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Abstract

Objective: Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and
temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic
PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus
necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for
dynamic PET based on non-local means (NLM).

Theory: NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar
to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original
NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to
denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a
spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch.

Methods: To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital
phantom based on the Digimouse atlas. For experimental validation, we denoised 18F

� �

FDG PET images from a mouse
study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other
denoising approaches – Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches.

Results: The simulation study revealed significant improvement in bias-variance performance achieved using our NLM
technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear
improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical
dynamic images, indicating its ability to preserve image contrast and high intensity details while lowering the background
noise variance.
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Introduction

Positron emission tomography (PET) is a 3D imaging technique

that uses targeted radioisotope-labeled tracers to visualize vital

physiological information, such as metabolism, blood flow, and

neuroreceptor concentration [1–3]. Quantitative interpretation of

PET images is crucial both in diagnostic and therapeutic contexts.

Dynamic PET imaging, which reveals information about radio-

tracer kinetics in addition to the spatial distribution, is immensely

promising for PET quantitation. Unlike static PET, where the

coincidence events are summed up over the entire scan duration

and a 3D spatial image is generated, dynamic PET yields a 4D

spatiotemporal map of tracer distribution by binning these events

over multiple time frames of shorter durations. A dynamic frame-

by-frame reconstructed PET image thus consists of a set of voxel-

wise time activity curves (TACs), each of which represents the time

course of tracer activity corresponding to a voxel location in the

image. The predominant methodology for quantitative interpre-

tation of dynamic PET images involves the fitting of compart-

mental models [4,5] to the TACs. This approach uses a set of

coupled differential equations to describe tracer exchange between

different compartments (physically or chemically distinct states of

the tracer). The end result is a spatial map of either kinetic

microparameters, which are the rate constants associated with

inter-compartmental tracer exchange [6,7] or, alternatively, of

some macroparameters, which are physiologically meaningful

functions of the underlying microparameters [8,9]. Images of

kinetic micro- or macroparameters are quantitative and particu-

larly promising for a wide range of applications, including

longitudinal studies and cancer management [10,11], cardiac

and cerebral perfusion studies [12,13], and pharmacokinetic and

pharmacodynamic studies [14].

In order to track the rapid change in tracer activity immediately

after its administration, dynamic frame-by-frame PET imaging

tends to use shorter time bins in earlier parts of a scan. As a result,

compared to static PET images where the emission events are

binned over relatively long periods of time, dynamic PET images

corresponding to earlier time frames have fewer photon counts per

frame and tend to be substantially noisier. In applications where a

region-of-interest (ROI) can be clearly identified, TACs corre-

sponding to all the voxels within the ROI are averaged before

parametric fitting leading to significant reduction in noise. In
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comparison, voxel-by-voxel estimation of parametric images is

more susceptible to the effect of noise. This necessitates a

denoising step prior to kinetic analysis of dynamic PET images.

In this paper, we present a denoising technique based on non-local

means (NLM) which, as we demonstrate, allows us to denoise

reconstructed TACs without causing significant increase in bias.

Our work was inspired by the highly-cited seminal paper by the

Buades et al. [15] which proposed the NLM denoising approach

and evaluated its performance against an array of existing

approaches (including Gaussian, anisotropic, total variation,

wavelet, and several other types of filtering) based on a number

of metrics, with a special emphasis on method noise, defined as the

difference between a digital image and its denoised version. Since

then, a wide spectrum of papers on this topic have appeared, some

proposing algorithmic modifications [16–20] and some others

extending the underlying theory [21–24]. The technique has also

been extended to video denoising applications [25,26] and to non-

Gaussian noise removal [27–30]. The NLM technique exploits

self-similarities in images by comparing local neighborhoods. The

similarity between a given voxel pair is robustly derived from

intensity differences between the patches of neighboring voxels

surrounding them. Mathematically, the NLM filter has been

viewed as a diffusion or a graph Laplacian operation in patch

intensity space [22,31] and as a Bayesian estimator [21]. Its appeal

lies in its superior performance in spite of its simplicity compared

to more sophisticated global and multiscale denoising approaches.

In the medical imaging community, the technique has been used

for MR image denoising [16,32,33], CT image denoising [34],

SPECT image denoising [35], PET image denoising by incorpo-

rating anatomical information [36], and priors for PET image

reconstruction [37,38]. In this paper, we present an NLM filter for

dynamic PET imaging, an arena where the need for denoising is

particularly pressing. We offered a proof of concept for our idea in

our earlier paper on this topic [39] in which temporal patches

were used for similarity computation for NLM. In this work, we

extend this idea to include spatiotemporal image patches thereby

establishing a more robust denoising approach.

The overall objective of this work is to develop an NLM-based

denoising framework for dynamic PET images and to assess the

quantitative and qualitative merits of the resultant approach

relative to other well-known image denoising approaches. We

compare this technique with Gaussian denoising and principal

component analysis (PCA) based denoising, both widely used in

the context of dynamic PET imaging. In addition, we compare this

technique with HighlY constrained backPRojection (HYPR) and

conventional NLM denoising based on spatial patches. We

perform a realistic simulation study based on a dynamic digital

mouse phantom and compare the denoising methods by

examining bias-variance characteristics of the denoised dynamic

images and the corresponding Patlak parametric images. We then

apply the developed method to denoise a preclinical 18F
� �

FDG

PET dataset from a mouse study and a clinical 18F
� �

FDG PET

dataset from a patient with hepatocellular carcinoma and perform

Patlak analysis on these datasets.

Theory

The NLM Filter
The NLM filter formulated by Buades et al. restores a given

pixel by computing a weighted average over pixel intensities with

the weights determined by a robust similarity metric derived from

the local neighborhoods of the pixels. Mathematically, the NLM-

denoised intensity, xNLM(i), corresponding to the ith pixel, is given

by the weighted average:

xNLM(i)~
1

P

j[Wi
w(i,j)

X

j[Wi

w(i,j)x(j): ð1Þ

Here x(i) represents the original intensity of the ith pixel and

x(j) represents the intensity of any pixel lying within a rectangular

search window, W i, of a fixed size centered at the ith pixel. The

weight, w(i,j), is a measure of the similarity between the

immediate local neighborhoods surrounding the ith and jth pixels.

These local neighborhoods, referred to as patches by Buades et al.,

are square windows (smaller than the search windowW i) around a

given pixel, usually of size 3|3, 5|5, or 7|7. The underlying

assumption here is that similar patches have similar central pixels.

The squared L2 norm of the intensity differences between the

vectorized patches for a pair of pixels is converted to a similarity

measure using an isotropic Gaussian kernel as follows:

w(i,j)~ exp {

X

k

x(lkj ){x(lki )
h i2

h2

0

B

@

1

C

A
: ð2Þ

Here, lki [N i represents the pixel index of the kth neighbor

within an image patch, N i, surrounding pixel i, and h is a

smoothing parameter.

An NLM Filter for Dynamic PET Images
Noise in PET Images. PET sinogram data can be modeled

as Poisson random vectors [40]. The Poisson mean is dependent

on the true radiotracer distribution through the physical model of

the system and may also depend on unwanted statistical effects

such as scatter and random coincidences. Most iterative recon-

struction approaches that retrieve the PET image (the true

radiotracer distribution) from the sinogram data are nonlinear.

Due to the nonlinearity, computation of the statistical properties of

the reconstructed PET image directly from those of the data is a

challenging problem. Sophisticated techniques to approximate the

mean and covariance of reconstructed PET images have been the

focus of a wide range of papers [41–43], which have been

reviewed in [44]. These methods generally model the reconstruct-

ed image as a Gaussian random vector with mean and covariance

that have a complex functional dependence on the forward model

and the reconstruction parameters, including estimator-dependent

parameters (e.g. the regularization parameter) and algorithm-

dependent parameters (e.g. the iteration number). The Gaussian

noise assumption is therefore widely prevalent in the context of

dynamic PET [45,46]. Accordingly, in this work, we assume that

the reconstructed PET images are corrupted by Gaussian noise

with unknown mean and variance. Additionally, for a frame-by-

frame dynamic PET acquisition, the time bins for the earlier parts

of the scan are kept short to capture the fast kinetics right after

tracer injection. As a result, the earlier time frames in a typical

dynamic PET image have fewer photon counts and are more

heavily corrupted by noise than the later time frames.

Spatiotemporal Patches. One of the underlying ideas of this

work is that image-based similarity information derived from the

less noisy later time frames of a dynamic PET image can be used

to effectively denoise the entire time series, including the noisier

earlier time frames. The NLM framework has been shown to allow

robust image-based similarity computation using image patches.

To tap the full potential of the NLM filter for denoising dynamic

Non-Local Means Denoising of Dynamic PET Images
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PET images, we exploit the additional temporal dimension in

these images by using spatiotemporal patches for similarity

computation. As in the original NLM formulation, the immediate

local neighborhood determines the spatial composition of the

patch. In determining the temporal component of each patch, we

impose a temporal threshold, t�, such that the temporal

component is limited to only (less noisy) later time points twt�

in the time series. We denote intensity values in the noisy

reconstructed dynamic PET image as x̂x(i,t), where i represents the

voxel index (spatial location) and t represents the time point. The

weights are computed as follows:

w(i,j)~ exp {
1

n

X

k

X

twt�

x̂x(lkj ,t){x̂x(lki ,t)
h i2

h2i

0

B

@

1

C

A
: ð3Þ

Here x̂x(lki ,t) is the intensity of the kth neighbor of voxel i at time

t, hi is the smoothing parameter for voxel i, and n is the total

number of elements in each spatiotemporal patch (e.g. n~63 for a

3|3|7 spatiotemporal patch spanning a 3|3 square in image

space and 7 time frames). Since the variance of the reconstructed

PET image is spatially variant, we have introduced a spatially

varying smoothing parameter hi. The introduction of n in (3)

makes the choice of hi less sensitive to patch size variation. Figure

1 illustrates this process flow leading to the computation of a

matrix of non-local similarities. The denoised TACs can now be

computed from these similarities as follows:

x̂xNLM(i,t)~
1

P

j[Wi
w(i,j)

X

j[Wi

w(i,j)x̂x(j,t): ð4Þ

Parameter Adjustment. The proposed NLM denoising

framework has four key parameters that require tuning: the size

of the local spatial neighborhood, N i, the temporal threshold, t�,

the size of the search window, W i, and the smoothing parameter,

hi. The selection procedures for these parameters are discussed

below:

N Local Neighborhood, N i: For most image restoration applications,

the patch size is set to 3|3 or 5|5 for color images and 7|7

or 9|9 for grayscale images [15]. Since our patches contain

additional information from the temporal component, the

local neighborhood is set to 3|3 in the interest of

computational speed.

N Temporal Threshold, t�: Dynamic frame-by-frame acquisition

protocols for 18F
� �

FDG commonly use longer time bins after

the first 30 min of acquisition. Accordingly, we set t� to 20 min

for the simulation and experimental studies described in this

paper.

N Search Window, W i: While the imposition of a spatially

restricted search window in place of the entire image is in

conflict with the overall non-local philosophy, it has been

shown that the use of a large search window may add

significant bias to the denoised image [24]. This is because the

exponential form of the similarity metric generates small but

non-zero contributions from very dissimilar patches. For a very

large search window, the total contribution from dissimilar

patches may turn out to be substantial in some cases. Remedies

include use of a small search window [15,25], use of adaptive

search windows [47], or replacement of the exponential

weights by functions with compact support [18,39,48]. We ran

some preliminary simulations involving varying window sizes

(11|11, 15|15, and 21|21) and found that the perfor-

mance of the filter is relatively insensitive to the window size.

Given our small local neighborhood size of 3|3, this is in

agreement with Duval et al., which remarks that the impact of

the window size tends to be larger for larger patch sizes. We,

therefore, set the search window to a fixed size of 11|11 in

the interest of computational speed.

N Smoothing Parameter, hi: A number of approaches have been

proposed for choosing the smoothing parameter for NLM.

Optimal parameter selection using Stein’s unbiased risk

estimate has been shown to be particularly effective [20,24].

In many applications involving additive or multiplicative white

noise, the smoothing parameter is set to a constant multiple of

the noise standard deviation [15,19]. Kervrann et al. interpret

the NLM filter with h2~2s2 as a minimum mean square error

(MMSE) estimator for an additive white Gaussian noise model

with a noise variance of s2 [21]. Computing accurate voxel-

wise noise variance estimates for reconstructed PET images is

a mathematically challenging and computationally intensive

task [49]. Instead, we use the variance, vi, within the

spatiotemporal patch for a voxel as a working approximation

for the local variance. For a 3|3|7 spatiotemporal patch, for

example, the variance is computed across the 63 patch

elements. For later time points, the PET tracer uptake is

usually slowly varying. In fact, in regions associated with a

negligible kinetic microparameter k4, the system can be

assumed to reach a pseudo-steady state at these later time

points [8,9]. Since we are working with a very localized spatial

neighborhood of only 3|3 voxels and since the temporal

component is slowly varying, the variance in the spatiotem-

poral patches is largely attributable to the noise variance. The

smoothing parameter is then set to h2i ~Cvi, where C is a

global constant, typically in the range 0.5 to 2. As mentioned

before, the introduction of n in (3) makes the choice of hi less

sensitive to patch size variation.

Methods

A Simulation Study
Dynamic Digimouse Phantom. In order to generate a

realistic simulation environment for testing the NLM denoising

technique for dynamic PET images, we constructed a dynamic

digital mouse phantom. Starting with the Digimouse atlas (http://

neuroimage.usc.edu/Digimouse.html) [50,51], a labeled atlas

based on co-registered CT and cryosection images of a 28g nude

male mouse, we identified regions representing the following tissue

types: muscle, brain (minus the cerebral cortex), cerebral cortex,

heart, bladder, stomach, spleen, pancreas, liver, kidney, and lung.

We introduced two additional tissue types – skin and hepatic

lesions – not present in the Digimouse atlas.

The TACs for all the distinct regions (except for the lesions)

were extracted from a real preclinical dynamic 18F
� �

FDG PET

dataset acquired for a mouse using a microPET Focus 220 small

animal imaging scanner. All procedures were performed with

approval from the University of Southern California Institutional

Animal Care and Use Committee (IUCAC) obtained satisfying

appropriate protocol requirements. The plasma input function was

obtained by manual sampling from the femoral artery of the

animal. Dynamic frame-by-frame PET images were reconstructed

using 2 iterations of the 3D ordered subsets expectation

maximization (OSEM) algorithm with 12 subsets followed by 18

Non-Local Means Denoising of Dynamic PET Images
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iterations of the maximum a posteriori (MAP) algorithm [52,53].

Uniform ROIs for each tissue type were delineated by hand, and

the decay-corrected TACs within each ROI were averaged to

obtain reliable denoised estimates of tracer kinetics. The TACs for

the lesions were generated using a three-parameter compartment

model using published values of tumoral kinetic parameters:

K1~0:3mlmin{1g{1, k2~0:9min{1, k3~0:03min{1, and

blood volume fraction= 0:3 [54]. The spatial distribution of the

tissue types and the corresponding TACs are showing in figure 2.

For reference, the kinetic parameters obtained by fitting a three-

parameter compartment model to the organ-wise TACs in figure

2(b) are provided in table 1. The size of the dynamic phantom was

128|128|7|18 with three spatial dimensions, one temporal

dimension, and 0:5|0:5|0:7 mm3 voxels. The simulated lesions

were spherical in the image space with a diameter of 6 voxels.

Noisy Data Generation. In order to generate noisy dynamic

images, the frame-by-frame static images from the dynamic

Digimouse phantom were first forward projected to create

noiseless sinograms. Noisy data was generated using Poisson

deviates of the projected sinograms, a noise model widely accepted

in the PET imaging community [55,56]. The Poisson deviates

were generated with a mean of 1:1339|108 counts for the full

scan duration of 3593.5 s. The mean count for each individual

sinogram was determined by scaling the mean count for the full

duration by a factor dependent on the activity per frame and the

frame duration. The frame durations used in simulation corre-

sponding to 18 temporal bins (from the preclinical acquisition

described above) are as follows: 0.5 s, 2 s, 4 s, 6 s, 3 | 10 s, 60 s,

2| 120 s, 3| 180 s, 4| 550 s, and 511 s. The noisy sinograms

were then reconstructed frame by frame using 15 OSEM iterations

with 21 subsets.

Reference Denoising Techniques. In order to assess the

performance of NLM relative to other denoising techniques for

dynamic PET, we compare the denoising capability of this method

with four other denoising approaches:

N Gaussian denoising: The first reference method used is the

traditional Gaussian denoising approach, where a 2D

Gaussian-weighted kernel is used to compute a local, spatial

average at a given voxel. Gaussian denoising is chosen as a

reference, in part, because of its universality. In addition, we

treat it as representative of the important class of denoising

filters that rely solely on local averaging.

N PCA based denoising: As a second reference, we use principal

component analysis (PCA) based denoising. This method

applies singular value decomposition along the temporal

dimension and generates a low-rank spatiotemporal approx-

imation of the dynamic image. We picked this method for

comparison because of its popularity in the specific context of

handling time series data [57,58]. In addition, we treat it as a

representative of the class of denoising methods for time series

datasets that rely on a set of temporal basis functions. PCA is

based on the Karhunen Loève transform, which generates an

orthogonal temporal basis set that best explains the variance in

Figure 1. Similarity computation. The similarity between a voxel i and a voxel j, given by (3), is derived from spatiotemporal patches at the two
voxels, composed of the local spatial neighborhood (denoted N i for voxel i) and all time points beyond a temporal threshold t�. The pairwise
weights can be assembled into a symmetric matrix of similarities as shown.
doi:10.1371/journal.pone.0081390.g001

Non-Local Means Denoising of Dynamic PET Images
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the time series data. Each TAC is represented as a linear

combination of this temporal basis set. Assuming that the

variance in the principal components corresponding to the

smaller eigenvalues is chiefly due to noise, these components

can be suppressed to obtain a denoised time series vector.

N HYPR denoising: The third reference method used is HighlY

constrained backPRojection (HYPR), which has been applied

to denoise both dynamic MRI [59] and dynamic PET [60]

images. In this technique, a time-averaged composite image is

first generated from the spatiotemporal image. Next a box-

filtered version of the spatiotemporal image is divided by a

box-filtered version of the composite image to create a

weighting image. The HYPR denoised image is obtained by

multiplying the composite image by this weighting image. It

has been shown that this technique improves the signal-to-

noise ratio (SNR) of the individual frame-by-frame images by

utilizing the high SNR of the composite image.

N Conventional NLM denoising: As a fourth reference approach, we

use the conventional NLM filter based on (1) and (2). The filter

is applied to the spatiotemporal images slice by slice and time

frame by time frame. The similarity metric is based on 2D

spatial patches. A uniform smoothing parameter is used for all

slices and time points. From this point on, we refer to the

convention NLM technique (based on spatial patches) as

NLM-S and the proposed technique (based on spatiotemporal

patches) as NLM-ST.

Patlak Parametric Imaging. The targeted application in

this work is the Patlak graphical technique [8,9] for macro-

parameter fitting. This approach is only valid for irreversible

binding of tracer in the second compartment, an assumption that

Figure 2. Dynamic digital mouse phantom. (a) Coronal slices of the Digimouse atlas showing the spatial distribution of distinct tissue types used
in simulation. (b) Decay-corrected and averaged TACs corresponding to each manually delineated tissue type extracted from a dynamic PET image of
a mouse. The color codes for different tissue types used for both the spatial map and the TACs are indicated in the legend.
doi:10.1371/journal.pone.0081390.g002

Table 1. Fitted kinetic parameters for the organ-wise TACs
displayed in figure 2(b).

Tissue type K1 (ml min {1 g {1) k2 (min {1) k3 (min {1)

Muscle 0.1128 0.3166 0.0167

Skin 0.3145 0.6513 0.0320

Brain - no cortex 0.1063 0.3114 0.0253

Brain - cortex 0.2361 0.3239 0.0339

Heart 0.9500 0.9114 0.1024

Bladder 0.4343 0.0935 0.0178

Stomach, spleen,
and pancreas

0.2501 0.3443 0.0032

Liver 0.2532 0.2382 0.0038

Kidney 0.6500 0.3785 0.0207

Lung 0.0559 0.3426 0.0216

Lesions 0.3000 0.9000 0.0300

doi:10.1371/journal.pone.0081390.t001

Non-Local Means Denoising of Dynamic PET Images
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is true for 18F
� �

FDG in most tissue types. This corresponds to the

assumption that the microparameter k4 is negligibly small. The

observed PET signal, C(t), is dependent on tracer concentration in

blood plasma, C0(t). The Patlak technique plots the quantity
Ð t

0
C0(s)ds=C0(t) (referred to as the stretched time or normalized

time) against C(t)=C0(t) (referred to as the apparent volume of

distribution). At later time points (twt�), when the system can be

assumed to have reached a pseudo-steady state, this relationship is

approximately linear:

C(t)

C0(t)
~Ki

Ð t

0
C0(s)ds

C0(t)

 !

zV0: ð5Þ

The Patlak method seeks to compute the slope

Ki~K1k3=(k2zk3) in (5), known as the Patlak influx constant,

and the intercept V0, referred to as the initial volume of

distribution [6]. The Patlak influx constant, which represents the

net tracer uptake at steady state into the second compartment

where irreversible binding takes place, is the macroparameter that

will be examined in the simulation and experimental studies

presented here.

Evaluation Metrics. The mean squared error of an estima-

tor can be decomposed as a sum of the squared bias and the

variance [61]. For any imaging inverse problem involving a

tunable smoothing parameter, as the degree of smoothing is

increased, the estimator variance decreases while the estimator

bias increases and vice versa. We rely on this bias-variance trade-

off as the figure of merit for comparative assessment of different

denoising methods in our simulations. We plot absolute bias vs.

standard deviation curves for each ROI and for the overall volume

using [62]:

biask~
1

ntnk

X

nt

t~1

X

i[ROIk

E x̂xdenoised(i,t){x(i,t)½ �, ð6Þ

vark~
1

ntnk

X

nt

t~1

X

i[ROIk

E (x̂xdenoised(i,t){E(x̂xdenoised(i,t)))
2

� �

: ð7Þ

Here x(i,t) and x̂xdenoised(i,t) are the true and denoised

spatiotemporal images respectively, nt represents the number of

discrete time frames, nk represents the number of voxels in ROIk,
the kth ROI, and the expectation operation E .½ � is performed

over multiple noise realizations.

To assess the impact of different denoising methods on

parametric images in our simulation study, we also plot bias vs.

standard deviation curves for the Patlak parametric images

computed from the denoised dynamic images. The equations for

bias and variance for this case are analogous to (6) and (7) except

for the averaging operation over the temporal dimension.

Experimental Studies
Preclinical Study. A preclinical dynamic 18F

� �

FDG PET

scan was performed on a mouse using a microPET Focus 220

scanner for dedicated high-resolution small animal imaging. The

27 g mouse was kept in a fasting state for 4.5 hours and

anesthetized with 2% isoflurane. The injected 18F
� �

FDG dose

was 8.4952 MBq with an injection volume of 60 ml. The plasma

input function was obtained by manual sampling from the femoral

artery of the animal. Data was acquired frame by frame for

60 min. The frame durations corresponding to 18 sampling time

points for the acquisition were as follows: 0.5 s, 2 s, 4 s, 6 s, 3 |

10 s, 60 s, 2 | 120 s, 3 | 180 s, 4 | 550 s, and 511 s. All

procedures were performed with approval from the USC IUCAC

obtained satisfying appropriate protocol requirements. Dynamic

PET images were reconstructed using 2 iterations of the 3D

OSEM algorithm with 12 subsets followed by 18 iterations of

MAP with a uniform quadratic penalty and a regularization

parameter of 0.1.

Clinical Study. Clinical data was acquired from a patient

with hepatocellular carcinoma immediately after injection of 375

MBq of 18F
� �

FDG using a Siemens Biograph system. The plasma

input function was image-derived and determined using an

averaging operation on undenoised TACs within a manually

delineated aortic region. The same input function was used for

computing parametric images for different denoising methods.

Data was acquired in list mode for 60 min and later binned to 30

frames. The frame durations corresponding to 30 sampling time

points for the acquisition were as follows: 8 | 15 s, 4 | 30 s, 11

| 60 s, 5 | 300 s, 2 | 600 s. All procedures were performed

with written informed consent and with approval from the

University of Southern California Institutional Review Board

obtained satisfying appropriate protocol requirements. Recon-

struction was performed using 2 iterations of 3D OSEM with 21

subsets followed by 18 iterations of MAP with a uniform quadratic

penalty and a regularization parameter of 0.1.

Evaluation Metrics. For the experimental datasets, it is not

possible to perform bias-variance analysis since the ground truth is

unknown. For these datasets, we compute Patlak parametric

images and examine two image quality metrics. The use of Patlak

analysis for identifying tumor burden has been demonstrated both

in the context of diagnosis (e.g. for differentiating cancerous

tumors from benign ones) and treatment monitoring (e.g.

differentiating viable cancerous tissue from surrounding scar tissue

after radiotherapy or chemotherapy) [63–65]. We therefore

compare the different denoising approaches in terms of their

ability to preserve high intensity features in the Patlak images.

Accordingly, the first metric examined is the percentage recovered

signal in a hot ROI (the signal region) in the denoised Patlak

images relative to the undenoised Patlak image computed directly

from the noisy dynamic images. However, this metric by itself fails

to capture the noise characteristics of the generated images. We

therefore examine a second, more holistic metric – the contrast-to-

noise ratio (CNR) [66,67]. In clinical applications such as

treatment monitoring, where the goal is to detect potentially low

remnant activity after therapy, the CNR of the Patlak images can

be quite critical. To compute the CNR, in addition to the signal

region, we identify a low intensity area expected to have relatively

uniform uptake (the background region). The CNR is then

computed by dividing the difference between the mean intensities

of the signal and background regions by the standard deviation in

background region.

Results

Simulation Results
Bias-Variance Analysis. Using the setup described for

generating noisy dynamic images, we created 20 noisy realizations

of the dynamic phantom image. For Gaussian filtering, the kernel

size is fixed to 5|5 pixels while the standard deviation is swept

over the following range of values: 0.5, 0.7, 1.0, and 2.0, which

correspond to full widths at half maximum (FWHM) of 0.59 mm,

0.82 mm, 1.18 mm, and 2.35 mm respectively. For PCA, the

Non-Local Means Denoising of Dynamic PET Images
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Figure 3. Plots of bias vs. standard deviation. Percentage bias vs. percentage standard deviation plots are shown for the 11 ROIs (indicated in
figure
HYPR, NLM-S, and NLM-ST), NLM-ST simultaneously yields lowest bias and lowest standard deviation for a majority of the individual ROIs and also for
the overall volume.
doi:10.1371/journal.pone.0081390.g003
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 2) and for the overall phantom volume for the noisy and denoised dynamic images. Of the five denoising methods compared (Gaussian, PCA,



number of principal components used to generate a low-rank

approximation of data was varied over the range of values: 8, 6, 4,

and 3. For HYPR, the box filter size was set to 3, 5, 7, and 11. For

NLM-S, the smoothing parameter was set at 5|10{4, 10{3,

1:5|10{3, and 2|10{3. For NLM-ST, the smoothing param-

eter was set using h2i ~Cvi with the global parameter, C, set to the

following values: 0.5, 1.0, 1.5, and 2.0. Percentage absolute bias vs.

percentage standard deviation curves were computed for each of

the 11 different ROIs as well as for the overall volume as shown in

figure 3. The plot of overall bias vs. standard deviation indicates

marked decrease in both bias and standard deviation achieved

using NLM-ST relative to the other techniques. When compared

to Gaussian denoising, the improvement achieved using NLM

appears most substantial in ROIs with the most numerous voxels

since, for these ROIs, a multitude of similar voxels can be found

within the search window. NLM-ST also substantially outperforms

Gaussian denoising in the lesions. This can be attributed to the

localized nature of this ROI, due to which spill-in from the

surrounding tissue caused by the Gaussian filter leads to a

significant biasing effect. PCA denoising seems to generate images

with relatively high variance compared to the other methods. The

PCA-denoised image retains a set of the slower varying principal

components (a subset of the temporal basis that accounts for as

much of the variability in the data as possible). While very effective

for time series datasets that can be described using a smaller set of

basis functions, PCA seems less effective for whole body

applications which may involve a large range of complex TACs.

As more principal components are suppressed, the variance

decreases. But, since only a few basis functions are used to describe

the entire dataset, PCA seems to favor a few ROIs (as seen from

Figure 4. A coronal slice from the dynamic Digimouse phantom. The rows represent the true, noisy, Gaussian-denoised, PCA-denoised,
HYPR-denoised, NLM-S denoised, and NLM-ST denoised images respectively. The columns represent three time points (289 s, 619 s, and 2264 s)
reflecting the evolution of activity over time. The columns correspond to time bin sizes of 120 s, 160 s, and 550 s from left to right. Accordingly, the
left and middle columns are noisier than the right column.
doi:10.1371/journal.pone.0081390.g004
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the low bias in the skin and the lungs), while potentially generating

bias and image artifacts in some of the other ROIs. The HYPR

technique generates higher variance in most regions compared to

NLM-ST. Like PCA, it generates very low bias in the skin region.

Increase of the box filter dimensions leads to significant spillover,

which is particularly noticeable in the lesions in the last time

frame. The NLM-S technique generates low bias in the muscle

tissue. For most localized ROIs, such as the lesions, the kidneys,

and the heart, this method leads to both high bias and high

variance. The poor performance is partly attributable to the

susceptibility of the similarity metric in the early time frames to the

high noise levels and also partly due to the ineffectiveness of a

uniform smoothing parameter for this application.

Coronal slices from the original, noisy, and denoised spatio-

temporal images are displayed in figure 4. The tuning parameter

choices for the displayed denoised images were based on the

optimal overall bias-variance performance for each method as

revealed in figure 3. The Gaussian denoised image was obtained

using a Gaussian filtering kernel with a standard deviation of 0.7

(0.82 mm FWHM). The PCA denoised image was based on 6

principal components. The HYPR denoised image was based on a

box filter size of 5 voxels. The NLM-S denoised image was

generated using a smoothing parameter of 10{3. The NLM-ST

denoised image was generated using a global smoothing constant

C~1. The columns represent three time points (289 s, 619 s, and

2264 s) reflecting the evolution of activity over time. From left to

right, the columns correspond to time bin sizes of 120 s, 180 s, and

550 s. Accordingly, the left and middle columns are more

corrupted by noise than the right column. It should be noted

that the image quality improvement in the earlier frames achieved

using NLM-ST is quite significant compared to all the other

methods. Compared to NLM-ST, the NLM-S 2264 s time point

image is oversmoothed (blurred boundaries between the lungs and

the muscle), while the earlier time point images are clearly

undersmoothed. When we focus on more minute high-intensity

features such as the lesions, we observe that they are noisier and

less structured with Gaussian, HYPR, and NLM-S denoising at

619 s (middle column) and have significant artifacts with PCA

denoising, prominently visible when we look at the 289 s time

point (left column). For both NLM-S and NLM-ST, we observe

some artifacts appearing as remnant structured noise. These are

most prominent in the low count muscle region. Due to the small

spatial extent (3|3) of the patches used in this work, the NLM

technique tends to reinforce some noise patterns that it misinter-

prets as texture. These artifacts can be suppressed by resorting to

patches with a larger spatial extent.

Patlak Analysis. To explore the utility of NLM-ST denoising

in the model-based interpretation of dynamic PET images, we use

the Patlak graphical technique for macroparameter fitting. Figure

5(a) shows a coronal slice from the volumetric Patlak parametric

maps corresponding to the true, noisy, Gaussian-denoised, PCA-

denoised, HYPR-denoised, NLM-S denoised, and NLM-ST

denoised images displayed in figure 4. Figure 5(b), which shows

plots of the overall bias and variance in the Patlak parametric

maps corresponding to the five denoising techniques, demonstrates

that the simultaneous low bias and low variance behavior observed

in the NLM-ST denoised spatiotemporal images also reflect in the

corresponding macroparametric estimates, thereby offering im-

proved quantitation. It should be noted that, while the NLM-S

denoised dynamic images exhibited high overall bias and variance,

for Patlak parametric imaging, the performance of this method is

better than all the other methods except for NLM-ST. This

Figure 5. Patlak parametric imaging for the digital phantom study. (a) The Patlak influx constant Ki was computed from the true, noisy,
Gaussian-denoised, PCA-denoised, HYPR-denoised, NLM-S denoised, and NLM-ST denoised images of the dynamic Digimouse phantom. (b) Plots of
overall percentage bias vs. percentage standard deviation for the Patlak parametric images computed from the noisy and denoised dynamic images.
doi:10.1371/journal.pone.0081390.g005

Non-Local Means Denoising of Dynamic PET Images

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e81390



apparent performance improvement is due to the fact that the

Patlak macroparameter estimate does not depend on earlier time

points, where NLM-S has particularly poor bias-variance perfor-

mance due to the uncertainty in the similarities computed from

these noisier time frames.

Experimental Results

Preclinical Data Analysis
Coronal slices from the noisy and denoised spatiotemporal

preclinical images are displayed in figure 6. The NLM-ST filter

was based on spatiotemporal patches of size 3|3|5 (two spatial

dimensions and one temporal dimension), a search window of size

11|11, and C~1. The Gaussian filter used had a kernel diameter

of 7 voxels and a standard deviation of 2 (1.88 mm FWHM). The

PCA approach uses the 5 largest principal components chosen

based on the singular value spectrum. Suppression of fewer

principal components leads to significant artifacts in some regions,

while inclusion of more components seems to substantially increase

the variance in the background muscle tissue. The HYPR method

was based on a box filter size of 7 voxels. The NLM-S smoothing

parameter was set to 3|10{5. Visual comparison of the PCA

image slice at 2264 s with the corresponding noisy image reveals

that PCA generates some artifacts in the form of extra activity in

the skin (indicated by white arrrows in figure 6). At the 2264 s time

frame, relative to NLM-ST, most of the other methods generate

poorer contrast in the mouse heart. However it should be noted

that, while NLM-ST leads to a smoother image at the the earlier

169 s time point, it also leads to suppressed activity in the liver,

which is likely to introduce some bias in the microparameters.

For model-based interpretation of this dynamic dataset, we

computed a spatial map of the Patlak influx constant. Figure 7(a)

shows one coronal slice from the volumetric parametric image

computed after denoising using Gaussian filtering, PCA, HYPR,

NLM-S, and NLM-ST. We examined the percentage recovered

signal in the heart and the hot regions in the lower abdomen for

the different denoising methods relative to the noisy image. The

high intensity signal region is delineated in the top row of figure

7(b). The percentage recovered signal displayed in the middle row

of figure 7(b) was highest for Gaussian denoising, followed by

Figure 6. A coronal slice from the dynamic 18F
� �

FDG PET image of a mouse. The rows represent the noisy, Gaussian-denoised, PCA-
denoised, HYPR-denoised, NLM-S denoised, and NLM-ST denoised images respectively. The columns represent three time points (169 s, 619 s, and
2264 s from left to right) reflecting the evolution of activity over time. The white arrows pinpoint extra uptake in the skin in the later frames of the
PCA-denoised image, which appears to be an image artifact.
doi:10.1371/journal.pone.0081390.g006
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NLM-S, HYPR, NLM-ST, and PCA respectively. To account for

the noise behavior, we computed the CNR by dividing the

difference between the mean intensities of the signal region and

the background muscle tissue (a lower intensity region) by the

standard deviation in the muscles (a region expected to have

relatively uniform uptake). The signal and background ROIs used

for computing the CNR are delineated in the top row of figure

7(b). The CNRs for the noisy and denoised Patlak images are

displayed in the bottom row figure 7(b). The NLM-ST and NLM-

S denoised images exhibit the highest CNR, with the former about

23.8% higher than the latter.

Clinical Data Analysis
Transverse slices from the noisy and denoised spatiotemporal

clinical images are shown in figure 8. The NLM-ST denoised

image was generated using spatiotemporal patches of size

3|3|5, a search window of size 11|11, and C~1. The

Gaussian filter had a kernel size of 7 voxels and a standard

deviation of 1.5 (7.15 mm FWHM). The PCA method employed

the 10 largest principal components chosen based on the singular

value spectrum. The HYPR method was based on a box filter size

of 7 voxels. The NLM-S smoothing parameter was set to 10{6.

Visual comparison of the NLM-S and NLM-ST images reveals

that, while the image quality for these methods during the later

time frames appears comparable, the performance of the two

methods are markedly different at 67.5 s (left column) and 390 s

(middle column), where NLM-S leads to noisy and undersmoothed

images. The late time frame behaviors of the different denoising

methods are also manifested in the Patlak parametric maps shown

in figure 9(a). The Patlak images highlight the uptake in the lesions

inside the liver tissue. Evidently, this patient has multiple tumors in

the liver. Several of the lesions are characterized by low-intensity

necrotic cores and high intensity rings of viable tissue with high
18F
� �

FDG uptake [68], delineated in red in the top row of figure

9(b). The percentage recovered signal in the bright rings was

comparable for all the methods examined as shown in the middle

row of figure 9(b). The spleen, delineated in blue in the top row of

figure 9(b), however, looks more uniform and distinct in the NLM-

S and NLM-ST denoised Patlak images. Thus NLM-S and NLM-

ST methods yield a generally smoother Patlak image with a more

uniform non-tumorous background while preserving the lesion

structure and the contrast between tumorous and non-tumorous

tissue. These observations are confirmed by the CNR values in

figure 9(b). The CNR for the liver Patlak images is computed by

dividing the difference between the mean intensities of the lesions

(a high intensity region) and the spleen (a lower intensity region) by

the standard deviation in the spleen (a region expected to have

relatively uniform uptake). The signal and background ROIs used

for computing the CNR are indicated in the top row in figure 9(b).

The NLM-ST and NLM-S denoised images exhibit the highest

CNR, with the former about 12.2% higher than the latter.

Discussion

We have adapted the NLM technique for the denoising of

dynamic PET images. To test the performance of our method, we

created a realistic dynamic digital mouse phantom based on the

Digimouse atlas. We generated multiple noise realizations by

reconstructing Poisson deviates of frame-by-frame sinograms.

Figure 7. Patlak parametric imaging for the preclinical study. (a) The Patlak influx constant Ki was computed using noisy, Gaussian-denoised,
PCA-denoised, HYPR-denoised, NLM-S denoised, and NLM-ST denoised images from an 18F

� �

FDG PET mouse study. (b) The top row delineates the
signal (red) and background (blue) ROIs used for evaluation. The middle row shows the percentage recovered signal in the hot regions for different
denoising methods. The bottom row shows the CNR in the Patlak parametric images, measured as the ratio of the contrast between the signal and
the background ROIs to the standard deviation in the background.
doi:10.1371/journal.pone.0081390.g007
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Using the simulated data, we compared the bias-variance

characteristics of the developed spatiotemporal NLM technique

(NLM-ST) with four other denoising approaches: Gaussian

filtering, PCA, HYPR, and conventional NLM (NLM-S). Our

results indicate that the NLM-ST technique has the lowest overall

bias and variance and significantly outperforms the other methods.

We then demonstrated that the low bias and low variance

properties of the NLM-ST denoised dynamic images are also

reflected in the Patlak macroparametric estimates, thus improving

the accuracy of model-based quantitative interpretation. We

applied our method to dynamic 18F
� �

FDG PET datasets from a

mouse and from a liver cancer patient. Patlak parametric images

for these datasets generated using the five denoising methods

reveal clear and consistent improvement in CNR achieved using

NLM-ST indicating that this method preserves image contrast for

high intensity features while lowering the background noise

variance. For one slice of the dynamic Digimouse atlas, the run

times for the different denoising methods on a 3.33 GHz Intel

Xeon X5680 system were: 0.05 s for Gaussian filtering, 1.2 s for

PCA, 0.03s for HYPR, 16 s for NLM-S, and 2.36 s for NLM-ST.

It should be noted that NLM-ST is faster than NLM-S because,

unlike the latter which denoises one time frame at a time, the

former uses spatiotemporal similarities to denoise the entire time

series at one go. It should be noted that, in the NLM framework

used in this work, the central patch was treated the same way as

other patches. Also, since 3|3 patches were used in the

applications discussed in this work, no adhesion effect is visible

in the restored images.

Figure 8. A transverse slice from the dynamic PET image of a patient with hepatocellular carcinoma. The rows represent the noisy,
Gaussian-denoised, PCA-denoised, HYPR-denoised, NLM-S denoised, and NLM-ST denoised images respectively. The columns represent three time
points (67.5 s, 390 s, and 3300 s from left to right) reflecting the evolution of activity over time.
doi:10.1371/journal.pone.0081390.g008
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While NLM denoising has found wide applicability in MRI, to

our knowledge, this is the first thorough investigation of its utility

in dynamic PET, a particularly compelling application for

denoising methods owing to the high noise levels in dynamic

datasets. This paper introduces several key ideas that enable the

employment of the basic NLM framework for denoising dynamic

PET images. Firstly, this method exploits the less noisy image

frames from later time points to denoise all time frames. Secondly,

compared to our prior work involving temporal patches [39], this

paper incorporates the concept of spatiotemporal patches derived

from dynamic PET images. Finally, we introduce an automated

approach to spatially vary the smoothing parameter for NLM.

The majority of existing literature on NLM denoising deals with

additive or multiplicative white noise and use a spatially invariant

smoothing parameter. The noise levels in PET images are dose-

dependent and vary substantially from one dataset to another,

making parameter tuning critical for the overall success of the

method. The NLM filter we described here computes a local

variance estimate over each spatiotemporal patch, which accounts

for the dependence of the noise statistics on the activity. This

leaves us with a single global smoothing parameter which we set to

a value in the range 0.5 to 2 for our simulation and experimental

studies. Our simulation study indicated that all values in this range

yield superior overall bias and variance properties compared to the

reference methods.

The spatiotemporal patches used in this work are 3D (two

spatial dimensions and one temporal dimension). In other words,

the 4D spatiotemporal images were denoised slice by slice. A

preliminary investigation on the efficacy of 4D spatiotemporal

patches revealed a significant increase in computational burden

without any major impact on image quality. Consequently, in the

interest of computational speed, 3D patches were used in this

work.

The spatial variation of the smoothing parameter is based on a

local variance approximation over each spatiotemporal patch.

Unlike applications involving images corrupted by white noise,

PET exhibits a non-uniform voxel variance dependent on the

activity, system model, reconstruction method, and other factors.

The patch-based variance approximation is a simple and effective

workaround. However, it tends to reduce the sharpness of edges in

images, which is a limitation of this approach. The amount of local

bias in the boundary voxels depends on the contrast between the

uptakes in the organ of interest and the neighboring organ. In the

last time frame of the NLM-ST denoised dynamic Digimouse PET

images in figure 4, for example, the recovered activity in the

neighborhood of the lesions is about 1.72 times the true value due

to spillover from the lesions, slightly higher than the corresponding

value of 1.65 for NLM-S. In the latter case, the spillover may be

attributable to the rare patch effect [69]. Additionally, while the

use of only the later time frames enables more robust estimation of

non-local weights, it may have limitations in capturing the spatial

structures that only appear in early time frames. This may lead to

some spillover along boundaries due to potential oversmoothing in

the earlier time point images. Due to the low counts (and hence

high noise levels) in the early time frames, the uncertainty in the

similarities computed directly from these frames is too large for

these similarities to be reliable. Generally speaking, the benefits

outweigh the risks. However, in these special cases, it is advisable

to adjust the temporal threshold, if possible, to capture the contrast

near the particular tissues of interest.

Figure 9. Patlak parametric imaging for the clinical study. (a) The Patlak influx constant Ki was computed using noisy, Gaussian-denoised,
PCA-denoised, HYPR-denoised, NLM-S denoised, and NLM-ST denoised images from an 18F

� �

FDG PET scan of a patient with hepatocellular
carcinoma. (b) The top row delineates the signal (lesions marked in red) and background (spleen marked in blue) ROIs used for evaluation. The
middle row shows the percentage recovered signal in the hot lesions for different denoising methods. The bottom row shows the CNR in the Patlak
parametric images, measured as the ratio of the contrast between the signal and the background ROIs to the standard deviation in the background.
doi:10.1371/journal.pone.0081390.g009
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While a range of techniques exist for simultaneous reconstruc-

tion and denoising of all the dynamic frames using smoothing

priors, a majority of these techniques only impose local

smoothness. Tissue types exhibiting similar tracer dynamics are

often distributed all over the body. Methods based on local

smoothing priors fail to exploit this aspect. This is a key strength of

NLM denoising. Also, for dynamic PET, spatiotemporal penalties

enforcing smoothing along the temporal dimension or utilizing

temporal basis functions have been used. But these tend to

introduce temporal correlations in the images, which are

undesirable for tracer kinetic analysis. In comparison, for our

method, while the similarities are spatiotemporal, the averaging

operation is purely spatial. An interesting topic to investigate in the

future is the possibility of extending this formulation to design a

non-local prior for dynamic image reconstruction. We will also

investigate more sophisticated means for automatically tuning the

smoothing parameter. Based on the success of NLM denoising for

MR images, yet another interesting avenue to explore would be

the derivation of self-similarities from both anatomical (MR) and

functional (PET) images. The added MR contrast will enable more

robust estimation of similarities in regions where the contrast in

the later time frames of the PET is low. In addition, segmented

anatomical images can also be used to guide our local variance

estimation procedure, thus ensuring that only voxels belonging to

the same tissue class are used for variance computation, thereby

reducing spillover at boundaries.
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21. Kervrann C, Boulanger J, Coupé P (2007) Bayesian non-local means filter,
image redundancy and adaptive dictionaries for noise removal. In: Proc Int Conf
Scale Space Var Methods Comput Vis. pp. 520–532.

22. Gilboa G, Osher S (2008) Nonlocal linear image regularization and supervised

segmentation. Multiscale Model Simul 6: 595–630.
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