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Abstract

Objectives Non-local mean (NLM) filtering has been broadly used for denoising of natural and medical images. The NLM 

filter relies on the redundant information, in the form of repeated patterns/textures, in the target image to discriminate the 

underlying structures/signals from noise. In PET (or SPECT) imaging, the raw data could be reconstructed using different 

parameters and settings, leading to different representations of the target image, which contain highly similar structures/

signals to the target image contaminated with different noise levels (or properties). In this light, multiple-reconstruction 

NLM filtering (MR-NLM) is proposed, which relies on the redundant information provided by the different reconstructions 

of the same PET data (referred to as auxiliary images) to conduct the denoising process.

Methods Implementation of the MR-NLM approach involved the use of twelve auxiliary PET images (in addition to the 

target image) reconstructed using the same iterative reconstruction algorithm with different numbers of iterations and sub-

sets. For each target voxel, the patches of voxels at the same location are extracted from the auxiliary PET images based on 

which the NLM denoising process is conducted. Through this, the exhaustive search scheme performed in the conventional 

NLM method to find similar patches of voxels is bypassed. The performance evaluation of the MR-NLM filter was carried 

out against the conventional NLM, Gaussian and bilateral post-reconstruction approaches using the experimental Jaszczak 

phantom and 25 whole-body PET/CT clinical studies.

Results The signal-to-noise ratio (SNR) in the experimental Jaszczak phantom study improved from 25.1 when using Gauss-

ian filtering to 27.9 and 28.8 when the conventional NLM and MR-NLM methods were applied (p value < 0.05), respectively. 

Conversely, the Gaussian filter led to quantification bias of 35.4%, while NLM and MR-NLM approaches resulted in a bias 

of 32.0% and 31.1% (p value < 0.05), respectively. The clinical studies further confirm the superior performance of the MR-

NLM method, wherein the quantitative bias measured in malignant lesions (hot spots) decreased from − 12.3 ± 2.3% when 

using the Gaussian filter to − 3.5 ± 1.3% and − 2.2 ± 1.2% when using the NLM and MR-NLM approaches (p value < 0.05), 

respectively.

Conclusion The MR-NLM approach exhibited promising performance in terms of noise suppression and signal preserva-

tion for PET images, thus translating into higher SNR compared to the conventional NLM approach. Despite the promising 

performance of the MR-NLM approach, the additional computational burden owing to the requirement of multiple PET 

reconstruction still needs to be addressed.

Keywords PET · Image quality · Non-local means · Filtering · Iterative reconstruction

Introduction

Positron emission tomography (PET) images commonly suf-

fer from high level of noise, which hampers their clinical 

value [1, 2]. Statistical iterative reconstruction algorithms, 

including maximum likelihood expectation maximization 

(MLEM) and ordered subset-expectation maximization 

(OSEM) attempt to model the physical degradation factors 

to enhance the quality and quantitative accuracy of PET 

images. However, due to the inherent ill-posedness of the 

reconstruction problem, achieving full convergence, while 

avoiding noise amplification at the same time is challeng-

ing [3, 4].

A common strategy adopted to reduce noise in PET 

images is post-reconstruction filtering (usually Gaussian 

smoothing) prior to quantitative analysis and/or clinical 
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interpretation [5, 6]. Noise reduction in PET imaging using 

post-reconstruction approaches commonly causes loss of 

significant signal and/or quantitative bias. In this regard, 

edge-preserving denoising approaches, which attempt to 

achieve effective noise reduction with minimal quantitative 

bias, were proposed to enhance the signal-to-noise ratio 

(SNR) in PET images [7]. Commonly used edge-preserving 

denoising approaches include bilateral and non-local mean 

in the image domain [7, 8] and wavelet or curvelet-based 

filters in the transform domain [9, 10].

Among the edge-preserving denoising techniques, the 

non-local mean approach (NLM) [11] has exhibited prom-

ising performance for the task of noise reduction while pre-

serving significant PET signals or underlying structures [5, 

12, 13]. The fundamental idea behind the NLM denoising 

approach is to explore the non-local areas within the image 

(could be at any distance from the target voxel/patch) to find 

similar patterns or textures. NLM filters rely on these forms 

of redundant information to effectively discriminate the 

genuine signal from the unwanted noise. An essential factor 

that impacts the performance of the NLM approach is the 

effectiveness of the patch search scheme to find and extract 

similar patterns (to the target patch) within the image. In this 

regard, different schemes of patch search have been proposed 

to conduct an effective search to find similar patterns and 

textures, thereby enhancing the quality of the NLM denois-

ing approach in PET imaging [5, 8, 13].

This work sets out to introduce a novel patch search 

scheme for the NLM denoising approach particularly 

applicable to PET and single-photon emission tomography 

(SPECT) imaging. In the conventional NLM approach, a 

subset of the target image (or the entire image) is explored 

to find a number of similar patches, thereby conducting the 

denoising process for the target patch. The proposed algo-

rithm relies on the fact that PET (or SPECT) raw data can 

be reconstructed using different numbers of iterations and 

subsets when iterative reconstruction algorithms are used. 

In this light, different representations of the target image 

(reconstructed using conventional/standard reconstruction 

algorithm and settings) could be generated using differ-

ent reconstruction settings that highly resemble the target 

image. These accessory images consist of the same under-

lying structures/textures to the target image contaminated 

with different patterns or levels of noise. Therefore, these 

images enable to supply the NLM approach with highly 

similar (ideal) patches to conduct the denoising process on 

the target image.

In this work, we set out to examine the feasibility of using 

multiple PET image reconstructions to guide the NLM 

approach (so-called MR-NLM) for the task of noise reduc-

tion in whole-body PET imaging. Contrary to conventional 

NLM, wherein the search for similar patches is conducted 

within the same image, MR-NLM conducts the patch search 

across different reconstructed images of the same PET data. 

The proposed MR-NLM algorithm is evaluated against the 

conventional NLM approach, bilateral and Gaussian filters 

using experimental phantom and clinical whole-body PET/

CT studies.

Materials and methods

Multiple-reconstruction non-local mean (MR-NLM) 
filter

The NLM filter relies on the redundant information exist-

ing in the target image in the form of repeated textures/pat-

terns or symmetrical structures. The NLM filter seeks to find 

similar patches of voxels within the image to suppress the 

noise through taking the weighted average (based on simi-

larity to the target patch of voxels) of the selected patches. 

Finding similar patches is the key factor determining the 

performance of the NLM filter, which is conventionally car-

ried out within a predefined search window (Fig. 1a). Given 

a number of patches of voxels, the denoising of the target 

image is conducted through employing Eqs. 1–5, wherein 

V denotes the output (denoised image), f is the noisy image 

(target image), Vn and fm represent the nth and mth elements 

(voxel indices) of the target image before and after denois-

ing, respectively. w (n,m) indicates the degree of similarity 

between two patches of voxels, vn and vm, and Nn denotes 

a normalization factor to define the range of w. |v| and Ω 

indicate the patch size and the size of the search window. 

fm(k) indicates the mth element of the image f, which also 

belongs to the patch v with index k within the patch. h is the 

free parameter determining the level of smoothness:
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Essentially, the effectiveness of the NLM filter depends 

on the process of similar patch finding and to what extent 

the selected patches bear similar signal/texture/pattern to the 

target patches of voxels. As such, a strategy that provides to 

the NLM filter highly similar patches of voxels can greatly 

improve the performance of this approach. Since raw PET 

(or SPECT) data, in the list mode or sinogram formats, can 

be reconstructed several times with slightly different set-

tings/parameters (even using different reconstruction algo-

rithms), representations of the PET data or highly similar 

images to the target PET image can be generated for use 

within the NLM denoising approach. These representations 

of the PET data bear almost the same PET signals/structures 

contaminated with different noise patterns or structures, pro-

viding an ideal input for the NLM filter. Given the differ-

ent reconstructions of PET data, the NLM filter would able 

to explore these images (at the same location of the target 

patch) to select/utilize similar patches of voxels (Fig. 1b). 

In this version of the NLM filter, referred to as multiple-

reconstruction-NLM (MR-NLM), the search window (Ω) 

in the conventional NLM filter (blue box in Fig. 1a) would 

be replaced by a number of reconstructions of the PET data, 

wherein each reconstruction provides a single patch to the 

core of the MR-NLM filter. Apart from the procedure to 

select/find similar patches of voxels, the rest of the MR-

NLM filter is the same as the conventional NLM formulated 

in Eq. 1.

Algorithmic implementation

To implement the MR-NLM filter, the raw PET data should 

be reconstructed several times with different parameters/

settings to generate various representations of the PET data 

(auxiliary PET images) bearing different noise levels, con-

vergence and/or signal-to-background contrast. The target 

PET image should be reconstructed using the default recon-

struction and hyperparameters. In this work, the target PET 

images were reconstructed using the standard parameters 

used in clinical setting, that is, TOF/PSF OP-OSEM (time-

of-flight/point spread function ordinary Poisson ordered 

subset-expectation maximization) algorithm with 2 iteration 

and 21 subsets. To generate auxiliary PET images, different 

reconstruction algorithms, for instance, including filtered 

backprojection, MLEM or OSEM, could be employed. In 

addition, different versions of the same reconstruction algo-

rithm, such as OP-OSEM without TOF data or PSF mod-

eling could be exploited to generate auxiliary PET images. 

We set out to implement the MR-NLM filter using the same 

reconstruction algorithm (TOF/PSF OP-OSEM) but with 

different numbers of iterations and subsets to generate aux-

iliary PET images. To this end, the numbers of iterations 

and subsets should not be selected randomly, since they 

may result in dramatically different noise levels or poor 

convergence properties. In this light, iteration/subset pairs 

were selected in such a way to lead to similar convergence 

(signal-to-background ratio) and noise levels to the target 

PET images. PET image reconstruction was repeated several 

times using different iteration/subset pairs. Thereafter, 12 

pairs were selected, which resulted in similar performance. 

The estimated noise levels in the liver and the lesion-to-liver 

uptake ratio in 8 clinical PET/CT studies were examined 

to select these 12 pairs. Figure 2 depicts two clinical PET 

studies, wherein the lesion-to-liver uptake ratios are plotted 

against the noise levels in the liver (standard deviation) for 

two malignant lesions. The raw PET data were reconstructed 

using various iteration and subset numbers to plot lesion 

contrast versus noise. The target PET images were recon-

structed using 2 iterations and 21 subsets, resulting in an 

effective iteration number of 42 (iterations × subsets) [14]. 

To generate auxiliary PET images, iteration/subset pairs 

Fig. 1  a Conventional non-local mean filter, wherein the search win-

dow, target patch and similar patches are indicated in blue, red and 

green squares, respectively. b Multiple-reconstruction NLM filter 

(MR-NLM) and similar patches of voxels across different reconstruc-

tions of the PET data
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were initially examined to yield effective iteration numbers 

close to the target PET image (2 × 21). Among these pairs, 

12 pairs of iteration and subset numbers were selected for 

final implementation of the MR-NLM filter, which had the 

closest performance to the target image in terms of lesion 

contrast versus noise, as depicted in Fig. 2. The target PET 

image is indicated by an arrow and the selected 12 itera-

tion/subset pairs are enclosed in a circle. These 12 pairs 

include 2i:24 s (2 iterations and 24 subsets), 2i:28 s, 3i:14 s, 

3i:12 s, 3i:21 s, 4i:12 s, 4i:8 s, 5i:8 s, 5i:7 s, 5i:6 s, 6i:7 s, 

and 7i:6 s. It should be noted that the Biograph mCT scanner 

creates PET sinograms with 168 angular samples or bins, 

thus the number of subsets should be a divisor of 168. For 

this reason, these specific subset numbers are employed, for 

instance, subset number of 22 could not be used as it is not 

a divisor of 168. The Biograph mCT provides a TOF resolu-

tion of 530 ps split into 13 TOF bins, with each bin 312 ps 

wide. The PET data in the sinogram space for each bed posi-

tion consist of 400 (bins) × 168 (angles) × 621 (planes in 9 

segments) × 13 (TOF bins).

Experimental and clinical studies

The proposed MR-NLM approach for denoising of PET 

images was investigated against the conventional NLM, 

bilateral, and commonly used post-reconstruction Gaussian 

filters. The assessment of these denoising approaches was 

carried out using experimental phantom and clinical whole-

body PET/CT studies.

For the experimental phantom study, the physical Jaszc-

zak phantom consisting of six spheres with diameters of 

11.89, 14.43, 17.69, 21.79, 26.82 and 33.27 mm inserted 

within a cylindrical container with a radius of 100 mm and 

height of 180 mm. The cylindrical container, referred to as 

background medium, was filled with an activity concentra-

tion of 3.6 kBq/ml. The six spherical inserts were filled with 

an activity of 18.4 kBq/ml to create a 5:1 signal-to-back-

ground contrast. PET/CT data acquisition was performed 

on a Biograph mCT PET/CT scanner (Siemens Healthcare, 

Knoxville, TN) for a total of 30 min. The raw PET data 

were then reconstructed for time frames of 10 s, 30 s, 1 min, 

3 min, 10 min, and 30 min, thereby creating six images of 

the phantom with six different noise levels. PET image 

reconstruction was performed using OP-OSEM algorithm 

(2 iterations, 21 subsets, matrix of 400 × 400 × 168–254 and 

voxel size of 2 × 2 × 3 mm) with TOF and PSF modeling 

using the e7 tool (Siemens Healthcare, Knoxville, TN). PET 

image reconstruction included CT-based scatter and attenu-

ation corrections.

For the clinical studies, we exploited the raw PET 

data of twenty-five whole-body PET/CT studies (mean 

age ± SD = 61 ± 7 years and mean weight ± SD = 69 ± 9 kg) 

performed on the same Biograph mCT PET/CT scanner 

60 min post-injection of 251.5 ± 44.5 MBq of 18F-FDG. The 

average acquisition time was 25.6 ± 5.5 min considering con-

tinuous bed speed of 0.7 mm/s. A whole-body CT scan was 

performed using 150 mAs, 110–120 kVp, and slice thick-

ness of 5 mm was performed for attenuation correction. The 

clinical PET image reconstructions were performed using 

TOF/PSF OP-OSEM algorithm with 2 iterations, 21 subsets, 

a matrix of 200 × 200, and voxel size of 4 × 4 × 2 mm. The 

conventional post-reconstruction Gaussian filtering, applied 

by default in the clinic, was deactivated to obtain unfiltered 

(noisy) PET images.

To assess the performance of the different denoising 

approaches, 50 volumes of interest (VOIs) were manually 

drawn on malignant lesions and high uptake regions. Nine-

teen VOIs were in soft-tissue, 16 near bony structures, and 

15 in the lung region with volumes ranging between 0.5 and 

2.0 ml. To obtain the corresponding background VOIs for 

calculation of the lesion-to-background contrast, VOIs with 

the same size and shape were defined next to each lesion 

in the same background region. The high uptake regions 

and malignant lesions were located in different regions of 

the body bearing various lesion-to-background contrasts. 

Moreover, the liver and lung regions were delineated on 

CT images of 20 patients to estimate the mean and stand-

ard deviation of the radiotracer concentration within these 

regions before and after the application of the denoising 

approaches.

Fig. 2  Lesion-to-liver uptake ratio versus the noise in the liver (stand-

ard deviation) for two malignant lesions of clinical PET/CT studies. 

Each small circle or cross indicates iteration/subset pairs used for the 

reconstruction of PET images. The target PET images were recon-

structed using 2 iterations and 21 subsets (2i, 21s). The selected itera-

tion/subset pairs for implementation of the MR-NLM filter includes 

2i:24s, 2i:28s, 3i:14s, 3i:12s, 3i:21s, 4i:12s, 4i:8s, 5i:8s, 5i:7s, 5i:6s, 

6i:7s, and 7i:6s. These pairs are enclosed in the blue and red circles
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Quantitative analysis

The MR-NLM approach was evaluated against the conven-

tional NLM, bilateral filter [7] and commonly used Gauss-

ian post-reconstruction denoising methods. The kernel of 

the Gaussian filter varied from 2 to 9 mm in terms of full-

width half-maximum (FWHM) for the physical Jaszczak 

phantom study depending on the acquisition times or noise 

levels. Similarly, in the clinical studies, kernels of 2–6 mm 

(FWHM) were used for Gaussian filtering. It should be noted 

that a set of smoothing parameters may not be optimal for 

all phantom and clinical studies. As such, depending on the 

level of noise in the input images, the smoothing param-

eters (such as FWHM for the Gaussian filter or free smooth-

ing parameter h for the NLM filter) were slightly modified 

to achieve the highest SNR in the resulting images. The 

results averaged over all input images and/or noise levels 

are reported the results section.

The bilateral filter consists of two separate Gaussian ker-

nels in the spatial and intensity domains regulated by σSp 

and σIn free parameters, respectively [15]. The range of σIn 

varied from 0.2 to 0.5 depending on the noise levels of the 

images, whereas σSp was set to 3.8 as recommended in [7].

For the experimental phantom and clinical studies, the 

contrast-to-noise ratio (CNR) (defined in Eq. 6) was esti-

mated for the spheres in the Jaszczak phantom before and 

after application of the different denoising techniques. PET 

images obtained without denoising (without any post-recon-

struction filtering) is referred to as OSEM:

where μsignal and μbg denote the mean values of the voxel 

intensities in the target and background VOIs, respectively. 

The corresponding standard deviation of the target and back-

ground VOIs are indicated by σ2
signal and σ2

bg, respectively. 

In addition, the SNR and quantitative bias (%) were esti-

mated for the hot spheres of the Jaszczak phantom as well 

as the VOIs drawn on the clinical PET studies using Eqs. 7 

and 8, respectively:

In Eq.  7, Ns denotes the number of VOIs across all 

patients, whereas σk stands for the standard deviation within 

the VOIs drawn on the background. Equation 8 was used 
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for the calculation of quantification bias in the experimental 

phantom study, since the activity concentration within the 

VOIs is known (reference). Since the actual activity con-

centration is not known in clinical studies, the quantitative 

bias resulting from the different denoising approaches was 

calculated against the unfiltered (noisy) PET images using 

the following equation:

where μnoisy indicates the mean activity concentration in 

VOIs drawn on the unfiltered noisy PET images. The statis-

tical significance of the differences between the quantitative 

metrics derived from the conventional NLM and MR-NLM 

filters were assessed using the paired t test method consid-

ering a p value threshold of 0.05 as threshold of statistical 

significance.

The patch size (vm or vn) and the free parameter h (deter-

mining the levels of smoothness) in Eq. 5 are the key param-

eters to be optimized to reach the peak performance of the 

MR-NLM denoising approach. To this end, different values 

were assigned to these free parameters to achieve the high-

est contrast-to–noise ratio (CNR) and signal-to-noise ratio 

(SNR) in the experimental phantom and clinical studies. 

Regarding vm or vn parameters, a patch size of 5 × 5 voxels 

led to the best performance for both phantom and clinical 

studies. The smoothing parameter h depended on the lev-

els of noise in the input images. For the clinical study, the 

optimum value of this parameter was found (h = 1.5 × 10–3), 

while for the phantom study, depending on the level of noise 

in the input images, the optimal h value varied between  10–3 

and 2 × 10–3 for low-noise to high-noise levels, respectively.

Given a number of auxiliary PET images obtained from 

multiple reconstructions of the PET data, a comparison of 

the weighted average (MR-NLM) versus mean of these aux-

iliary images (non-weighted) would demonstrate the effi-

ciency/necessity of weight factors calculation for weighted 

averaging. In this regard, CNR, SNR, and quantification 

bias (Eq. 8) were calculated and compared for these two 

approaches over the six spheres of the Jaszczack phantom.

Results

Figure 3 depicts slices of the Jaszczak phantom recon-

structed using different acquisition times, namely 30 min, 

10 min, 3 min, 1 min, 30 s, and 10 s, presenting different 

noise levels. The images of the phantom are shown before 

(OSEM) and after application of the post-reconstruction fil-

ters along with the corresponding bias map. Visual inspec-

tion revealed that the MR-NLM approach led to overall 

more effective noise suppression and less resolution/signal 

(9)Biaspatient(%) = 100 ×

|
|
|
�signal − �noisy

|
|
|

�noisy

,
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loss, while the conventional NLM method exhibited close 

performance.

Figure 4 illustrates the profiles plotted horizontally across 

the two spheres (smallest and largest) of the Jaszczack phan-

tom. MR-NLM exhibited less signal/resolution loss, par-

ticularly when considering the plot over the small sphere, 

wherein other methods yielded noticeable signal loss.

The CNR, SNR and quantification bias estimated for 

the six spheres of the Jaszczak phantom (from smallest #1 

to largest #6) are reported in Table 1. Gaussian filtering 

resulted in the largest bias observed (> 35%) in the smallest 

sphere, while NLM and MR-NLM yielded biases of 32.0% 

and 31.1% (p value < 0.05) for the same sphere, respectively. 

The p values reported in Table 1 were calculated between 

the NLM and MR-NLM approaches. In the phantom study, 

the bias for the different approaches was calculated using 

the actual activity concentration within the spheres and the 

background. Hence, OSEM reconstruction of the phantom 

already bears a bias of 29.2% for the smallest sphere.

Overall, Gaussian filtering resulted in poor SNR for all 

six spheres with the highest value of 27.3, while the NLM 

and MR-NLM approaches led to the SNRs of 31.5 and 32.5 

(in the largest sphere), respectively.

Figure 5 depicts transaxial views of clinical PET images 

of a patient presenting with non-small lung cancer before 

and after application of the different denoising approaches. 

Visual inspection revealed over-smoothed structures when 

using Gaussian filtering compared to the NLM and MR-

NLM filtered images, wherein less signal/resolution loss 

and effective noise suppression are observed. The unfil-

tered PET image (OSEM) (Fig. 5a) did not undergo any 

post-reconstruction filtering. Considering the bias maps (fil-

tered—OSEM), Gaussian and MR-NLM filters led to the 

largest and smallest signal loss, respectively, particularly for 

the small lesion in the lung. The vertical profile plotted on 

the small lung lesion demonstrates effective denoising and 

minimal signal loss when using the MR-NLM approach in 

comparison to Gaussian and bilateral filtering with notice-

able signal loss.

Table 2 presents the quantitative evaluation of the differ-

ent denoising approaches on the clinical whole-body PET/

CT studies. The MR-NLM algorithm led to an overall of 

bias and SNR of − 2.2 ± 1.2% and 34.9 ± 5.7, respectively, 

for the high uptake regions and malignant lesions, while the 

conventional NLM approach resulted in bias and SNR of 

− 3.5 ± 1.3% and 32.4 ± 5.5 (p value < 0.02), respectively, 

demonstrating superior performance of the MR-NLM algo-

rithm. It should be noted that the biases reported in Table 2 

were calculated against unfiltered (OSEM) PET images 

using Eq. 9.

Table  3 compares the performance of the MR-

NLM approach with the mean of the auxiliary images 

Fig. 3  Reconstructed images of the Jaszczack phantom for the differ-

ent acquisition times. The first column shows the unfiltered images 

(OSEM) compared to images filtered with the Gaussian, bilateral, 

NLM, and MR-NLM approaches. The corresponding bias maps 

(OSEM-filtered image) are also shown
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Fig. 4  Horizontally profiles drawn images of the Jaszczack phantom before (OSEM) and after application of the different post-reconstruction 

filters. The profiles are drawn across the smallest and largest spheres with diameters of 11.89 mm and 33.27 mm, respectively

Table 1  Contrast-to-noise ratio 

(CNR), signal-to-noise ratio 

(SNR) and quantification bias 

(based on Eq. 8) calculated for 

spheres #1–#6 corresponding 

to the smallest to the largest 

spheres in the Jaszczak phantom

Sphere #1 #2 #3 #4 #5 #6

OSEM

 Bias (%) 29.2 27.4 25.2 25.1 24.3 22.3

 SNR 20.2 21.0 21.7 22.6 23.0 22.8

 CNR 5.9 6.2 8.2 9.1 8.2 9.1

Gaussian

 Bias (%) 35.4 32.6 30.7 28.5 27.0 24.7

 SNR 25.1 25.9 26.4 26.9 27.3 27.2

 CNR 6.3 8.4 11.3 14.3 14.1 13.5

Bilateral

 Bias (%) 33.3 31.3 28.6 27.4 26.2 24.3

 SNR 26.0 26.3 27.8 28.0 28.4 28.4

 CNR 8.8 10.0 15.1 17.5 17.7 18.3

NLM

 Bias (%) 32.0 30.9 28.1 27.2 25.9 23.9

 SNR 27.9 28.3 29.1 31.3 31.4 31.5

 CNR 12.9 13.1 17.8 21.6 22.1 24.1

MR-NLM

 Bias (%) 31.1 29.7 29.0 26.6 25.1 23.1

 SNR 28.8 29.9 30.1 32.5 32.6 32.7

 CNR 13.8 13.9 18.8 22.6 22.9 24.9

p value

 Bias (%) 0.04 0.03 0.01 0.04 0.04 0.05

 SNR 0.02 0.01 0.02 0.01 0.03 0.04

 CNR 0.03 0.05 0.02 0.03 0.05 0.06
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(non-weighted) over the six spheres of the Jaszczack 

phantom. Statistically significant improvement (p 

value < 0.01) was observed when the weighted average 

of the auxiliary images was considered compared to sim-

ple averaging.

Discussion

This work introduced multi-reconstruction non-local 

mean filter as a variant of the well-established NLM 

Fig. 5  Representative coronal views of PET and CT images of a 

patient presenting with non-small lung cancer. a Original unfiltered 

(OSEM) PET image and filtered using, b Gaussian, c bilateral, d 

NLM and e MR-NLM filters. The corresponding bias map (filtered—

OSEM) is also displayed below each image. f The corresponding CT 

image. The vertical line profile plotted over the lung lesion is illus-

trated in the bottom panel

Table 2  Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and quantitative bias (based on Eq.  9) (± standard deviation) calculated 

against the unfiltered (OSEM) PET images in the clinical studies

Mean SUV estimated in the liver, lung, and malignant lesions within these regions are also reported

CNR SNR Lesion  SUVmean 

(Std. Dev.)

Lung  SUVmean (Std. Dev.) Liver  SUVmean (Std. Dev.) Bias (%) (for lesions)

OSEM 13.2 ± 3.7 23.3 ± 6.8 7.8 ± 2.0 (1.6) 0.29 ± 0.08 (0.098) 2.99 ± 0.8 (0.32) –

Gaussian 14.9 ± 3.6 26.5 ± 5.5 6.6 ± 1.9 (1.0) 0.25 ± 0.07 (0.075) 2.80 ± 0.7 (0.27) − 12.3 ± 2.3

Bilateral 18.9 ± 4.1 29.2 ± 5.9 6.8 ± 1.9 (1.1) 0.25 ± 0.06 (0.077) 2.89 ± 0.7 (0.26) − 7.7 ± 2.1

NLM 23.4 ± 4.4 32.4 ± 5.5 7.1 ± 1.7 (0.8) 0.26 ± 0.05 (0.052) 2.90 ± 0.7 (0.22) − 3.5 ± 1.3

MR-NLM 25.0 ± 4.0 34.9 ± 5.7 7.3 ± 1.6 (0.7) 0.27 ± 0.04 (0.050) 2.94 ± 0.6 (0.19) − 2.2 ± 1.2

p value 0.01 0.02 0.03 0.05 0.04 0.02
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denoising approach dedicated for denoising of PET and 

SPECT images but is applicable to any other modality, 

where the raw data can be reconstructed/reformatted to 

generate different noise realizations of the same image. 

The MR-NLM approach relies on the redundant informa-

tion which could be generated from the same raw data, 

wherein the underlying signals/structures are represented 

with different amount of noise and slightly different sig-

nal-to-background contrast. In the conventional NLM 

approach, a search scheme should be implemented to 

find similar patches of the voxel within the same image 

to conduct the denoising process of the target patch of 

voxels [8, 13]. Intuitively, the performance of NLM filter-

ing depends on the level of redundant information present 

in the target image. This solution is appropriate for most 

natural images, since they normally contain sufficient 

repeated structures, patterns and symmetries. Moreover, 

for natural images, a single version of the image exists 

and regeneration of the same image with different noise 

realization is not easily feasible. Conversely, in PET and 

SPECT imaging, though sufficient redundant informa-

tion might exist within the target image, highly similar 

information could be generated through reconstruction of 

the raw data to effectively conduct the NLM denoising 

process. In the MR-NLM approach, due to the presence 

of sufficient redundant information across the auxiliary 

images (different reconstructed images), there is no need 

for a search window, which is defined in the conventional 

NLM approach to restrict the search for similar patches to 

a specific local neighborhood.

PET image reconstruction could be carried out using dif-

ferent reconstruction algorithms, namely filter backprojec-

tion, MLEM, attenuation weighted OSEM, etc. combined 

with or without PSF modeling. Moreover, PET scanners 

with TOF capability allow for reconstruction of PET images 

with and without TOF information. Each of the abovemen-

tioned reconstruction algorithms would lead to different 

convergence, contrast and noise characteristics. Investiga-

tion of all reconstruction algorithms and their benefits on 

MR-NLM filtering warrants a separate study. In this work, 

a standard reconstruction algorithm used in clinical practice 

(OP-OSEM with TOF/PSF) was investigated, wherein the 

auxiliary PET images were generated through varying the 

iteration and subset numbers. Varying the effective number 

of iterations (iteration × subset) would impact the conver-

gence of image reconstruction as well as the noise proper-

ties of the image. As such, given the standard number of 

iterations and subsets (2i and 21s), several effective itera-

tion numbers close to the standard one (2 × 21) were exam-

ined. Auxiliary images with highly increased noise levels or 

poor convergence (signal-to-background contrast) were not 

beneficial to the MR-NLM denoising process. Conversely, 

auxiliary PET images with similar noise properties and 

convergence to the target images contribute effectively to 

the denoising process. Therefore, the twelve (in addition to 

target image) closest auxiliary PET images were selected (as 

indicated in Fig. 2) to implement the MR-NLM denoising 

approach. Incorporating more than twelve auxiliary images 

did not significantly improve the performance of the MR-

NLM filter.

Given a number of auxiliary images needed to implement 

the MR-NLM, taking the mean of auxiliary images (instead 

of conducting weighted averaging) might also result in sat-

isfactory outcome. To investigate this alternative, a simple 

average of all auxiliary images (including the target image) 

was performed for the phantom study and the associated 

results are reported in Table 3. Comparing the results in 

Table 3 with NLM in Table 1 showed that a simple average 

of all auxiliary images would lead to suboptimal denoising 

outcome with slightly higher bias and no improvement in 

SNR.

The quantitative evaluation conducted on the experimen-

tal Jaszczak phantom and clinical whole-body PET/CT stud-

ies exhibited the promising performance of the MR-NLM 

algorithm versus the conventional NLM approach. Enhanced 

SNR along with reduced signal loss were achieved by MR-

NLM filtering in comparison to the NLM method in both 

phantom and clinical studies. The promising performance of 

the MR-NLM algorithm results from the presence of highly 

similar patches of voxels across auxiliary PET images, 

which might not be found within the search window of the 

conventional NLM filter.

Table 3  Contrast-to-noise ratio 

(CNR), signal-to-noise ratio 

(SNR) and quantification bias 

(based on Eq. 8) calculated for 

images obtained from simple 

averaging of all auxiliary 

images (MR-average) and the 

MR-NLM method

Sphere #1 #2 #3 #4 #5 #6

MR-average

 Bias (%) 32.1 31.1 29.9 27.2 26.0 23.4

 SNR 27.7 28.0 28.8 31.0 30.4 30.7

 CNR 12.9 12.9 17.7 21.5 21.7 23.9

MR-NLM

 Bias (%) 31.1 29.7 29.0 26.6 25.1 23.1

 SNR 28.8 29.9 30.1 32.5 32.6 32.7

 CNR 13.8 13.9 18.8 22.6 22.9 24.9
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In addition to the conventional NLM filter, post-recon-

struction bilateral and Gaussian filters were evaluated in 

this study in an attempt to provide a broader view over the 

performance of the MR-NLM technique. Considering the 

various quantitative metrics, MR-NLM outperformed the 

other denoising approaches in both phantom and clinical 

studies leading to significantly less signal loss and enhanced 

SNR. Post-reconstruction Gaussian filtering is traditionally 

used in clinical practice to suppress noise and enhance the 

quality of PET images. Though this filter enables effective 

noise reduction, considerable signal loss and over-smoothed 

structures are inevitable which may adversely impact the 

quantitative potential of PET. Owing to the wide usage of 

this filter in clinical practice, this method is regarded as 

bottom line based on which the performance of the other 

denoising approaches was assessed. The MR-NLM approach 

demonstrated superior performance over Gaussian filtering 

in terms of signal preservation and effective noise reduction.

The performance of MR-NLM method was compared to 

the conventional NLM approach in terms of the key image 

quality metrics. However, the important issues of computa-

tional burden and processing time have not been discussed. 

The major limitation/pitfall of the MR-NLM approach is the 

requirement for multiple reconstructions (here 12) of PET 

data, which results in long processing time. In this regard, 

the computational time taken by the MR-NLM approach 

would be N times higher than the conventional NLM tech-

nique, where N is the number of required reconstruction 

of the PET data. It should be noted that regardless of the 

image reconstruction time, the MR-NLM filter is much faster 

than the NLM method, since there is no need to conduct a 

search to find similar patches (readily provided by auxiliary 

PET images) within the search window. Proportional to the 

size of the search window, the MR-NLM filter is faster than 

the NLM filter (the larger, the faster). However, the time 

required for multiple reconstructions of the PET data is nota-

bly higher than other processing techniques. A straightfor-

ward strategy to reduce the computational time is to use a 

single reconstruction with multiple save points. For instance, 

if reconstructions with 7i:6s are to be performed, the recon-

structed images after 5 and 6 iterations could be saved, while 

the process continues to reach seven iterations. Moreover, 

since scatter estimation and correction is computationally 

intensive, a single scatter matrix (obtained from reconstruc-

tion of the target image with 2i:21s) could be employed for 

the reconstruction of all auxiliary images. These strategies 

could significantly reduce the processing time of the MR-

NLM approach.

As a matter of fact, the performance of the NLM fil-

ter depends highly on the presence/detection of similar/

repeated patches of voxels. In our previous study, a novel 

search scheme was proposed to aid the NLM smoothing 

approach to detect/find similar/repeated patterns [8]. This 

spatially guided-NLM (SG-NLM) approach enabled an 

effective exploration of the entire 3D image to maximize 

the detection of repeated/similar patches without significant 

additional processing time. SG-NLM exhibited enhanced 

performance over the conventional NLM filter, where the 

search for similar patches is only conducted in a limited area/

volume around the target voxel. Since the SG-NLM filter 

explores the entire 3D image, there is a greater likelihood 

to find similar patches. Conversely, these similar patches 

are provided to the MR-NLM approach by the multiple 

image reconstructions. Hence, a comparable performance 

would be expected from these two approaches, though this 

claim warrants further comparison study. In terms of pro-

cessing time, the SG-NLM is remarkably faster, because it 

does not require multiple reconstructions of the PET data. 

Nevertheless, there are instances, e.g., small lesions in the 

lung, where finding a sufficient number of similar patches 

may not be possible even through exploration of the entire 

3D image. In these cases, the MR-NLM filter is expected 

to exhibit superior performance to other variations of the 

NLM filter. In this regard, a combination of the MR-NLM 

(for instance using fewer number auxiliary images) and SG-

NLM approaches would lead to an optimal solution.

This study sets out to investigate the feasibility of using 

multiple reconstructions of the same PET data for noise sup-

pression. Different reconstructions of the PET data contain 

different noise levels, properties or characteristics while 

keeping almost the same underlying signals/structures. The 

idea was to employ this information to enable the MR-NLM 

approach to discriminate between noise and genuine signals 

more effectively. The ultimate objective is to employ this 

concept within a deep learning framework [16] to enhance 

PET image quality (denoising). This could be achieved using 

either an unsupervised or supervised training scheme. In 

addition, this concept could also be employed in low-dose 

PET imaging to estimate/predict high quality/standard PET 

images [17].

Conclusion

We introduced a multiple-reconstruction non-local mean 

(MR-NLM) filter as variant of the NLM denoising approach 

dedicated for denoising of PET and potentially SPECT 

images. MR-NLM relies on multiple reconstructions of PET 

data using different reconstruction settings to realize differ-

ent versions of the target image with various noise proper-

ties. The conventional NLM approach requires an exhaustive 

search to find similar patches of voxels within the target 

image based on which the signal and noise discrimination is 

carried out. Since multiple PET reconstructions readily pro-

vides highly similar patches of voxels, MR-NLM does not 

require exhaustive patch search and is able to achieve noise 
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suppression with higher accuracy. Experimental phantom 

and clinical studies demonstrated the superior noise sup-

pression and signal preservation achieved by the MR-NLM 

approach in comparison to conventional NLM, Gaussian 

and bilateral denoising approaches. Despite the promising 

performance of the MR-NLM filter, implementation of this 

approach enforces high computational burden, since multi-

ple PET reconstructions are required.
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