

1
k
f

(
an

k−1∑
j=1

1
k

[v]i,j

)
, on Y N

k .

Step 1. Each minimizer of Gk on Y N
k takes only the values 0 and a.

Let v be a minimizer of Gk on Y N
k . Suppose, by contradiction, that there exists i0, j0 with vi0,j0 = c ∈ (0, a).

We can assume that for a suitable s ∈ N:

vi0−1,j0 < c , c = vi0,j0 = vi0+1,j0 = · · · = vi0+s,j0 , vi0+s+1,j0 > c .

Then, given t ∈ R, we define vt = (vi,j
t )i,j as vi0+l,j0

t = c + t, if 0 ≤ l ≤ s, and vt = v otherwise. For |t|
sufficiently small, vt ∈ Y N

k . Let

I1 = {i ∈ Z : i+ ĵ0 ∈ [i0, i0 + s]} , I2 = {i ∈ Z : i− ĵ0 ∈ [i0, i0 + s]} .

Note that if i /∈ I1∆I2 then [vt]i,j = [v]i,j for every j. Therefore:

Gk(vt) =
∑

i∈I1\I2

1
k
f

(
an

k−1∑
j=1

1
k

[vt]i,j

)
+
∑

i∈I2\I1

1
k
f

(
an

k−1∑
j=1

1
k

[vt]i,j

)

+
∑

i/∈I1∆I2

1
k
f

(
an

k−1∑
j=1

1
k

[v]i,j

)
=
∑

i∈I1\I2

1
k
f

⎛
⎝an

k−1∑
j=1

1
k

[v]i,j +
an

k

(j0
k

)n−2

t

⎞
⎠

+
∑

i∈I2\I1

1
k
f

⎛
⎝an

k−1∑
j=1

1
k

[v]i,j − an

k

( j0
k

)n−2

t

⎞
⎠+

∑
i/∈I1∆I2

1
k
f

(
an

k−1∑
j=1

1
k
[v]i,j

)
.

The function t �→ Gk(vt) is twice continuously differentiable in t = 0 (due to the smoothness of f), and:

d2

dt2
Gk(vt)

∣∣
t=0

=
a2

n

k3

( j0
k

)2(n−2)

⎡
⎣ ∑

i∈I1\I2

f ′′

⎛
⎝an

k−1∑
j=1

1
k

[v]i,j

⎞
⎠+

∑
i∈I2\I1

f ′′

⎛
⎝an

k−1∑
j=1

1
k

[v]i,j

⎞
⎠
⎤
⎦ < 0
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by the strict concavity of f ; this is a contradiction, since v is a minimizer for Gk.

Step 2. We claim that if v ∈ Y N
k takes only the values 0 and a, then Gk(v) ≥ Gk(v), where

v̄i,j =
{

0 i < Nk ,
a i ≥ Nk .

To this aim we can assume that

Ev := {i ∈ Z : ∃j vi+ĵ,j = a, i+ ĵ < Nk} 
= ∅

(otherwise v = v). Let i0 = minEv and

jM = max{j : vi0+ĵ,j = a, i0 + ĵ < Nk},
JM = {j : ĵ = ĵM , vi0+ĵ,j = a}, j0 = minJM .

Then vi0+ĵ0,j0 = a and
j < j0 ⇒ vi0+ĵ0,j = 0. (5.5)

Indeed, if we had j < j0 with the property vi0+ĵ0,j = a, then we would have ĵ > ĵ0 = ĵM , and Nk > i0 + ĵ0 =
i0 − l+ ĵ, with l = ĵ − ĵ0 > 0; therefore vi0−l+ĵ,j = a, and i0 − l ∈ E, which contrasts with the definition of i0.

Denote by w the function obtained by modifying v in (i0 + ĵ, j) for j ∈ JM :

wi0+ĵ,j = 0 for j ∈ JM , wi,j = vi,j otherwise.

We want to show that
Gk(v) ≥ Gk(w). (5.6)

Note that in the sum over i defining Gk(v) the terms vi0+ĵ,j (j ∈ JM ) appear only if i = i0 or i = i0 + 2ĵ0.
Accordingly, let us write kGk(v) as:

kGk(v) = f(q + δ) + f(p) +
∑

i/∈{i0,i0+2ĵ0}
f

(∑
j

an

k
[v]i,j

)
, (5.7)

where:

q =
∑

j /∈JM

an

k
[v]i0,j , δ =

∑
j∈JM

ana

k

(
j

k

)n−2

, p =
k−1∑
j=0

an

k
[v]i0+2ĵ0,j.

An analogous splitting can be written for kGk(w): clearly, the last term is the same as in (5.7). Thus:

kGk(v) − kGk(w) = f(q + δ) − f(q) − [f(p+ δ) − f(p)]. (5.8)

By the definition of j0 it turns out that:
q =
∑
j<j0

an

k
[v]i0,j.

Moreover, if j < j0 then ĵ ≥ ĵ0; the monotonicity in the first variable and (5.5) yield:

vi0+2ĵ0−ĵ,j ≤ vi0+ĵ0,j = 0.

Hence, j < j0 implies that vi0+2ĵ0−ĵ,j = 0, so that

j < j0 ⇒ [v]i0+2ĵ0,j = vi0+2ĵ0+ĵ,j − vi0+2ĵ0−ĵ,j ≥ vi0+ĵ,j = [v]i0,j .
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Therefore
p ≥
∑
j<j0

an

k
[v]i0+2ĵ0,j ≥ q.

Note now that the concavity of f implies:

q ≤ p ⇒ f(q + δ) − f(q) ≥ f(p+ δ) − f(p).

This, together with (5.8), proves (5.6). If Ew is not empty, it has a minimum strictly greater than i0 = minEv.
A finite iteration of the above argument proves the claim.

Step 3. We have shown that for every N > 0, infY N
k
Gk = Gk(v̄), where v̄ does not depend on N . Then

infYk
Gk = infN>0 infY N

k
Gk = Gk(v̄). Let us estimate Gk(v̄), where, by translation, we can suppose v̄ given by

v̄i,j =
{

0 i < 0
a i ≥ 0.

We have

Gk(v̄) ≥ 2
−1∑

i=−k

1
k
f

⎛
⎜⎝an

k−1∑
j=1

i+ĵ≥0

a

k

(
j

k

)n−2

⎞
⎟⎠ = 2

−1∑
i=−k

1
k
f

⎛
⎝ana

k

î∑
j=1

(
j

k

)n−2
⎞
⎠ ,

where î denotes the integer part of
√
k2 − i2. Fix σ > 0; then for k ≥ 1/σ:

1
k

î∑
j=1

(
j

k

)n−2

≥ 1
k

î+1∑
j=1

(
j

k

)n−2

− σ ≥
∫ (̂i+1)/k

0

tn−2dt− σ

≥
∫ √

1−(i/k)2

0

tn−2dt− σ =
1

n− 1
(√

1 − (i/k)2
)n−1 − σ .

Then

Gk(v̄) ≥ 2
k∑

i=1

1
k
f

(
ana
[ 1
n− 1

(√
1 − (i/k)2

)n−1 − σ
])

.

Thus, by the definition of the Riemann integral as the limit of the Riemann sums, we have:

lim inf
k→+∞

inf
Yk

Gk ≥ 2
∫ 1

0

f

(
ωn−1

ωn
a(
√

1 − t2 )n−1 − anaσ

)
dt .

By the arbitrariness of σ we conclude that:

lim inf
k→+∞

inf
Yk

Gk ≥ 2
∫ 1

0

f

(
ωn−1

ωn
a(
√

1 − t2 )n−1

)
dt . (5.9)

Step 4. We now relate G with the discrete functionals Gk.
Let v ∈ X : then there exist ξ0 < ξ1 such that v(ξ, η) = 0 if ξ ≤ ξ0 and v(ξ, η) = a if ξ ≥ ξ1. Extend v on R2

with v(ξ, η) = a if ξ ≥ ξ1 and v(ξ, η) = 0 otherwise outside R × [0, 1]. If (�τ )τ>0 is a family of mollifiers, it is
easy to see that v ∗ �τ ∈ X ∩ C∞, and G(v ∗ �τ ) → G(v) as τ → 0.

Then, given σ > 0 there exists vσ ∈ X ∩ C∞ such that

inf
X
G ≥ G(vσ) − σ. (5.10)
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Assume that vσ(ξ, η) = 0 if ξ ≤ −N and vσ(ξ, η) = a if ξ ≥ N , for a suitable N ∈ N. Since vσ is uniformly
continuous, there exists δ > 0 such that

|(ξ, η) − (ξ′, η′)| < δ ⇒ |vσ(ξ, η) − vσ(ξ′, η′)| < σ/N .

Fix k ∈ N, and define Qi,j
k =

[
i/k, (i+ 1)/k

)× [j/k, (j + 1)/k
)
, for i ∈ Z and j ∈ {1, . . . , k− 1}. If (ξ, η) ∈ Qi,j

k

then
i+ (̂j + 1)

k
≤ ξ +

√
1 − η2 ≤ i+ ĵ + 2

k
·

Note that

0 ≤ ĵ

k
− (̂j + 1)

k
≤ 1 +

√
2k − 1
k

k→ 0 .

Then there exists kδ such that for every k ≥ kδ, i ∈ Z, j ∈ {1, . . . , k − 1}:

(ξ, η) ∈ Qi,j
k , (ξ′, η′) ∈ Qi+ĵ,j

k ⇒ |(ξ +
√

1 − η2, η) − (ξ′, η′)| < δ .

It follows that
(ξ, η) ∈ Qi,j

k ⇒ |vσ(ξ +
√

1 − η2, η) −
∫

Qi+ĵ,j
k

vσ dx| < σ/N .

Analogously, we have

(ξ, η) ∈ Qi,j
k ⇒ |vσ(ξ −

√
1 − η2, η) −

∫
Qi−ĵ,j

k

vσ dx| < σ/N .

For every k ∈ N and (i, j) ∈ Z × {1, . . . , k − 1} let

wi,j
σ =

∫
Qi,j

k

vσ dx .

Clearly, wσ = (wi,j
σ ) ∈ Yk. For every i, j and (ξ, η) ∈ Qi,j

k[
vσ(ξ +

√
1 − η2, η) − vσ(ξ −

√
1 − η2, η)

]
ηn−2 ≥ [wσ]i,j − 2σ/N .

This implies that for every i ∈ Z and ξ ∈ [i/k, (i+ 1)/k
)

∫ 1

0

[
vσ(ξ +

√
1 − η2, η) − vσ(ξ −

√
1 − η2, η)

]
ηn−2dη ≥ 1

k

k−1∑
j=1

[wσ]i,j − 2σ/N .

Finally, since f (extended with value 0 on R−) is Lipschitz continuous with Lipschitz constant 1, we have:

G(vσ) ≥
(N+1)k∑

i=−(N+1)k

1
k
f

⎛
⎝an

k−1∑
j=1

1
k
[wσ ]i,j − 2σan

N

⎞
⎠ ≥ Gk(wσ) − 2σan(2N + 3)/N .

By (5.10), and the arbitrariness of σ, we obtain

inf
X
G ≥ lim inf

k→+∞
inf
Yk

Gk

and this, by (5.9) of Step 3, concludes the proof. �
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6. Estimate from below of the lower Γ-limit

We collect here the results of Sections 4 and 5, proving the lower bound F ′ ≥ F . Recall that, by Corollary
4.2, if F ′(u) < +∞ then u ∈ GBV (Ω).

Theorem 6.1. For every u ∈ GBV (Ω)

F ′(u) ≥
∫

Ω

|∇u(x)|dx +
∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1 + |Dcu|(Ω).

Proof. Let u ∈ BV (Ω) and let A be an open subset of Ω. From Proposition 4.7 we have

F ′(u,A) ≥
∫

A

|∇u(x)|dx , F ′(u,A) ≥ |Dcu|(A);

moreover, Corollary 5.3 and Propositions 5.5, 5.6 and 5.7 give

F ′(u,A) ≥
∫

Su∩A

ϑ
(|u+(x) − u−(x)|)dHn−1 .

Apply now Corollary 2.8 (which clearly extends to a finite number of measures λi), with λ1 = Ln, λ2 =
Hn−1 Su and λ3 = |Dcu|. Therefore F ′(u) ≥ F(u).

Let us now consider the case u ∈ GBV (Ω). We can find a positive infinitesimal sequence (εj) and a sequence

(uj) in W 1,1(Ω) converging to u in L1(Ω) and such that Fεj (uj)
j→ F ′(u). Define uT

j = (−T ) ∨ uj ∧ T , and
uT = (−T ) ∨ u ∧ T. Since uT

j → uT in L1(Ω), and uT ∈ BV (Ω), we have

F ′(u) = lim inf
j→+∞

Fεj (uj) ≥ lim inf
j→+∞

Fεj (u
T
j ) ≥

∫
Ω

|∇uT (x)|dx+
∫

Su∩Ω

ϑ
(|(uT )+(x)−(uT )−(x)|) dHn−1+|DcuT |(Ω).

We conclude by taking the limit as j → +∞ and recalling the definitions of ∇u, u± and |Dcu| (see (2.2), (2.3)
and (2.4)). �

7. Estimate from above of the upper Γ-limit

In this last section we conclude the proof of Theorem 3.1 by proving the upper estimate for the Γ-limit
(Prop. 7.3). The right bound will be first obtained for a suitable dense subset of SBV (Ω): let W(Ω) be the
space of all functions w ∈ SBV (Ω) satisfying the following properties:

i) Hn−1(Sw \ Sw) = 0;
ii) Sw is the intersection of Ω with the union of a finite member of (n− 1)-dimensional simplexes;
iii) w ∈ W k,∞(Ω \ Sw) for every k ∈ N.

From [17] we get the density property of W(Ω) we need; we recall that SBV 2(Ω) = {u ∈ SBV (Ω) : |∇u| ∈
L2(Ω), Hn−1(Su) < +∞}.
Theorem 7.1 ([17] Th. 3.1). Assume that ∂Ω is Lipschitz. Let u ∈ SBV 2(Ω) ∩ L∞(Ω). Then there exists a
sequence (wj) in W(Ω) such that wj → u strongly in L1(Ω), ∇wj → ∇u strongly in L2(Ω,Rn), lim suph ‖wj‖∞ ≤
‖u‖∞ and

lim sup
j→+∞

∫
Swj

φ(w+
j , w

−
j , νwj )dHn−1 ≤

∫
Su

φ(u+, u−, νu)dHn−1

for every upper semicontinuous function φ such that φ(a, b, ν) = φ(b, a,−ν) whenever a, b ∈ R and ν ∈ Sn−1.
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Lemma 7.2. Let g ∈ L1(Ω) and let A be an open subset of Ω. Then

lim
ε→0

1
ε

∫
A

f

(
ε

∫
Bε(x)∩Ω

g(y) dy

)
dx =

∫
A

g(x) dx.

Proof. Let gε(x) =
∫

Bε(x)∩Ω

g(y) dy. Since g ∈ L1(Ω), from Lebesgue’s differentation Theorem gε converges to

g in L1(Ω) and a.e. in Ω. We can now conclude by the dominated convergence Theorem, recalling that f(t) ≤ t
and f(t)/t→ 1 as t→ 0+. �

Proposition 7.3. Let u ∈ GBV (Ω); then

F ′′(u) ≤
∫

Ω

|∇u(x)|dx+
∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1 + |Dcu|(Ω) ,

where ϑ is as in Theorem 3.1.

Proof.
Step 1. Assume first that u is in the space W(Ω) introduced above. In particular Su is contained in the union
of a finite collection K1, . . . ,Km of (n − 1)-dimensional simplexes. Since the upper Γ-limit of (Fε) coincides
with the upper Γ-limit of (F ε), we have F ′′(u) ≤ lim supε F ε(u) : we intend to estimate this limit.

Fix σ > 0. Let S be the union of the relative boundaries of Ki (note that Hn−1(S) = 0). Define

Ωσ = {x ∈ Ω : d(x, ∂Ω) > σ, d(x, S) > σ} .

By the integral representation of F ε given in Proposition 3.6, and by the same argument used in Remark 3.7,
we get:

F ε(u) ≤ F ε(u,Ωσ) +
ωn

γ
|Du|(Aε,σ) ,

where Aε,σ = {x ∈ Ω : d(x,Ω \ Ωσ) < ε}. Clearly, limσ lim supε |Du|(Aε,σ) = 0. To deal with F ε(u,Ωσ) it will
not be restrictive to assume m = 1 and K := K1 ⊆ {x ∈ Rn : x1 = 0}.

By the subadditivity of f , if ε < σ:

F ε(u,Ωσ) ≤ 1
ε

∫
Ωσ

f

(
ε

∫
Bε(x)

|∇u(y)| dy +
1

ωnεn−1
|Dsu|(Bε(x)

))
dx

≤ 1
ε

∫
Ωσ

f

(
ε

∫
Bε(x)

|∇u(y)| dy
)

dx+
1
ε

∫
Ωσ

f

(
|Dsu|(Bε(x)

)
ωnεn−1

)
dx .

In view of Lemma 7.2, the first of these last two terms tends to
∫
Ωσ

|∇u| dx. Denote by Rε the other integral
term, and let Kε = {x ∈ Rn : d(x,K) < ε}. Since u is smooth outside {x1 = 0}, we have:

Rε =
1
ε

∫
Ωσ∩Kε

f

(
1

ωnεn−1
|Dsu|(Bε(x)

))
dx .

If Kε,σ ⊆ Rn−1 denotes the projection of Ωσ ∩ Kε onto {x1 = 0}, it turns out that Ωσ ∩ Kε is contained in
(−ε, ε) ×Kε,σ, which is a subset of {x ∈ Ω : d(x, ∂Ω) > ε} for ε sufficiently small. Then:

Rε ≤ 1
ε

∫
Kε,σ

dy
∫ ε

−ε

f

(
1

ωnεn−1
|Dsu|(Bε(s, y)

))
ds .
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Set
h(x) = u+(x) − u−(x), x ∈ Ω ∩ {x1 = 0}.

Since u ∈ W(Ω), the function h is continuous, hence uniformly continuous on any compact subset of Ω∩{x1 = 0}.
Then, for ε sufficiently small:

|Dsu|(Bε(s, y)
)

=
∫

Bε(s,y)∩{x1=0}
|h| dHn−1 ≤ ωn−1(

√
ε2 − s2)n−1(|h(0, y)| + σ).

Therefore

Rε ≤ 1
ε

∫
Kε,σ

(∫ ε

−ε

f
(ωn−1

ωn

(√
1 − (s/ε)2

)n−1(|h(0, y)| + σ)
)
ds
)

dy.

By the change of variable t = s/ε we deduce that

lim sup
ε→0

Rε ≤
∫

Ω∩{x1=0}

(∫ 1

−1

f
(ωn−1

ωn
(
√

1 − t2)n−1(|h(z)| + σ)
)
dt
)

dHn−1(z).

Now we conclude by taking the limit as σ → 0, and noting that h(z) vanishes Hn−1-a.e. outside Su.

Step 2. In the case u ∈ SBV 2(Ω)∩L∞(Ω), we can apply Theorem 7.1, with φ(a, b, ν) = ϑ(|a− b|). Then there
exists a sequence wj → u in L1(Ω), with wj ∈ W(Ω), such that ∇wj → ∇u in L2(Ω,Rn) and

lim sup
j→+∞

∫
Swj

ϑ(|w+
j (x) − w−

j (x)|)dHn−1 ≤
∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1;

thus, by the lower semicontinuity of F ′′ and by Step 1,

F ′′(u) ≤ lim inf
j→+∞

F ′′(wj) ≤
∫

Ω

|∇u(x)|dx +
∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1.

Using now the relaxation Theorem 2.4, we have

F ′′(u) ≤
∫

Ω

|∇u(x)|dx +
∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1 + |Dcu|(Ω)

for every u ∈ BV (Ω). Finally, by a truncation argument and again the lower semicontinuity of F ′′ we obtain
the desired inequality in GBV (Ω). �
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