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Abstract. The last two decades have seen a surge in kinetic and macroscopic

models derived to investigate the multi-scale aspects of self-organised biological
aggregations. Because the individual-level details incorporated into the kinetic

models (e.g., individual speeds and turning rates) make them somewhat diffi-
cult to investigate, one is interested in transforming these models into simpler
macroscopic models, by using various scaling techniques that are imposed by
the biological assumptions of the models. However, not many studies invest-
igate how the dynamics of the initial models are preserved via these scalings.
Here, we consider two scaling approaches (parabolic and grazing collision lim-

its) that can be used to reduce a class of non-local 1D and 2D models for
biological aggregations to simpler models existent in the literature. Then, we
investigate how some of the spatio-temporal patterns exhibited by the original
kinetic models are preserved via these scalings. To this end, we focus on the
parabolic scaling for non-local 1D models and apply asymptotic preserving
numerical methods, which allow us to analyse changes in the patterns as the
scaling coefficient ǫ is varied from ǫ = 1 (for 1D transport models) to ǫ = 0
(for 1D parabolic models). We show that some patterns (describing stationary
aggregations) are preserved in the limit ǫ → 0, while other patterns (describing

moving aggregations) are lost. To understand the loss of these patterns, we
construct bifurcation diagrams.

1. Introduction. Over the past 10-20 years a multitude of kinetic and macroscopic3

models have been introduced to investigate the formation and movement of various4

biological aggregations: from cells [5, 1] and bacteria [56] to flocks of birds, schools5

of fish and even human aggregations (see, for example, [60, 18, 55, 19, 29, 8, 25] and6

the references therein). The use of kinetic or macroscopic approaches is generally7

dictated by the problem under investigation: (i) kinetic (transport) models focus on8
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changes in the density distribution of individuals that have a certain spatial position,9

speed and movement direction (or are in some activity state [7]); (ii) macroscopic10

models focus on changes in the averaged total density of individuals [20, 31].11

Generally, these kinetic and macroscopic models assume that individuals, parti-12

cles, or cells can organise themselves in the absence of a leader. The factors that13

lead to the formation of self-organised aggregations are the interactions among indi-14

viduals as a result of various social forces: repulsion from nearby neighbours, attrac-15

tion to far-away neighbours (or to roosting areas [23]) and alignment/orientation16

with neighbours positioned at intermediate distances. These interaction forces are17

usually assumed to act on different spatial ranges, depending on the communica-18

tion mechanisms used by individuals; e.g., via acoustic long-range signals, or via19

chemical/visual short-range signals. The non-locality of the attractive and align-20

ment/orientation interactions is supported by radar tracking observations of flocks21

of migratory birds, which can move with the same speed and in the same direction22

despite the fact that individuals are 200-300 meters apart from each other [48]. For23

the repulsive forces some models consider non-local effects generated by decaying24

interactions with neighbours positioned further and further away [32], while other25

models consider only local effects [59]. In the case of continuous mesoscopic and26

macroscopic models, the non-local interactions are modelled by interaction kernels27

(see Figure 1 for 2D and 1D kernels). The most common choices for these kernels28

are Morse potential-type kernels [20, 18, 19, 22] (see Figure 1(b)) and Gaussian29

kernels [33, 32, 31, 49] (see Figure 1(c)).30

Due to their complex structure, kinetic models are difficult to investigate. Al-31

though progress has been made in recent years, mainly regarding the existence and32

stability of various types of solutions and the analytic asymptotic methods that al-33

low transitions from kinetic (mesoscopic) to macroscopic models (see, for example,34

[44, 54, 6, 18, 17, 29, 28, 11, 9, 41] and the references therein), it is still difficult35

to study analytically and numerically the spatial and spatio-temporal aggregation36

patterns exhibited by the kinetic models. For example, there are very few studies37

that investigate the types of spatiotemporal patterns obtained with 2D and 3D kin-38

etic models (see the review in [31]). Moreover, the presence of non-local interaction39

terms increases the complexity of the models, leading to a larger variety of patterns40

that are more difficult to be analysed. While numerical and analytical studies have41

been conducted to investigate the patterns in 1D non-local models [32, 34, 14], such42

an investigation is still difficult in the 2D non-local case (see [36]).43

The first goal of this article is to start with a class of 1D and 2D non-local kinetic44

models for self-organised aggregations that incorporate all three social interactions,45

and to show, through different parabolic scaling approaches, that these models can46

be reduced to known non-local parabolic models for swarming; see Figure 2 for a47

diagram illustrating this approach. For the 1D case, similar analytical scalings have48

been done in the context of bacterial chemotaxis [58] and for the kinetic model (1)49

for individuals moving along a line [35].50

The next aim is to investigate the numerical preservation of patterns between the51

mesoscopic and macroscopic scales. We use asymptotic preserving numerical meth-52

ods [46, 47, 21, 24], to obtain a better understanding of what happens with the 1D53

patterns via the parabolic scaling. With the help of these methods, we investigate54

numerically the preservation of stationary aggregations (that arise via steady-state55

bifurcations) and moving aggregations (that arise via Hopf bifurcations), as the56

scaling parameter ε is varied from large positive values (ε = 1) corresponding to57
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Figure 1. 2D and 1D spatial kernels for social interactions. (a) 2D: Attract-
ive (Ka), repulsive (Kr) and alignment (Kal) kernels described by equation

(21); (b) 1D: Morse-type kernels: Kr,a(x) = e−|x|/sr,a . (c) 1D: Translated
Gaussian kernels Kj as defined in (3) with j = r, al, a.

the kinetic models to zero values corresponding to the limiting parabolic models.58

To visualise the transitions between different patterns as ε → 0, we construct bi-59

furcation diagrams for the amplitude of the solutions. For the 2D kinetic models,60

we focus on two analytical scalings that lead to two different nonlocal parabolic61

models. Our final target is to show the reader that by considering such scaling62

approaches, we may lose certain aspects of the model dynamics - as emphasised by63

the numerical simulations in the 1D case.64
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(in space) model

2D Fokker Plank

(in orientation)
model

2D Fokker Plank

+=
f(y)=y

model
2D kinetic

1D 2 speed

 model
hyperbolic 

Figure 2. Schematic diagram of the scaling and reductionist approach taken here.

The article is structured as follows. Section 2 contains a detailed description of65

the 1D non-local models for animal aggregations, followed by the parabolic scaling66

of these models. We also investigate analytically the steady states of the kinetic and67

corresponding parabolic models. Section 3 contains a description of the 2D non-68

local models, followed by a parabolic limit and a “grazing collision” limit, which69

lead to different types of macroscopic models of parabolic type. Section 4 focuses70

on asymptotic preserving methods for 1D models, and shows the spatial and spatio-71

temporal patterns obtained with the parabolic and kinetic models, for some specific72

parameter values. Here, we come back to the steady states of the 1D kinetic and73

parabolic models, and investigate them numerically. We conclude in Section 5 with74

a summary and discussion of the results.75
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2. Description of 1D models. The following one-dimensional model was intro-
duced in [33, 32] to describe the movement of the densities of left-moving (u−) and
right-moving (u+) individuals that interact with conspecifics via social interactions:

∂u+

∂t
+ γ

∂u+

∂x
= −u+λ+[u+, u−] + u−λ−[u+, u−], (1a)

∂u−

∂t
− γ

∂u−

∂x
= u+λ+[u+, u−]− u−λ−[u+, u−], (1b)

u±(x, 0) = u±0 (x). (1c)

Here γ is the constant speed and λ+ (λ−) is the rate at which right-moving (left-
moving) individuals turn left (right). Since the rates λ± are related to the probab-
ility of turning (see the derivation of model (1) in [31]), they are positive functions
defined as:

λ±[u+, u−] =λ1 + λ2f(yN [u+, u−]) + λ3f(y
±
D[u

+, u−]) (2)

=λ1 + λ3

(

λ02f(yN [u+, u−]) + f(y±D[u
+, u−])

)

,

where we denote by u = u+ + u− the total population density. In this paper, we76

generalise the turning rates in [33, 32, 31] and assume that:77

• individuals can turn randomly at a constant rate approximated by λ1 [33];78

• individuals can turn randomly in response to the perception of individuals79

inside any of the repulsive/attractive/alignment ranges (and independent of80

the movement direction of their neighbours). These non-directed interactions81

with neighbours are described by the term yN [u+, u−] with turning rate λ2.82

• individuals can turn in response to interactions with neighbours positioned83

within the repulsive (r), attractive (a) and alignment (al) zones, respectively84

(see Figure 1(a)) [33]. This turning is directed towards or away from neigh-85

bours, depending on the type of interaction (attractive or repulsive). For86

alignment interactions, individuals turn to move in the same direction as their87

neighbours. The non-local directed interactions with neighbours are described88

by terms y±D[u
+, u−] with turning rate λ3.89

If λ3 6= 0, we denote by λ02 the quotient of the turning rates, λ2/λ3. This choice90

of notation is motivated by the corresponding 2D model (Section 3), the connection91

between the 1D model (1) and the 2D model (18) will be made clearer in Remarks92

3, 4, 5 and 6. The turning function f(·) is a non-negative, increasing, bounded93

functional of the interactions with neighbours. An example of such function is94

f(Y ) = 0.5 + 0.5 tanh(Y − y0) (see [32]), where y0 is chosen such that when Y = 095

(i.e., no neighbours around), then f(0) ≈ 0 and the turning is mainly random.96

To model the long-distance social interactions that lead to turning behaviours,97

we define the interaction kernels in 1D, see Figure 1, as decreasing functions of the98

distance between the reference position x (of the population density) and the mid99

of the interaction ranges sj , j = r, al, a,100

Kj(x) =
1

√

2πm2
j

e−(x−sj)
2/(2m2

j ), (3)

for x > 0 and zero otherwise, with j = r, al, a denoting short-range repulsion (Kr),101

medium-range alignment (Kal) and long-range attraction (Ka) interaction kernels.102

Here, mj = sj/8 controls the width of the interaction range j.103
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For the non-directed density-dependent turning we define the turning kernel,
KN (x) = K̂N (x) + K̂N (−x) with K̂N = qrKr + qalKal + qaKa obtained by super-
imposing the kernelsKj , j = r, al, a. Here qr, qal and qa represent the magnitudes of
the repulsive, alignment and attractive social interactions. Note that in [32], λ02 = 0
and the density-dependent non-directed turning term does not exist. However, in
2D, this term appears naturally when we incorporate random turning behaviour (as
discussed in Section 3). With these notations we may define

yN [u] = KN ∗ u, with u = u+ + u−,

for the non-directed turning mechanisms. We assume here that individuals turn104

randomly whenever they perceive other neighbours around (within the repulsive,105

alignment and attractive ranges).106

For the directed density-dependent turning, we define107

y±D[u
+, u−] = y±r [u

+, u−]− y±a [u
+, u−] + y±al[u

+, u−]. (4)

Here, y±j [u
+, u−], j = r, al, a, describe the directed turning in response to neighbours108

within the repulsive (r), alignment (al) and attractive (a) social ranges (as in [33]).109

As we will explain shortly, the direction of the turning will be given by incorporating110

movement direction towards or away conspecifics. For this reason, y±a and y±r enter111

equation (4) with opposite signs.112

The density-dependent turnings depend greatly on how individuals communicate113

with each other, namely whether they can emit (perceive) signals to (from) all or114

some of their neighbours. Two particular situations, described by models called M2115

and M4 as in [32] (see Figure 3) are considered:116

• Model M2: Individuals communicate via omni-directional communication sig-117

nals, and thus they can perceive all their neighbours positioned around them118

within all social interaction ranges. For instance, the majority of mammals119

communicate via a combination of visual, chemical and auditory signals, which120

allows them to receive/send information from/to all their neighbours. With121

this assumption (see Figure 3(a)), the terms y±r,a,al are defined as follows:122

y±r,a[u
+, u−] = qr,a

∫ ∞

0

Kr,a(s)
(

u(x± s)− u(x∓ s)
)

ds, (5a)

y±al[u
+, u−] = qal

∫ ∞

0

Kal(s)
(

u∓(x∓ s) + u∓(x± s) (5b)

−u±(x∓ s)− u±(x± s)
)

ds.

Here, qj describe the magnitudes of the social interactions associated to the123

interaction kernels defined in (3). To understand the effect of these terms on124

the turning rates, let us focus on y+r , for example. If u(x+s) > u(x−s), then125

y+r enters λ+ with positive sign, suggesting a higher likelihood of turning,126

to avoid collision with neighbours ahead at x + s. If, on the other hand,127

u(x + s) < u(x − s), then y+r enters λ+ with a negative sign, suggesting a128

lower likelihood of turning. In this case, the individuals at x will keep moving129

in the same direction, to avoid collision with neighbours behind at x−s. Note130

that the directionality of neighbours influences only the alignment interactions131

(the attractive and repulsive interactions being defined in terms of the total132

density u). Also, for this particular model, the random density-dependent133
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terms are given by134

yN [u] =

∫ ∞

0

K̂N (s)
(

u(x+ s) + u(x− s))ds. (6)

• Model M4: Individuals communicate via unidirectional communication sig-135

nals, and thus they can perceive only those neighbours moving towards them.136

For example, birds communicate via directional sound signals, and to ensure137

an effective transmission of their signals they orient themselves towards their138

targeted receivers [12]. With this assumption (see Figure 3(b)), the terms139

y±r,a,al are defined as follows:140

y±r,a,al[u
+, u−] = qr,a,al

∫ ∞

0

Kr,a,al(s)
(

u∓(x± s)− u±(x∓ s)
)

ds. (7)

Here, the directionality of neighbours influences all three social interactions.141

Moreover, for this model, the random density-dependent terms are given by142

yN [u+, u−] =

∫ ∞

0

K̂N (s)
(

u−(x+ s) + u+(x− s))ds. (8)

In this equation, we assume that individuals turn randomly in response to143

u− and u+ individuals (i.e., in (8) we add all perceived individuals; this is144

in contrast to equation (7), where we subtract individuals positioned ahead145

from individuals positioned behind, to impose directionality in the turning146

behaviour). Note that in (8), yN does not depend anymore on u = u+ + u−147

(as in (6)), since the individuals at x cannot perceive all their neighbours at148

x± s.149

x+sx s

x s x x+s x s

x

x x+s

xx s x+s

+

u

u

u

u+ + u

(a) model M2: (b) model M4:

u+ u+

u

+u u

u

uuu++u

u

Figure 3. Diagram describing the mechanisms through which a reference
individual positioned at x (right-moving – top; left-moving – bottom) perceives

its neighbours positioned at x − s and x + s. The reference individual can
perceive (a) all its neighbours (model M2 in [32]); (b) only its neighbours
moving towards it (model M4 in [32]).

We focus on these two particular models because: (i) the model (1)+(2)+(5)+(6)150

assuming λ1 = 0 has been generalised to 2D; (ii) the model (1)+(2)+(7)+(8) as-151

suming λ2 = 0 has been investigated analytically and numerically, and showed that152
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it can exhibit Hopf bifurcations (even when qal = 0), which give rise to spatio-153

temporal patterns such as rotating waves and modulated rotating waves [14]. In154

contrast, model (1)+(2)+(5)+(6) with λ2 = 0 does not seem to exhibit rotating155

waves when qal = 0, see [32].156

To complete the description of the model, we need to specify the domain size157

and the boundary conditions. Throughout most of this article, we will consider158

an infinite domain. However, for the purpose of numerical simulations, in Sections159

2.2 and 4 we will consider a finite domain of length L (i.e., [0, L]) with periodic160

boundary conditions: u+(L, t) = u+(0, t), u−(0, t) = u−(L, t). This assumption161

will also require wrap-around conditions for the kernels describing the nonlocal162

social interactions, see Section 4. For large L, this assumption approximates the163

dynamics on an infinite domain.164

In the following, we show how this hyperbolic 2-velocity model can be reduced165

to a parabolic equation by considering suitable scalings, which depend on the bio-166

logical phenomena and biological assumptions. Of course, to be useful in practice,167

these parameters have to be calibrated and adapted to particular species as in168

[42, 43]. The scaling arguments are classically obtained by writing a dimensionless169

formulation of the problem. We refer to [57] in bacterial chemotaxis and [2] in semi-170

conductor modelling for a detailed description. After this dimensionless rescaling,171

we typically end up with two different time scales whose balance determines our172

small parameter: the drift time and the diffusion time.173

We start in Subsection 2.1 with a parabolic scaling, which describes the situation174

where the drift time of a population is much smaller than its diffusion time. To this175

end, we discuss two separate cases (i.e., social interactions described by nonlinear176

or linear functions f(y) in (2)), which lead to two different parabolic equations.177

2.1. Parabolic limit for non-linear interactions. Next, we focus only on model178

M2 (i.e., equations (1)+(2)+(5)+(6)), since the results for model M4 are similar.179

The scaling argument applied in [44] transforms the hyperbolic system (1) into a180

parabolic equation. One can scale the space and time variables (x = x∗/ε, t = t∗/ε2,181

with ε≪ 1), or can scale the speed (γ) and the turning rates (λ1,2,3). In both cases,182

we consider the rescaled interaction kernels K∗
j (x

∗) = 1
εKj(

x∗

ε ) in the expressions183

for y±j , j = r, al, a. Here, we scale the time and space variables to be consistent with184

the approach in Section 3.1. As mentioned above, the scaling parameter ε depends185

on the biological problem modelled. For example, in [44] the authors connect ε186

to the ratio of the drift (τdrift) and diffusion (τdiff ) times observed in bacteria187

such as E. coli, where τdrift ≈ 100 seconds and τdiff ≈ 104 seconds, and thus188

ε ≈ O(10−2). Similar scaling arguments are used in [57, Appendix] to analyse the189

ability of parabolic scalings to describe travelling pulses.190

To perform the scaling, let us re-write model (1) in terms of the total density
u(x, t) and the flux v(x, t) = γ(u+(x, t)− u−(x, t)) of individuals (see also [44, 45]):

ε2
∂u

∂t
+ ε

∂v

∂x
= 0, (9a)

ε2
∂v

∂t
+ εγ2

∂u

∂x
= γu

(

λ−[u, v]− λ+[u, v]
)

− v
(

λ+[u, v] + λ−[u, v]
)

, (9b)

with initial conditions u(x, 0) = u0(x), v(x, 0) = v0(x). For clarity, here we dropped191

the “∗” from the rescaled space (x∗) and time (t∗) variables. In addition, we assume192

that individuals have a reduced perception of the surrounding neighbours for small193
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values of ε, [30]:194

fε

(

y±D[u, v]
)

= εf
(

y±D
[

u,

∫

x∗

ε

ε
∂u

∂t∗
]

)

, fε

(

yN [u]
)

= εf
(

yN [u]
)

, (10)

where f enters the turning functions λ± (2):195

λ+[·] + λ−[·] = 2λ1 + 2λ2 εf(yN [·]) + ε λ3

(

f(y+D[·]) + f(y−D[·])
)

,

λ−[·]− λ+[·] = λ3ε
(

f(y−D[·])− f(y+D[·])
)

.

By eliminating v = ε
∫

x
∂u
∂t from equations (9), and taking the limit ε → 0, we

obtain the following parabolic equation

∂u

∂t
=
γ2

2λ1

∂

∂x

(

∂u

∂x

)

− λ3γ

2λ1

∂

∂x

((

f(y−D[u])− f(y+D[u])
)

u
)

. (11)

We note here that the non-local terms f(y±D[u]) now depend only on the repulsive196

and attractive interactions. The reason for this is that the alignment interactions197

are defined in terms of u± = (u± 1
γ v)/2 = 0.5(u± 1

γ

∫

x/ε
ε2∂u/∂t). As ε → 0, the198

u terms in (5) cancel out, and the integrals approach zero. Equation (11) can be199

re-written as200

∂u

∂t
=

∂

∂x

(

D0
∂u

∂x

)

− ∂

∂x

(

B0 uV (u)
)

, (12)

with diffusion rate D0 = γ2/(2λ1) and drift rate B0 = λ3γ/(2λ1). The velocity
V (u) depends on the communication mechanism incorporated. For example, for
model M2 we have y±D[u] = ±K ∗ u, and so the velocity is given by

V [u] = f
(

−K ∗ u
)

− f
(

K ∗ u
)

where we define

K ∗ u = K̄+ ∗ u− K̄− ∗ u, K̄± ∗ u =

∫ ∞

0

K̄(s)u(x± s)ds,

K̄ = qrKr − qaKa. (13)

For model M4, we have y±D[u] = ±0.5K ∗ u, and so the velocity is quite similar:201

V [u] = f
(

−0.5K ∗u
)

−f
(

0.5K ∗u
)

, the factor 0.5 appearing from u± = 0.5(u± 1
γ v).202

Remark 1. We observe that the random density-dependent turning f(yN [u]) does203

not appear in this parabolic limit. This is the result of the scaling assumptions (10).204

Remark 2. Here, the turning functions f(·) were chosen to be bounded, since in-
dividuals cannot turn infinitely fast when subject to very strong interactions with
neighbours [32, 34]. However, for simplicity, many models consider linear func-
tions: f(z) = z (see, for example, [49, 51, 36]). The choice of having bounded
or non-bounded turning functions f(·) has further implications on the models. In
particular, for linear functions, the argument y±D = y±r − y±a + y±al can be either
positive or negative (depending on the magnitudes of the social interactions), with
y+D = −y−D. For very small constant and non-directional turning rates (λ1, λ2 ≈ 0),
this can lead to λ+ < 0 and λ− > 0, or vice versa. Now the u+λ+ terms add to the
u−λ− terms, causing both u+ and u− populations to decide very fast to move in
the same direction (in fact, one of the populations is reinforced to keep its moving
direction). This is different from the case with bounded turning functions, where
if y+D = −y−D ≪ 0, then 0 < λ+ ≈ λ1 + λ2f (yN [u+, u−]) < λ−. So if λ1, λ2 ≈ 0,
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then u+λ+ ≈ 0 and hence population u+ is not reinforced to keep its movement
direction.
Because the 2D kinetic model that we will investigate in Section 3 assumes f to
be a linear function, with a very weak directed turning behaviour (ελ3), we now
consider the case f(yN [u]) = yN [u] = KN ∗ u and f(y±D[u]) = εy±D[u], and so the
turning rates can be written as

λ±[u+, u−] = λ1 + λ2K
N ∗ u+ ε λ3y

±
D[u] (14)

By taking the limit ε → 0 in (9), we obtain the following parabolic equation with
density-dependent coefficients:

∂u

∂t
=

∂

∂x

(

D[u]
∂u

∂x

)

− ∂

∂x

(

B[u]u
(

y−D[u]− y+D[u]
)

)

, (15a)

D[u] =
γ2

2(λ1 + λ2KN ∗ u) and B[u] =
λ3γ

2(λ1 + λ2KN ∗ u) . (15b)

This expression is similar to the asymptotic parabolic equation (30) for the 2D205

model. We will return to this aspect in Section 3.1.206

2.2. The preservation of steady states and their stability as ε → 0. The207

spatially homogeneous steady states describe the situation where individuals are208

evenly spread over the whole domain. In the following we investigate how these209

steady states and their linear stability are preserved in the parabolic limit. To this210

end, we focus on the more general case of non-linear social interactions (the case211

with linear interactions is similar). For simplicity we assume here that λ2 = 0212

and qal = 0. To calculate these spatially homogeneous states we need to define213

A =
∫ L

0
(u+ + u−)dx the total population density. For simplicity, throughout this214

paper we assume that A = 2; similar results can be obtained for different values of215

A.216

Figure 4(a) shows the number and magnitude of the steady states u∗ displayed by217

(9)-(10) with communication mechanism M4, for different values of ε, as one varies218

the difference in the magnitude of the repulsive and attractive social interactions,219

qr − qa. For medium ε, the model can display up to 5 different steady states: one220

“unpolarised” state (u+, u−) = (u∗, u∗) = (A/2, A/2) (where half of the individuals221

are facing left and half are facing right), and two or four “polarised” states (u∗, A−222

u∗), (A− u∗, u∗) characterised by u∗ < A/2 or u∗ > A/2. Two of these “polarised”223

states exist only in a very narrow parameter range: e.g., for ε = 1, they exist when224

qr − qa ∈ (2, 3.7). The other two “polarised” states exist for any qr − qa > 2. For a225

calculation of the threshold values of qr−qa that ensure the existence of 3 or 5 steady226

states see [33]. As ε decreases, the magnitude of the polarised states decreases (i.e.,227

the differences between the number of individuals facing right and those facing left228

are decreasing). Moreover, for small ε, these polarised states appear only when229

repulsion becomes much stronger than attraction (i.e., qr − qa ≫ 10). When ε = 0230

there is only one steady state u∗ = A/2. Since this state exists for all ε ≥ 0, from231

now on we will focus our attention only on it. Note that for qal = 0 and for the232

communication mechanism M2 (not shown here), the nonlocal attractive-repulsive233

terms vanish, and there is only one steady state, u∗ = A/2 = 1, which does not234

depend on ε.235

Models (1) and (9) do exhibit a large variety of local bifurcations: codimension-236

1 Steady-state and Hopf bifurcations [34] as well as codimension-2 Hopf/Hopf,237
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σ
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 )k

u*=A/2u*=A/2
j=1,...,7

ε=0.2ε=0.5ε=0.9ε=1Reσ(  )k

σ(  )kIm

ε     0ε     0

σ
( 

 )k
j j=1,...,7

(c)
j

ε=1

ε=0.02

ε=0.2

ε=0.5

(b)

(a)

Figure 4. (a) Spatially homogeneous steady states u∗ for model
(9) with communication signals (7) and (8) (communication mech-
anism M4), for different values of ε. The small inset figure shows
the 5 possible steady states occurring for ε = 1 and qr−qa ∈ (2, 3.7)
(see the black continuous curve); (b) Dispersion relation σ(kj) for
M4 (given by (16)), showing the stability of the spatially homo-
geneous steady state u∗ = A/2, for different values of ε; (c) Dis-
persion relation σ(kj) for M2, for the stability of the spatially ho-
mogeneous steady state u∗ = A/2, for different values of ε. The
continuous curves describe Re σ(kj), while the dotted curves de-
scribe the Im σ(kj). The small diamond-shaped points show the
discrete wavenumbers kj , j = 1, ..., 7, with kj = 2πj/L (and thus
kj ∈ (0, 5) for j = 1, .., 7 and L = 10). The parameter values are:
(b)qa = 1.545, qr = 2.779; (c) qa = 1.5, qr = 0.93. The rest of
parameters are: qal = 0, λ1 = 0.2, λ2 = 0, λ3 = 0.9, A = 2.

Hopf/Steady-state and Steady-state/Steady-state bifurcations [14]. Next we fo-238

cus on the parameter region where two such bifurcations can occur. We choose a239

Hopf/steady-state bifurcation for M4 (Figure 4(b)) and a steady-state bifurcation240

for M2 (Figure 4(c)), and investigate what happens when ε → 0. To identify the241



NONLOCAL KINETIC MODELS FOR SELF-ORGANIZED AGGREGATIONS 11

parameter regions where these bifurcations occur, we consider a finite domain of242

length L, and investigate the growth of small perturbations of spatially homogen-243

eous solutions. We assume u± ∝ u∗ + a±exp(σt+ ikjx), with kj = 2πj/L, j ∈ N
+,244

the discrete wave-numbers, and |a±| ≪ 1. We substitute these solutions into the245

linearised system (9), and by imposing that the determinant of this system is zero,246

we obtain the following dispersion relation, which connects σ (the growth/decay of247

the perturbations) with the wave-numbers kj :248

ε2σ2 + σ(2Lε1 −Rε2Re(K̂
+)) + γ2k2j − γkjR2Im(K̂+) = 0, (16)

where Lε1 = λ1 + ελ3f(0), R
ε
2 = 2εu∗λ3f

′(0), and K̂+ = Re(K̂+) + iIm(K̂+)249

the Fourier transforms of K̄+ ∗ u described in equations (13). Note that the wave250

numbers kj that become unstable (i.e., for which Re(σ(kj)) > 0) determine, at least251

for a short time, the number of “peaks” j that emerge in the spatial distribution of252

the density.253

Figure 4(b) shows the stability of the spatially homogeneous steady state u∗ =254

A/2, for model M4, as given by the dispersion relation (16). Even if the wave-255

numbers kj are discrete (see the diamond-shaped points on the x-axis of Figure256

4(b)), we plot σ(kj), j > 0 as a continuous function of kj for clarity. To discuss257

what happens with a Hopf bifurcation as ε → 0, we focus in Figure 4(b) on a258

parameter space where such a bifurcation occurs (i.e., where Re(σ(kj)) = 0 in259

(16)): qa = 1.545, qr = 2.779, λ1 = 0.2, λ2 = 0, λ3 = 0.9 and ε = 1 (see also260

[15]). For these parameter values, three modes become unstable at the same time:261

a steady-state mode k1 (Im(σ(k1)) = 0; associated with stationary patterns with 1262

peak) and two Hopf modes k4 and k5 (Im(σ(k4,5)) > 0; associated with travelling263

patterns with 4 or 5 peaks). As ε → 0, the steady-state mode persists while the264

Hopf modes disappear (i.e., 0 < Re(σ(k1)) ≪ 1 and Re(σ(k4,5)) < 0; see Figure265

4(b).) This can be observed also from equation (16): as ε → 0, we have σ ∈ R.266

A similar investigation of the local stability of the spatially homogeneous steady267

states associated with the non-local parabolic equation (12) shows that this equation268

cannot have complex eigenvalues (i.e., Im(σ(kj)) = 0 for all j > 0), and thus cannot269

exhibit local Hopf bifurcations [16].270

Figure 4(c) shows the stability of the spatially homogeneous steady state u∗ =271

A/2, for model M2, as given by the dispersion relation σ(kj):272

ε2σ2 + σ(2Lε1) + γ2k2j − 2γkjR2Im(K̂+) = 0. (17)

For qa = 1.5, qr = 0.93, λ1 = 0.2, λ2 = 0, λ3 = 0.9 and ε = 1, model M2 exhibits273

a steady-state bifurcation, i.e., Re(σ(kj)) = Im(σ(kj)) = 0 in (17). In particular,274

two steady-state modes are unstable at the same time: k1 and k2 (both associated275

with stationary patterns). As ε → 0, the two modes remain unstable. Hence, we276

expect that the spatial patterns generated by these modes will persist as ε→ 0. We277

will return to this aspect in Section 4.4, when we will investigate numerically the278

mechanisms that lead to the disappearance of the Hopf modes and the persistence279

of the steady-state modes, as ε→ 0.280

3. Description of 2D Models. An attempt to generalise a specific case of the 1D281

model (1)-(2)-(5)-(6) to two dimensions was made by Fetecau [36]. The Boltzman-282

type model described in [36] incorporates the non-local social interactions in the283
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x

x

x+s

u(   ,   ) u(      ,   )x+s
φ

The 2D equivalent of model M2 

θ

Figure 5. Caricature description of the M2 mechanism in 2D
(where individuals can perceive all their neighbours within a cer-
tain interaction range). We assume that a reference individual is
positioned at x = (x, y) and moves in direction φ. Its neighbours
are at various spatial positions x+ s within a certain interaction
range (e.g., alignment range). The interaction ranges are described
by the 2D kernels (21); see also Figure 1(a).

reorientation terms:284

∂u

∂t
+ γeφ · ∇xu = −λ(x, φ)u+

∫ π

−π

T (x, φ′, φ)u(x, φ′, t)dφ′. (18)

Here, u(x, φ, t) is the total population density of individuals located at x = (x, y),285

moving at a constant speed γ > 0 in direction φ. The term eφ = (cos(φ), sin(φ))286

gives the movement direction of individuals. The reorientation terms, λ(x, φ) and287

T (x, φ′, φ) depend on the non-local interactions with neighbours, which can be288

positioned in the repulsive, attractive, and alignment ranges depicted in Fig. 1(a).289

Thus, these terms have three components each, corresponding to the three social290

interactions:291

T (x, φ′, φ) = Tal(x, φ
′, φ) + Ta(x, φ

′, φ) + Tr(x, φ
′, φ).

In contrast to the model in [36], here we assume that the reorientation terms

λj(x, φ
′) =

∫ π

−π

Tj(x, φ
′, φ)dφ, j = r, a, al

have both a constant and a density-dependent component:

T al(x, φ
′, φ) =

ηal
2π

+ (19a)

λ3 qal

∫ π

−π

∫

R2

Kd
al(x− s)Ko

al(θ, φ
′)ωal(φ

′ − φ, φ′ − θ)u(s, θ, t)dsdθ,

T r,a(x, φ
′, φ) =

ηr,a
2π

+ (19b)

λ3 qr,a

∫ π

−π

∫

R2

Kd
r,a(x− s)Ko

r,a(s,x, φ
′)ωr,a(φ

′ − φ, φ′ − ψ)u(s, θ, t)dsdθ.
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Therefore, the turning rate λ(x, φ) = λal(x, φ) + λa(x, φ) + λr(x, φ) is defined by292

λ = λ1 + λ3λ̄[u(x, φ)], (20)

with λ1 = ηr + ηal + ηa and λ̄[u(x, φ)] being given as the integral over φ′ ∈ [−π, π]293

of the sum of nonlocal terms in (19) with φ and φ′ interchanged.294

Remark 3. By defining the constant basic turning rate to be λ1 = ηr+ηal+ηa, we295

generalised the model in [36] (where λ1 = 0). Note that the turning rates here are296

linear functions of the non-local interactions with neighbours. This is in contrast to297

the more general non-linear turning function f we considered in Section 2.1 for the298

1D hyperbolic model. In what follows, we are interested in non-constant turning299

rates λj(x, φ
′), j = r, a, al, and so we will henceforth assume λ3 6= 0.300

As in [36], λj , j = r, a, al, are defined in terms of both distance kernels and301

orientation kernels. The 2D distance kernels Kd
j , j = r, a, al are given by302

Kd
j (x) =

1

Aj
e−(

√
x2+y2−dj)/m

2
j , j = r, a, al, (21)

where constants Aj are chosen such that the kernels integrate to one. The orient-303

ation kernels Ko
j measure the likelihood of turning in response to the movement304

direction of neighbours (for alignment interactions) or in response to the position305

of neighbours (for repulsive and attractive interactions):306

Ko
al(θ, φ) =

1

2π
(1− cos(φ− θ)),

Ko
r,a(s,x, φ) =

1

2π
(1± cos(φ− ψ)),

where ψ is the angle between the positive x-axis and the relative location s−x of the
neighbours at s with respect to the reference individual at x. Finally, ω describes
the tendency to turn from direction φ′ to direction φ, as a result of interactions
with individuals moving in direction θ:

ω(φ′ − φ, φ′ − θ) = g(φ′ − φ−R(φ′ − θ)),

for some suitable choice of g. Note that in the case λ1 = 0, the function ω describes
the probability of re-orientation in the sense discussed in [38] and thus we require
∫

ω(φ′−φ, φ′−θ)dφ = 1. For example, g could be a periodic function that integrates
to one:

g(θ) =
1√
πσ

∑

z∈Z

e−( θ+2πz
σ

)2 , θ ∈ (−π, π),

with σ a parameter measuring the uncertainty of turning (with small σ leading to307

exact turning) [36, 37]. Another typical choice could be the von Mises distribution,308

as in Vicsek-type models [27].309

On the other hand, when λ1 > 0, then g can be interpreted as a small reorientation310

perturbation from the random turning behaviour and so ω satisfies
∫

ω(φ′ −φ, φ′ −311

θ)dφ = 0 and therefore g is required to be odd.312

Remark 4. Fetecau [36] showed that by imposing the turning angle to have only
two possible values φ = ±π, the 2D model (18) can be reduced to the 1D model
(1) for a specific choice of turning rates λ±[u+, u−]. More precisely, considering
the more general turning operators (19a) and (19b), we recover (2) with λ1, λ3 ≥
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0, λ2 = 0 for a linear turning function f(z) = z, and with the communication
mechanism

y±D[u
+, u−] =

1

π
qal

∫ ∞

−∞

Kal(x− s)
(

u∓(s, t)
)

ds

+
1

π
qa

∫ x

−∞

Ka(x− s)
(

u+(s, t) + u−(s, t)
)

ds

+
1

π
qr

∫ ∞

x

Kr(x− s)
(

u+(s, t) + u−(s, t)
)

ds.

This is a similar turning behaviour to model M2 in [32], since individuals receive313

and emit omni-directional communication signals, but with the function f linear.314

Moreover, as we will show in the next section, even if the 2D model (18) can be315

reduced to a special case of the 1D model (1) without λ2 in (2), the parabolic scaling316

of the 2D model reduces to a special case of the parabolic scaling of the 1D model,317

which includes a λ2 term for non-directed turning. As we will see shortly, this318

2D parabolic scaling leads to the natural appearance of a non-directed interaction319

contribution, suggesting that there are more subtle differences between the 1D and320

2D models.321

The diffusion limit (i.e., x = x∗/ε, t = t∗/ε2) of a transport model similar to322

(18), but with constant turning rates λ was discussed in [44, 54]. In the following we323

consider the parabolic limit for model (18) with density-dependent turning rates.324

3.1. Parabolic Drift-Diffusion limit. We focus on the case where individuals are325

only influenced slightly by the presence of neighbours, i.e., the turning mechanism326

can be assumed to be a small perturbation of a uniform turning probability. In327

this case, we will show that the Boltzmann-type equation (18) can be reduced to a328

drift-diffusion equation in the macroscopic regime.329

We consider the scaling t = t∗/ε2, x = x∗/ε, where ε ≪ 1 is a small parameter.330

Since the velocity in the new variables is of order 1/ε, then we make the scaling331

assumption that an individual’s turning behaviour is only influenced slightly by the332

presence of neighbours:333

T [u](x, φ′, φ) =
λ1
2π

+
λ2
2π

Kd ∗ ρ(x, t) + ε λ3B[u](x, φ′, φ), (22)

with ρ(x, t) =
∫ π

−π
u(x, φ, t) dφ, and where we define

Kd(x) := qalK
d
al(x) + qaK

d
a(x) + qrK

d
r (x)

to be the social distance kernel. As we have done in the 1D case, we have separated334

the non-directed and directed turning rates.335

If λ3 6= 0, we factorise again the turning rate λ3 corresponding to the directed336

interactions and write λ02 = λ2/λ3 the quotient of turning rates. With this notation,337

λ̄[u(x, φ)] in (20) can be written as338

λ̄[u(x, φ)] = λ02K
d ∗ u(x, φ, t) + ε yD[u(x, φ, t)], (23)

with yD[u] =
∫

B[u](x, φ′, φ)dφ′. Note that the turning rate λ given by (20)-(23)
corresponds to the 1D turning rates (14) with this specific choice of yD[u]. The
scaling assumption (22) can be derived by introducing reduced perception of direc-
tionality of neighbours into the re-orientation function ω and into the orientation
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kernels Ko
j ,

gj(ϑ) = λ02 + εGj(ϑ),

Ko
al(θ, φ) =

1

2π
(1− ε cos (φ− θ)) ,

Ko
r,a(s,x, φ) =

1

2π
(1± ε cos (φ− ψ)) ,

where Gj(ϑ), j = r, a, al are signal response functions to be chosen according to339

the biological context. Substituting these expressions into the reorientation terms340

(19), we define λ1 = ηal + ηr + ηa and we obtain (22) with a precise expression for341

the social response function B[u].342

If λ1 = 0, we further have λ2 = λ3/2π and
∫ π

−π
Gj(φ

′ − φ − R(φ′ − θ))dφ = 0,
j = r, a, al as the probability to turn to any new angle is 1. In addition, we want
the turning function R(ϑ) to be close to an unbiased turning mechanism. This can
be expressed by taking R(ϑ) = εϑ, which indeed corresponds to weak interaction
between individuals, [38]. We obtain B[u] = Bal[u] +Ba[u] +Br[u] with

Bal[u](φ
′, φ) =

1

2π
qalGal(φ

′ − φ)Kd
al ∗ ρ(x, t) (24)

− λ02
2π

qal

∫

R2

Kd
al(x− s)

∫ π

−π

cos (φ′ − θ) u(s, θ, t) dθ ds,

Br,a[u](φ
′, φ) =

1

2π
qr,aGr,a(φ

′ − φ)Kd
r,a ∗ ρ(x, t) (25)

± λ02
2π

qr,a

∫

R2

Kd
r,a(x− s) cos (φ′ − ψ) ρ(s, t) ds.

343

Remark 5. Note that in 2D, λ02 is introduced as the relative strength of non-344

directed and directed turning kernels. This is part of the scaling assumption in 2D,345

whereas in 1D, we introduced it as part of the model (1)-(2) before rescaling. Note346

that λ02 = 1/2π in Fetecau’s model where no distinction is made between directed347

and non-directed turning.348

Let us introduce

Kd
∗ (x

∗) =
1

ε
Kd

(

x∗

ε

)

, B∗(x
∗, φ′, φ) =

1

2π
B

(

x∗

ε
, φ′, φ

)

.

Simplifying the notation by dropping ∗, system (18) writes in the new variables as

ε2∂tu+ ε γ eφ · ∇xu =
1

2π

(

λ1 + λ2K
d ∗ ρ

)

(ρ− 2πu) (26)

+ ε λ3 2π

∫ π

−π

B(x, φ′, φ)u(x, φ′, t) dφ′

− ε λ3 2π u(x, φ, t)

∫ π

−π

B(x, φ, φ′)dφ′ .

Using a Hilbert expansion approach, u = u0+εu1+ε
2u2+ ..., and defining the mac-

roscopic densities ρi =
∫ π

−π
ui dφ for i ∈ N0, we obtain at leading oder a relaxation

towards a uniform angular distribution at each position:

u0(x, φ, t) = ρ0(x, t)F (φ), (27)

F (φ) =
1

2π
✶φ∈(−π,π].
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Integrating (26) with respect to the direction of motion φ, we obtain the continuity349

equation350

∂tρ0 + γ

∫ π

−π

eφ · ∇x u1dφ = 0. (28)

Comparing orders of ε and using (27), we can derive an expression for u1 in terms
of u0, ρ0, ρ1,

u1 =
1

2π
ρ1 − γ

eφ · ∇xu0
λ1 + λ2Kd ∗ ρ0

+ρ0
λ3

λ1 + λ2Kd ∗ ρ0

∫ π

−π

B[ρ0](x, φ
′, φ)−B[ρ0](x, φ, φ

′) dφ′.

Substituting into (28), we arrive at a macroscopic drift-diffusion equation of the
form

∂tρ0 = ∇x . (D[ρ0]∇xρ0 − ρ0k[ρ0]) ,

where the macroscopic diffusion coefficient D[ρ0] = γ2/(2(λ1+λ2K
d ∗ ρ0)) and the351

social flux352

k[ρ0] =
λ3 γ

λ1 + λ2Kd ∗ ρ0

∫ π

−π

∫ π

−π

(eφ − eφ′)B[ρ0](x, φ
′, φ)dφ′dφ (29)

are both described in terms of microscopic quantities. In the context of collective353

behaviour of animal groups, we make two further assumptions:354

(i) Individuals can process information in a similar manner for all three types of
social interactions:

Gal(ϑ) = Gr(ϑ) = Ga(ϑ) =: G(ϑ) ∀ϑ.
(ii) Individuals have symmetric perception, in other words, they can process in-355

formation equally well from left and right. Then the turning probability func-356

tion ω is bisymmetric,357

ω(−α,−β) = ω(α, β),

which implies symmetry of the signal response function G.358

Under these assumptions, the first term of the social response functions Bj [u] in
(24) and (25) cancels when substituted into the social flux (29). The second term
contains the factor λ02 which cancels with λ3 in (29), leaving us with a factor of
λ2 in the social flux. Using (27), we can simplify the social flux even further and
obtain the drift-diffusion equation

∂tρ = ∇x . (D0[ρ]∇xρ)−∇x . (ρk[ρ]) , (30a)

D0[ρ] =
γ2

2(λ1 + λ2Kd ∗ ρ) , (30b)

k[ρ](x, t) =
λ2πγ

λ1 + λ2Kd ∗ ρ

(

qrK
d
r (x)

x

|x| − qaK
d
a(x)

x

|x|

)

∗ ρ. (30c)

For notational convenience, we dropped the zero in ρ0. Note that this equation is359

similar to the 1D drift-diffusion equation (15) obtained via the parabolic limit for360

linear social interactions.361

Remark 6. Integrating the 2D scaling assumption (22), we have

λ(x, φ′) = λ1 + λ2K
d ∗ ρ(x, t) + ε λ3

∫

B[u](x, φ′, φ)dφ,
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which is a particular case of the 1D scaling assumption (14). More precisely, the
2D turning rate λ(x, φ′) corresponds to (2) on the projected velocity set {0, π},
with a linear turning function f(z) = z and with the non-directed and directed
communication mechanisms given by

yN [u] =Kd ∗ ρ(x, t),

y±D[u
+, u−] =

G(0) +G(π)

2
Kd ∗ ρ(x, t) (31)

∓ λ02

∫

R

qalK
d
al(x− s)

(

u+(s1, t)− u−(s1, t)
)

ds1

∓ λ02

∫ x1

−∞

(

qrK
d
r (x− s)− qaK

d
a(x− s)

)

ρ(s, t)ds1

± λ02

∫ ∞

x1

(

qrK
d
r (x− s)− qaK

d
a(x− s)

)

ρ(s, t)ds1,

where x = (x1, 0), ρ(x, t) = u+(x1, t) + u−(x1, t) = u(x1, t), and where we used as-362

sumptions (i) and (ii). Hence, model (1)-(14) with communication mechanism (31)363

corresponds exactly to the 2D non-local kinetic model (18)-(22)-(24)-(25). This364

means, for instance, that the macroscopic 2D model (30) reduces to the heat equa-365

tion for λ2 = 0, which is not the case in the parabolic limit (15) of the corresponding366

1D hyperbolic model (1) with the turning rates given by (2). In fact, our 2D scaling367

assumption gj(ϑ) = λ02 + εGj(ϑ), j = al, r, a, introduces the relative strength of368

directed and non-directed turning kernels into the expression of the social response369

function B[u], which is responsible for the appearance of a factor λ2 in the drift of370

the macroscopic 2D model (30).371

Remark 7. For some particular choices of distance kernels, the limiting parabolic372

model (30) can be reduced to well known equations. Let us assume, for example,373

that the distance kernels are constant on the whole domain,374

Kd
j (x) = 1, j = al, a, r. (32)

This assumption corresponds to a setting in which individuals interact equally well375

with all other individuals present in the entire domain. This is true locally for376

example if we have many individuals packed in little space. Under assumption (32)377

together with λ1 = 0, model (30) simplifies to378

∂tρ =
C0

λ2
∆ρ+ C1 ∇ .

(

ρ

∫

R2

eψρ(s) ds

)

,

where

eψ =
s− x

|s− x| ,

and C0, C1 are constants depending only on γ, qal, qa, qr and the total mass
∫

ρ dx.379

If qa = qr, then the attraction and repulsion forces cancel out (C1 = 0) and we380

obtain the heat equation. Let us henceforth assume qa 6= qr. Furthermore, we can381

write the social flux as382

k[ρ] = ∇W ∗ ρ, (33)

where the interaction potentialW : R2 −→ R is given byW (x) = C1|x|. In fact, for
the more general distance kernels (21) the social flux can also be written in the form
(33), with the interaction potential W behaving like |x| close to zero and decaying
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exponentially fast as |x| −→ ∞ (e.g. Morse potentials). Therefore, we recover the
diffusive aggregation equation

∂tρ = ∆ρ+∇ . (ρ (∇W ∗ ρ)) ,

which models the behaviour of particles interacting through a pairwise potential383

while diffusing with Brownian motion. This type of equation has received a lot of384

attention in recent years because of its ubiquity in modelling aggregation processes,385

such as collective behaviour of animals [50, 52, 9, 26] and bacterial chemotaxis [10]386

(see also the references therein).387

3.2. Grazing collision limit. In the following, we consider another type of scaling388

that leads to parabolic equations, by focusing on the case where individuals turn389

only a small angle upon interactions with neighbours. This is biologically realistic390

as, for example, many migratory birds follow favourable winds or magnetic fields391

[53] and social interactions with neighbours might not have a considerable impact392

on directional changes of individuals. The so-called grazing collisions, i.e. collisions393

with small deviation, correspond to this assumption. In this case, we show that the394

Boltzmann-type equation (18) can be reduced to a Fokker-Planck equation with395

non-local advective and diffusive terms in the orientation space.396

For simplicity, the 2D kinetic model (18) can be re-written as

∂u

∂t
+ γeφ∇xu = −Q−[u] +Q+[u, u],

with

Q−[u] = Q−
r [u] +Q−

a [u] +Q−
al[u], Q+[u, u] = Q+

r [u, u] +Q+
a [u, u] +Q+

al[u, u],

Q−
j [u] = λj(x, φ)u, Q+

j [u, u] =

∫ π

−π

Tj(x, φ
′, φ)u(x, φ′, t)dφ′, for j = r, al, a.

Let us focus for now only on the alignment interactions; the analysis of attraction
and repulsion interactions is similar. The grazing collision assumption suggests that
we can rescale the probability of re-orientation as follows:

ωεal (φ− φ′, φ− θ) =
1

ε
gε

(φ− φ′ − εR(φ− θ)

ε

)

.

Here, the parameter ε is related to the small re-orientation angle following interac-397

tions with neighbours moving in direction θ. If we denote by εβ = φ−φ′−εR(φ−θ),398

then since ωε integrates to 1, we obtain:399

1 =

∫ π

−π

ωεal(φ− φ′, φ− θ)dφ′ =

∫ π+φ−R(φ−θ)

−π+φ−R(φ−θ)

gε(β)dβ =

∫ π

−π

gε(β)dβ,

by periodicity of gε.400

Generally, when an interaction kernel in the Boltzmann equation presents a sin-
gularity point, the troubles are avoided by considering a weak formulation of the
Boltzmann operator [40, 20]. Expanding Qal[u] := −Q−

al[u] + Q+
al[u, u], we obtain
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for all ψ ∈ C∞
c ([−π, π]),

∫ π

−π

Qal[u]ψ(φ)dφ = ηal

∫ π

−π

(

1

2π
ρ(x, t)− u(x, φ, t)

)

ψ(φ)dφ

+

∫ π

−π

∫ π

−π

∫

R2

λ3qalK
d
al(x− s)K0

al(θ, φ)u(x, φ, t)u(s, θ, t)·
∫ π

−π

ωεal(φ− φ′, φ− θ)
[

ψ(φ′)− ψ(φ)
]

dφ′dsdθdφ. (35)

By substituting φ′ = φ − εβ − εR(φ − θ) into the ψ(φ′) term in (35), and then
expanding in Taylor series about φ we obtain:

∫ π

−π

ωεal(φ− φ′, φ− θ)
[

ψ(φ′)− ψ(φ)
]

dφ′ ≈
∫ π

−π

gε(β)
[

(

− εβ − εR(φ− θ)
)∂ψ

∂φ
+
ε2

2

(

β +R(φ− θ)
)2 ∂2ψ

∂φ2

]

dβ.

Equation (35) can thus be approximated by401

∫ π

−π

Qal[u]ψ(φ)dφ = ηal

∫ π

−π

(

1

2π
ρ(x, t)− u(x, φ, t)

)

ψ(φ)dφ

−
∫ π

−π

∂

∂φ

[

u(x, φ, t)Cεal[u, x, φ]
]

ψ(φ)dφ

+

∫ π

−π

∂2

∂φ2

[

u(x, φ, t)Dε
al[u, x, φ]

]

ψ(φ)dφ,

with the definitions402

Cεal[u, x, φ] =

∫ π

−π

∫

R2

λ3qalK
d
al(x− s)K0

al(θ, φ)A
ε
al(φ− θ)u(s, θ, t)dθds,

Dε
al[u, x, φ] =

∫ π

−π

∫

R2

λ3qalK
d
al(x− s)K0

al(θ, φ)B
ε
al(φ− θ)u(s, θ, t)dθds,

where403

Aεal(φ− θ) =− ε
(

M1(ε) +M0(ε)R(φ− θ)
)

,

Bεal(φ− θ) =
ε2

2

(

M2(ε) + 2M1(ε)R(φ− θ) +M0(ε)R(φ− θ)2
)

,

and Mn(ε) =
∫ π

−π
βngε(β)dβ, n = 0, 1, 2, denote the moment generating functions404

of gε(β). In a similar manner we can approximate the attractive and repulsive405

non-local terms:406

∫ π

−π

Qr,a[u]ψ(φ)dφ = ηr,a

∫ π

−π

(

1

2π
ρ(x, t)− u(x, φ, t)

)

ψ(φ)dφ

−
∫ π

−π

∂

∂φ

(

u(x, φ, t)Cεr,a[u, x, φ]
)

ψ(φ)dφ

+

∫ π

−π

∂2

∂φ2

(

u(x, φ, t)Dε
r,a[u, x, φ]

)

ψ(φ)dφ,
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where

Cεr,a[u, x, φ] =

∫ π

−π

∫

R2

λ3qr,aK
d
r,a(x− s)K0

r,a(s, x, φ)A
ε
r,a(s, x, φ)u(s, θ, t)dsdθ,

Dε
r,a[u, x, φ] =

∫ π

−π

∫

R2

λ3qr,aK
d
r,a(x− s)K0

r,a(s, x, φ)B
ε
r,a(s, x, φ)u(s, θ, t)dsdθ,

Aεr,a(s, x, φ) =− ε(M1(ε)M0(ε)R(φ− ψs)),

Bεr,a(s, x, φ) =
ε2

2

[

M2(ε) + 2M1(ε)R(φ− ψs) +M0(ε)R(φ− ψs)
2
]

.

Therefore, the kinetic model (18) in the strong formulation can be approximated407

(when individuals turn only by a small angle upon interactions with their neigh-408

bours) by the following Fokker-Planck model that contains all three social interac-409

tions:410

∂u

∂t
+ γeφ · ∇xu =λ1

(

1

2π
ρ(x, t)− u(x, φ, t)

)

(36)

+
∂

∂φ

[

− uCε[u, x, φ] +
∂

∂φ
(uDε[u, x, φ])

]

,

with λ1 = ηa + ηal + ηr and411

Cε[u, x, φ] = Cεal[u, x, φ] + Cεr [u, x, φ] + Cεa[u, x, φ],

Dε[u, x, φ] = Dε
al[u, x, φ] +Dε

r [u, x, φ] +Dε
a[u, x, φ].

While non-local 2D Fokker-Planck models have been introduced in the past years412

in connection to self-organised aggregations, the majority of these models consider413

local diffusion [28, 3]. If we neglect the ε2 terms (i.e., Bε ≈ 0) and assume λ1 = 0,414

equation (36) reduces to a Vlasov-type flocking equation:415

∂u

∂t
+ γeφ · ∇xu+

∂

∂φ

[

uCε[u, x, φ]
]

= 0.

These type of models have been previously derived from individual-based models416

(Vicsek or Cucker-Smale models) with or without noise [28, 41, 20].417

4. Asymptotic Preserving Methods for 1D models. The kind of diffusion418

asymptotics we employed in the previous sections have been numerically investig-419

ated in [21] using so-called asymptotic preserving (AP) schemes. The AP methods,420

which improve the scheme already proposed in [39], are a fully explicit variation of421

the methods introduced in [46, 47]. They are a powerful tool to investigate how422

patterns are preserved in the parabolic limit by providing numerical schemes for all423

intermediate models of a scaling process given some scaling parameter ε > 0, and424

naturally produce a suitable numerical method for the limiting model as ε → 0.425

Here, we apply these schemes only to the 1D models introduced in Section 2, since426

the numerics become much more complex in two dimensions. Taking advantage of427

our understanding of the limit process, we base our scheme on a splitting strategy428

with a convective-like step involving the transport part of the operator and an429

explicitly solvable ODE step containing stiff sources (see Section 4.2).430
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4.1. Odd and Even Parity. We consider the 1D kinetic model (1) written as an
odd-even decomposition,

{

∂tr + γ∂xj = 0,

∂tj + γ∂xr = −2λ+[r, j](r + j) + 2λ−[r, j](r − j),

with the equilibrium part (macro part/even part) r and the non-equilibrium part
(micro part/odd part) j given by

r(x, t) =
1

2

(

u+(x, t) + u−(x, t)
)

, j(x, t) =
1

2

(

u+(x, t)− u−(x, t)
)

.

Under scaling assumption (10) for (2), this model reads in the new variables x =
x̃/ε, t = t̃/ε2 as follows:

ε∂t̃r̃ + γ∂x̃j̃ =0

ε∂t̃j̃ + γ∂x̃r̃ = r̃λ3(f [ỹ
−]− f [ỹ+])

− 1

ε
j̃
(

2λ1 + 4ελ2f
(

K̃N ∗ r̃
)

+ ελ3(f [ỹ
+] + f [ỹ−])

)

,

where K̃N (x̃) = 1
εK

N ( x̃ε ). Rearranging the terms and dropping “∼” for notational

convenience, we obtain for r and J := 1
ε j:























∂tr + γ∂xJ =0

∂tJ + γ∂xr =
1

ε2
rλ3(f [y

−]− f [y+]) +

(

1− 1

ε2

)

γ∂xr

− 1

ε2
J
(

2λ1 + 4ελ2f
(

KN ∗ r
)

+ ελ3(f [y
+] + f [y−])

)

.

(37)

4.2. Operator Splitting. We can now employ an operator splitting method on431

(37), separating the stiff source part, which can be treated by an implicit Euler432

method, and the transport part, which we can solve by an explicit method such as433

upwinding:434

1. Stiff source part:

∂tr =0,

∂tJ =
1

ε2
rλ3(f [y

−]− f [y+]) +

(

1− 1

ε2

)

γ∂xr (38)

− 1

ε2
J
(

2λ1 + 4 ε λ2f
(

KN ∗ r
)

+ ε λ3(f [y
+] + f [y−])

)

.

2. Transport part:

∂tr + γ ∂xJ = 0, (39)

∂tJ + γ ∂xr = 0.

It can easily be verified that, in the limit ε→ 0, we recover indeed the macroscopic435

model (11) for u = 2r.436

4.3. Alternated Upwind Discretisation. In the following, we are interested in
the numerical implementation of model (1) with the turning rates (2) depending on
a non-linear turning function f without a non-directed density-dependent turning
term (i.e. λ2 = 0). As shown in Section 2.1, in this case, the parabolic limit yields
the drift-diffusion equation (11)

∂tu = D0∂xxu−B0∂x
(

u(f−[u]− f+[u])
)

,
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with D0 = γ2/(2λ1) and B0 = λ3γ/(2λ1). Note the shortcut notation f±[u] =
f(y±D[u]). We propose an alternated upwind discretisation with the even part r
evaluated at full grid points xi = i∆x, and the odd part J evaluated at half grid
points xi+ 1

2
= (i + 1

2 )∆x. First, we discretise the stiff source part (38) using an

implicit Euler discretisation and respecting the direction of the drift. We obtain an
explicit expression for J∗,

J∗
i+ 1

2

=
ε2Jn

i+ 1
2

+ γ ∆t
∆x

(

ε2 − 1
) (

rni+1 − rni
)

ε2 + 2λ1∆t+ ελ3∆t (f+[rn] + f−[rn])i+ 1
2

+
λ3∆t

(

(f−[rn]− f+[rn])
+
i+ 1

2

rni + (f−[rn]− f+[rn])
−

i+ 1
2

rni+1

)

ε2 + 2λ1∆t+ ελ3∆t (f+[rn] + f−[rn])i+ 1
2

,

with r∗ = rn. Here, rn and Jn are the numerical solutions of r and J at time
tn = n∆t. We use the “∗”-notation for half steps in time. Since J is evaluated at half
grid point, the discretisation of the transport part (39) can be chosen independently
of the sign of the drift,

1

∆t

(

rn+1
i − r∗i

)

+
1

∆x

(

J∗
i+ 1

2

− J∗
i− 1

2

)

= 0,

1

∆t

(

Jn+1
i+ 1

2

− J∗
i+ 1

2

)

+
1

∆x

(

r∗i+1 − r∗i
)

= 0.

Taking the limit ε → 0 in the expression for J∗
i+ 1

2

and substituting into the first

equation of the transport part, we obtain the following discretisation of the one-
dimensional macroscopic model (11):

un+1
i − uni

∆t
=

D0

(∆x)2

(

∂(c)xx u
n
)

i

− B0

∆x

(

uni
(

f−[rn]− f+[rn]
)+

i+ 1
2

− uni−1

(

f−[rn]− f+[rn]
)+

i− 1
2

)

− B0

∆x

(

uni+1

(

f−[rn]− f+[rn]
)−

i+ 1
2

− uni
(

f−[rn]− f+[rn]
)−

i− 1
2

)

.

Here, ∂
(c)
xx un denotes the standard central difference discretisations. This illustrates437

how the choice of discretisation for (38) directly induces a discretisation of model438

(11). We will now use this scheme to investigate how some of the patterns observed439

in model (1)-(2) change as ε→ 0.440

Remark 8. The stability restriction for the proposed AP scheme is less clear. We441

can expect that the time steps size ∆t needs to be sufficiently small, with an upper442

stability bound depending on the space step size ∆x, the diffusion coefficient D0,443

and the social interaction kernels via the terms KN ∗ u and f±[u].444

4.4. Simulation results. In Section 2.2 we have seen that for model M4, the two445

Hopf bifurcations that occurred for the k4 and k5 modes have disappeared as ε→ 0.446

In this Section, we start with a rotating wave pattern (i.e., travelling pulses) that447

arises at ε = 1 through a Hopf bifurcation (i.e., for the same parameter values as in448

Figure 4: qa = 1.545, qr = 2.779, λ1 = 0.2, λ2 = 0, λ3 = 0.9, γ = 0.1, A = 2). Then,449

we investigate numerically what happens with this pattern as ε → 0. The initial450

conditions for the simulations are random perturbations – of maximum amplitude451

0.2 – of the spatially homogeneous steady state u∗ = A/2 = 1. We start with ε = 1,452
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and run the numerical simulations up to t = 1000. Then we decrease ε, and choose453

the new initial condition to be the final solution obtained with the previous ε value.454
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Figure 6. The amplitude and density profile of the patterns ob-
tained for qa = 1.545, qr = 2.779, qal = 0, λ1 = 0.2, λ2 = 0,
λ3 = 0.9 with model M4, as ε is decreased from 1.0 to 0.0. (a)
Bifurcation diagram for the amplitude of the patterns as a func-
tion of ε. For ε ≤ 0.32 (region I), the amplitude is constant. For
ε ∈ (0.32, 0.64) (region II) the amplitude oscillates between two
different values. For ε ≥ 0.64 (region III) there are some very
small oscillations in the amplitude, however due to the scale of the
plot these oscillations are almost unobservable. (b) Amplitude of
the patterns for ε ∈ [0, 0.6] and for t ∈ (0, 50). We show here
maxx∈[0,L]u(x, t)−minx∈[0,L]u(x, t), with u = u+ + u−. (c) Amp-
litude of the patterns for ε ∈ [0.7, 1.0] and for t ∈ (0, 50).

Figure 6(a) shows the amplitude of the patterns obtained when ε ∈ [0, 1], for the455

particular parameter values mentioned before. Since some of these amplitudes show456
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time-oscillations between different values, we graph their maximum and minimum457

values for each ε. As we decrease ε from 1.0 towards 0.64 (region III), the amplitude458

undergoes some very small temporal oscillations (see also panel (c)), corresponding459

to the rotating wave patterns (with a small time-modulation) shown in Figure 7(c).460

For ε ∈ (0.32, 0.64) (region II), the amplitude oscillates between two large values.461

This corresponds to the “inside-group” zigzagging behaviour shown in Figure 7(b)462

near x = 6, where the group as a whole does not move in space but individuals463

inside the group move between the left and right edges of the group. We also464

note a period-doubling bifurcation at ε = 0.61 (region II, Figure 6(a); see the two465

dots that appear between the main branches), which leads to a slight decrease466

in the amplitude. Finally, as ε is decreased below 0.32 (region I), the movement467

inside the group is lost and the pattern is described by stationary pulses with468

fixed amplitude (see Figure 6(a) and Figure 7(a)). Figures 6(b),(c) show the time-469

variation of the amplitudes of the spatial and spatiotemporal patterns obtained for470

ε ∈ [0, 1]. Figures 7(a’)-(c’) show the density profiles of the patterns observed in471

regions I-III.472

Because the macro-scale models (ε = 0) seem to exhibit stationary pulses (as473

shown in Figure 7(a)), we now start with these stationary pulses (for ε = 1) and474

investigate whether they change in any way as ε→ 0. We focus here on model M2475

(see Figure 3). Figure 8 shows the amplitude of the stationary pulses obtained with476

model M2 in a particular parameter region (qa = 2.2, qr = 0.93, qal = 0; see also477

Figure 4), as we decrease the scaling parameter ε. We observe that in this case, the478

scaling does not affect the patterns or their amplitudes.479

Remark 9. Note that the rotating wave pattern shown in Figure 7(c) for ε = 1480

is obtained near a Hopf/steady-state bifurcation (with k5 the Hopf wavenumber),481

and hence the 5 rotating peaks that form this pattern. However, as ε → 0, the482

wavenumber k3 seems to become unstable (hence the 3 peaks for the patterns shown483

in Figure 7(a),(b)), even if the dispersion relation shown in Figure 4(b) suggests that484

k3 should be stable.485

5. Summary and Discussion. In this study, we investigated the connections486

between a class of 1D and 2D non-local kinetic models and their limit macroscopic487

models for self-organised biological aggregations. The non-locality of these models488

was the result of the assumptions that individuals can interact with neighbours489

positioned further away, but still within their perception range. To simplify the490

kinetic models that incorporate microscopic-level interactions (such as individuals’491

speed and turning rates), we focused on two types of scalings, namely a parabolic492

and a grazing collision limit, which lead to parabolic models described in terms of493

average speed and average turning behaviour. We showed that while for the kinetic494

models the non-local interactions influence the turning rates (i.e., individuals turn495

to approach their neighbours, to move away from them or to align with them), for496

the limit parabolic models the non-local interactions influence the dispersion and497

the drift of the aggregations. In particular, we showed that the assumption that498

individuals can turn randomly following the non-directional perception of neigh-499

bours around them leads, in the macroscopic scaling, to density-dependent diffu-500

sion. Moreover, this diffusion decreased with the increase in the population density.501

Biologically, this means that larger animal groups are less likely to spread out.502

This phenomenon has been observed for various species. For example, studies have503
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Figure 7. The spatial and spatio-temporal patterns obtained with
model M4, for qa = 1.545, qr = 2.779, qal = 0, λ1 = 0.2, λ2 = 0,
λ3 = 0.9, as ε is decreased from 1.0 to 0.0, using model M4. (a) Sta-
tionary pulse patterns observed in region I: ε ≤ 0.32; (b) ”Inside-
group” zigzag patterns observed in region II: ε ∈ (0.32, 0.64); (c)
Rotating wave (traveling pulse) patterns observed in region III:
ε ≥ 0.64. Panels (a’)-(c’) show the density profiles corresponding
to patterns in panels (a)-(c), at time t = 1000.
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Figure 8. The amplitude and density of the patterns obtained for
model M2 with qa = 2.2, qr = 0.93, qal = 0, λ1 = 0.2, λ2 = 0, λ3 =
0.9, as ε is decreased from 1.0 to 0.0. (a) Bifurcation diagram for
the amplitude of the patterns as a function of ε. (b) Density profile
for the stationary patterns. (c) Time-space plot of the density.

shown that aggregations of locusts [13] or ants [4] can persist only if the number of504

individuals is above a certain threshold.505

The introduction in (2) of the term yN describing random non-directional turning506

(which generalised the turning rates in [33]) was required by the comparison of the507

parabolic limit models in 1D and 2D. In particular, the 2D parabolic limit lead to508

the natural appearance of this term, which is absent from the 1D parabolic model.509

Therefore, to obtain similar parabolic models in 1D and 2D, we had to explicitly add510

yN in equation (2). This suggests that even if the 2D model (18) can be reduced to a511

special case of the 1D model (1) (as shown in [36]) there are more subtle differences512

between these nonlocal 1D and 2D models. These differences can impact the types513

of patterns displayed by the 2D models – an aspect that we will address in a future514

study.515

Next, we investigated how two types of patterns (i.e., travelling and stationary516

aggregations) displayed by the 1D kinetic models, were preserved in the limit to517

macroscopic parabolic models. To this end, we first investigated the local stabil-518

ity of spatially homogeneous patterns characterised by individuals spread evenly519

over the domain, and showed that local Hopf bifurcations are lost in the parabolic520

limit. These Hopf bifurcations give rise to travelling aggregations (i.e., rotating521

waves). We then tested this observation numerically, with the help of asymptotic522

preserving methods. We started with a rotating wave pattern obtained near a523

Hopf/Steady-state bifurcation for ε = 1 (1D kinetic model; see Figure 7(c)), and524

studied numerically how does this pattern change when ε→ 0 (1D parabolic model;525

see Figure 7(a)). By graphing in Figure 6(a) the amplitude of the resulting patterns526

as the scaling parameter ε is decreased from ε = 1 to ε = 0, we showed that there527

were two major transitions. The first transition occurred around ε = 0.64, when528

the travelling (rotating) groups stopped moving. We note, however, that while the529

group as a whole was stationary, the individuals inside the group were still mov-530

ing between the left- and right-edges of the group, leading to an “inside-group”531

zigzagging behaviour. The second transition occurred around ε = 0.32, when the532

individuals inside the groups stopped moving, leading to stationary pulses.533

We emphasise here that this study is one of the first in the literature to investig-534

ate numerically the transitions between different aggregation patterns, as a scaling535

parameter ε is varied from values corresponding to mesoscale dynamics (ε = 1) to536
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values corresponding to macroscale dynamics (ε = 0). Understanding these trans-537

itions is important when investigating biological phenomena that occur on multiple538

scales, since it allows us to make decisions regarding the models that are most539

suitable to reproduce the observed dynamics.540

In this study we investigated the preservation of patterns via the 1D parabolic541

limit, but similar investigations could be performed for the grazing collision limit.542

Moreover, as shown previously [32], model (1) can display many more types of543

complex spatio-temporal patterns then the two types of patterns investigated here.544

We focused on travelling and stationary aggregations since our aim here was not545

to investigate how all possible patterns are preserved by all these different scal-546

ing approaches. Rather, it was to show that by taking these asymptotic limits,547

some patterns could be lost. Therefore, even if the macroscopic models are sim-548

pler to investigate, they might not exhibit the same patterns as the kinetic models.549

Our analysis aimed at highlighting the usefulness of asymptotic preserving numer-550

ical methods to understand the bifurcation of the solutions as one investigates the551

transition from mesoscopic-level to macroscopic-level aggregation dynamics.552
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28 JOSÉ A. CARRILLO, RALUCA EFTIMIE AND FRANCA HOFFMANN

[14] P.-L. Buono and R. Eftimie, Analysis of Hopf/Hopf bifurcations in nonlocal hyperbolic models589

for self-organised aggregations, Math. Models Methods Appl. Sci., 24 (2014), 327.590

[15] P.-L. Buono and R. Eftimie, Codimension-two bifurcations in animal aggregation models with591

symmetry, SIAM J. Appl. Dyn. Syst.592

[16] P.-L. Buono and R. Eftimie, Symmetries and pattern formation in hyperbolic versus parabolic593

models for self-organised aggregations, J. Math. Biol.594

[17] M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range595

interactions, Nonlinear Analysis: Real World Applications, 8 (2007), 939–958.596

[18] J. A. Carrillo, M. R. D’Orsogna and V. Panferov, Double milling in self-propelled swarms597

from kinetic theory, Kinetic and Related Models, 2 (2009), 363–378.598

[19] J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the599

kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218–236.600

[20] J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic601

models of swarming, Mathematical Modelling of Collective Behavior in Socio-Economic and602

Life Sciences, 297–336.603

[21] J. A. Carrillo, T. Goudon, P. Lafitte and F. Vecil, Numerical schemes of diffusion asymptotics604

and moment closures for kinetic equations, J. Sci. Comput., 36 (2008), 113–149, URL http:605

//dx.doi.org/10.1007/s10915-007-9181-5.606

[22] J. A. Carrillo, Y. Huang and S. Martin, Explicit flock solutions for quasi-morse potentials, to607

appear in European Journal of Applied Mathematics.608

[23] J. A. Carrillo, A. Klar, S. Martin and S. Tiwari, Self-propelled interacting particle systems609

with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533.610

[24] J. A. Carrillo and B. Yan, An asymptotic preserving scheme for the diffusive limit of kinetic611

systems for chemotaxis, Multiscale Model. Simul., 11 (2013), 336–361, URL http://dx.doi.612

org/10.1137/110851687.613

[25] A. Chertock, A. Kurganov, A. Polizzi and I. Timofeyev, Pedestrian flow models with slowdown614

interactions, Math Models Methods Appl. Sci., 24 (2014), 249–275.615

[26] Y.-L. Chuang, M. R. D’Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State trans-616

itions and the continuum limit for a 2d interactiong, self-propelled particle system, Physica617

D, 232 (2007), 33–47.618

[27] P. Degond, G. Dimarco and T. Mac, Hydrodynamics of the Kuramoto-Vicsek model of ro-619

tating self-propelled particles, Mathematical Models and Methods in Applied Sciences, 24620

(2014), 277–325.621

[28] P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interac-622

tion, C.R. Acad. Sci. Paris Ser. I, 345 (2007), 555–560.623

[29] P. Degond and S. Motsch, Large scale dynamics of the persistent turning awlker model of fish624

behaviour, J. Stat. Phys., 131 (2008), 989–1021.625

[30] R. Eftimie, Modeling group formation and activity patterns in self-organizing communities626

of organisms, PhD thesis, University of Alberta, 2008.627

[31] R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and move-628

ment: a brief review, J. Math. Biol., 65 (2012), 35–75.629

[32] R. Eftimie, G. de Vries and M. A. Lewis, Complex spatial group patterns result from different630

animal communication mechanisms, Proc. Natl. Acad. Sci., 104 (2007), 6974–6979.631

[33] R. Eftimie, G. de Vries, M. A. Lewis and F. Lutscher, Modeling group formation and activity632

patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537–1566.633

[34] R. Eftimie, G. de Vries and M. Lewis, Weakly nonlinear analysis of a hyperbolic model for634

animal group formation, J. Math. Biol., 59 (2009), 37–74.635

[35] R. Eftimie and U. of Alberta (Canada)., Modeling Group Formation and Activity Patterns in636

Self-organizing Communities of Organisms, Canadian theses, University of Alberta (Canada),637

2008, URL http://books.google.co.uk/books?id=YKSsnBUzYToC.638

[36] R. Fetecau, Collective behavior of biological aggregations in two dimensions: a nonlocal kinetic639

model, Math. Model. Method. Appl. Sci., 21 (2011), 1539.640

[37] E. Geigant, K. Ladizhansky and A. Mogilner, An integrodifferential model for orientational641

distributions of F-actin in cells, SIAM J. Appl. Math., 59 (1998), 787–809.642

[38] E. Geigant, K. Ladizhansky and A. Mogilner, An integrodifferential model for orientational643

distributions of F -actin in cells, SIAM J. Appl. Math., 59 (1999), 787–809 (electronic).644

[39] P. Godillon-Lafitte and T. Goudon, A coupled model for radiative transfer: Doppler effects,645

equilibrium, and nonequilibrium diffusion asymptotics, Multiscale Model. Simul., 4 (2005),646

1245–1279, URL http://dx.doi.org/10.1137/040621041.647

http://dx.doi.org/10.1007/s10915-007-9181-5
http://dx.doi.org/10.1007/s10915-007-9181-5
http://dx.doi.org/10.1007/s10915-007-9181-5
http://dx.doi.org/10.1137/110851687
http://dx.doi.org/10.1137/110851687
http://dx.doi.org/10.1137/110851687
http://books.google.co.uk/books?id=YKSsnBUzYToC
http://dx.doi.org/10.1137/040621041


NONLOCAL KINETIC MODELS FOR SELF-ORGANIZED AGGREGATIONS 29

[40] T. Goudon, On Boltzmann equations and Fokker-Plank asymptotics: influence of grazing648

collisions, J. Stat. Phys., 89 (1997), 751–776.649

[41] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,650

Kinetic and Related Models, 1 (2008), 415–435.651

[42] C. K. Hemelrijk and H. Kunz, Density distribution and size sorting in fish schools: an652

individual-based model, Behav. Ecol., 16 (2004), 178–187.653

[43] H. Hildenbrandt, C. Carere and C. K. Hemelrijk, Self-organised complex aerial displays of654

thousands of starlings: a model, Behavioral Ecology, 107 (2010), 1349–1359.655

[44] T. Hillen and H. G. Othmer, The diffusion limit of transport equations derived from velocity656

jump process, SIAM J.Appl.Math., 61 (2000), 751–775.657

[45] E. E. Holmes, Are diffusion models too simple? A comparison with telegraph models of658

invasion, Am. Nat., 142 (1993), 779–795.659

[46] A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive660

limit, SIAM J. Numer. Anal., 35 (1998), 1073–1094 (electronic), URL http://dx.doi.org/661

10.1137/S0036142996305558.662

[47] A. Klar, An asymptotic preserving numerical scheme for kinetic equations in the low Mach663

number limit, SIAM J. Numer. Anal., 36 (1999), 1507–1527 (electronic), URL http://dx.664

doi.org/10.1137/S0036142997321765.665

[48] R. Larkin and R. Szafoni, Evidence for widely dispersed birds migrating together at night,666

Integrative and comparative biology, 48 (2008), 40–49.667

[49] A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38668

(1999), 534–570.669

[50] A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38670

(1999), 534–570, URL http://dx.doi.org/10.1007/s002850050158.671

[51] A. Mogilner, L. Edelstein-Keshet and G. B. Ermentrout, Selecting a common direction. II.672

Peak-like solutions representing total alignment of cell clusters, J. Math. Biol., 34 (1996),673

811–842.674
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