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ABSTRACT Previous Convolutional Neural Networks (CNNs) basedmulti-focus image fusionmethods rely

primarily on local information of images. In this paper, we propose a novel deep network architecture for

multi-focus image fusion that is based on a non-local image model. The motivation of this paper stems from

local and non-local self-similarity widely shown in nature images. We build on this concept and introduce a

recurrent neural network (RNN) that performs non-local processing. The RNN captures global and local

information by retrieving long distant dependencies, hence augmenting the representation of each pixel

with contextual representations. The augmented representation is beneficial to detect accurately focused and

defocused pixels. In addition, we design a regression loss to address the influences of texture information.

Experimental results demonstrate that the proposed method outperforms the state-of-the-art methods, both

qualitatively and quantitatively.

INDEX TERMS Multi-focus image fusion, recurrent neural network, non-local self-similarity, texture

information.

I. INTRODUCTION

Most image systems, such as digital cameras, have a limited

depth-of-field and, as a result, only the objects in the depth-

of-field are sharp, while others are blurred. Therefore, many

researchers have designed various algorithms called multi-

focus image fusion to integrate several images of the same

scene into an all-in-focus image. The all-in-focus image can

be used for further image-processing tasks and many appli-

cations, such as recognition, detection, and surveillance.

In the past decades, many algorithms have been proposed

for multi-focus image fusion. In general, these algorithms

can be categorized into four classes: transform domain-

based methods, sparse representation-based methods, the

CNN-based and spatial domain-based methods. Some rep-

resentative transform domain-based methods include the

Laplacian pyramid (LP) [1], themorphological pyramid (MP)

[2], the discrete wavelet transform(DWT) [3], the dual-tree

complex wavelet transform (DTCWT) [4], the curvelet trans-

form (CVT) [5], the non-subsampled contourlet transform

(NSCT) [6], [7] and the sparse representation (NSCT-SR)

[8]. The above methods can effectively extract features of
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focused regions. However, most of them are complex and

time-consuming [9].

Many sparse representation-based methods have been

applied to image fusion [10]–[12]. The source image can

be represented with sparse coefficients and an overcomplete

dictionary. The sparse coefficients work well in representing

the saliency information of the source image. A sequence

of sparse representation-based algorithms performs success-

fully [13]–[17]. In [17], Zhu et al. first decomposed the

source images into cartoon and texture components, aim-

ing at describing the structure and detailed information.

Then an energy-based and a sparse representation-based

methodwere adopted to fuse cartoon and texture components,

respectively.

Spatial domain-based methods have been applied widely

to multi-focus image fusion [18]–[23]. The basic idea is

to directly select clearer pixels or regions from the source

image to construct the fused image. At present, the advanced

pixel-based fusion methods include guided filtering-based

(GFF) [24], the dense SIFT (DSIFT) [25], and self-similarity

and depth information-based [26] methods. These fusion

algorithms perform well in extracting and preserving image

details. However, the focused detections could be inac-

curate in the boundary between focused and defocused

regions.
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Recently, a variety of CNN-based image fusion methods

[27]–[33] have been proposed. CNN-based fusion methods

have gained many breakthroughs, which overcome the

difficulty of manually designing complicated activity level

measurement and fusion rules. Moreover, the activity level

measurement and fusion rule can be jointly generated via

learning a CNN model. A deep convolution neural network-

based image fusion method firstly is presented by Liu [27].

Liu et al. view multi-focus image fusion as a classification

task. Specifically, they designed a simple CNN to clas-

sify focused and defocused patches, generating an initial

focus map from classification results. The all-in-focus image

was generated after post-processing the initial focus map.

Besides, to effectively learn the model, they created thou-

sands of clean-blur image patch pairs for training. The patch

size could influence the accuracy of the model. Moreover,

the model also presented some inaccurate focused pixels

when focused and defocused regions both existed in one

patch. To solve this problem, Tang et al. proposed a p-CNN

for multi-focus image fusion [30]. They created more precise

classification labels and classified pixels into three classes:

focused, defocused, unknown. Ma et al. proposed a boundary

aware multi-focus image fusion approach based on deep

neural networks [33], in which two different convolutional

networks are employed to classify two kinds of patches,

respectively. A kind of patch is far away from the boundary

between focused and defocused regions and the other is

near the boundary. Although the algorithm works well in

fusing multi-focus images, it increases computational cost

and storage. In [35], Lai et al. combined standard and dilated

convolutional kernels to excavate more spatial information

for segmenting focused and defocused pixels. Guo et al.

utilized a conditional generative adversarial network to fulfill

the image fusion [36]. They tried to train a discriminator

to penalize the mismatched relationship between the focus

map and source images, which guided their generator to

produce a high confidence map. [34], [37] directly recon-

struct the fused image instead of outputting the focus map.

Specifically, in [34], Zhao et al. presented an end-to-end

network that extracts low-level and high-level features to

capture low-frequency content and high-frequency details,

and then the multi-level features are combined to reconstruct

the fused image. In [37], Zhang et al. introduced a general

image fusion framework aiming at fusing multiple types

of images without any finetuning procedures. They firstly

used two convolutional layers to extract image features from

multiple input images, and then the features of multiple

input images were fused by a suitable fusion rule that is

designed according to the type of input images. For instance,

elementwise-maximum fusion rule is used to fusemulti-focus

images, infrared and visual images, and medical images.

Elementwise-mean fusion rule is applied to fuse the multi-

exposure images. Afterwards, the fused image is produced

by reconstructing the fused features. However, due to recon-

structing the fused image without the focus map, the fused

images obtained by the above two algorithms suffer from

undesirable pixels that are irrelevant to the source images.

Although these recent advanced algorithms achieve

appealing performance, most of them exploit local infor-

mation to fulfill the fusion task, limiting fusion effect due

to a lack of sufficient information. To improve fusion per-

formance, exploiting global information of the image is an

intuitive and important approach. Some researchers may have

paid attention on global information. In our work, motivated

by inherent local and non-local self-similarity, we propose a

deep non-local network architecture for multi-focus image

fusion that utilizes the self-similarity to generate more dis-

tinguishable representations. Specifically, we introduce the

recurrent neural network (RNN) to retrieve local and global

contextual dependencies, learning the relation between each

pixel representation and augmenting the representation of

each pixel according to their relations with the pixel repre-

sentation. The augmented representation is very beneficial to

segment pixels as focused or defocused. To the best of our

knowledge, this is the first time that applying RNN to the

multi-focus image fusion task. Our contributions in this work

can be summarized as follows:

(1) We propose a novel deep network architecture for

multi-focus image fusion. As opposed to most existing

deep-learning algorithms for image fusion, which are

based on local models, our model captures non-local

contextual information from images.

(2) We unroll the RNN into the deep network architec-

ture. The RNN can fully exploit local and global pixel

dependencies.

(3) We design a regression loss that supervises the fused

image by the ground-truth fusion image. In contrast to

the majority of image fusion methods that are easily

influenced by texture information, our fusion algorithm

is capable of avoiding interference of texture informa-

tion by utilizing the regression loss.

(4) Compared with most state-of-the-art fusion algorithms,

the proposed fusion method can outperform them in

terms of both visual and objective quality evaluation.

We describe the proposed method in Section II. A quan-

titative evaluation on public test datasets as well as visual

illustrations are provided in Section III. The conclusions are

given in Section IV.

II. THE PROPOSED METHOD

In this work, we pursue a non-local network architecture that

generates a confidence map indicating the focused informa-

tion for fusion tasks. The network has a great capacity for

learning the local and non-local self-similarity features from

training data. The core idea is that we explore the relation

between features of each pixel to augment the representation

of pixels according to the relation, providing a more accurate

map. Next, we describe in detail the overall architecture of

the proposed network.
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FIGURE 1. Schematic diagram of proposed non-local network architecture.

A. NETWORK ARCHITECTURE

As mentioned earlier, non-local models have been shown to

generate superior results than their local counterparts [38],

[39]. Their superiority in performance is mainly attributed

to their ability of modeling complex image structures by

acquiring richer information. This fact highly motivates us to

design a non-local network for multi-focus image fusion that

learns non-local self-similarity features to augment the repre-

sentation of each pixel. The RNN is introduced to implement

the non-local model and there are two reasons why we choose

the RNN. Firstly, the RNN can learn the relation between

non-local features of pixels by capturing long distance spatial

dependencies. Secondly, the RNN is capable of augmenting

the representation of each pixel with the long-term memory

function. Based on the above analysis, we can notice that

the relation of non-local features is obtained by the learning-

based method instead of the nonparametric method, which

may lead to better fusion performance. Moreover, the two

processes of learning the relation of non-local features and

augmenting the representation are integrated into a process

by the RNN, which can be trained more effectively in an end-

to-end manner.

We consider the situation that only two input images

exist since the fusion process of multi-focus images can be

achieved by fusing dual-focus images in succession. For a

pair of multi-focus images of the same scene, our goal is

to learn a CNN model aiming at extracting focused and

defocused information of images and learning a map matrix

ranging from 0 to 1. As shown in Fig.1, the proposed network

is a siamese network, which comprises of three main sub-

networks: the feature extraction sub-network, feature aug-

mentation sub-network and map generation sub-network.

1) FEATURE EXTRACTION

As illustrated in Fig.1, we adopt four convolutional layers

to extract local features. VGG16 [40] network was trained

on ImageNet and obtained excellent performance for clas-

sification tasks. Therefore, we utilize the first two con-

volutional layers of the pre-trained VGG16 to extract the

extensive low-level features. However, the extracted features

by VGG16 could be not appropriate for the image fusion

task, due to the reason that VGG16 stems from the clas-

sification task. Hence, we employ the third convolutional

layer for exploring features of multi-focus images to suit

the image fusion task. It is worth noting that the input

images are fed separately to the three layers, which does not

take into account the relativity between multi-focus images.

Inspired by this fact, we concatenate the feature maps of

the third layer of each branch with those of other branches,

obtaining concatenated feature maps in a different order for

each branch. Subsequently, the fourth convolutional layer

is designed to extract the relative features by convoluting
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FIGURE 2. Schematic diagram of generating the training dataset.

concatenated feature maps. Note that the number of convo-

lutional kernels could influence the discrimination capacity

of features of images. A smaller number of kernels has lower

computational complexity, however, it could not extract suf-

ficient features. In contrast, a larger number of kernels could

provide more extensive features, whereas it reduces compu-

tational efficiency. Therefore, we empirically set the number

of kernels as 64 to achieve a trade-off between computational

efficiency and the feature extraction.

2) FEATURE AUGMENTATION

Besides the local features of multi-focus images, we further

need to augment the representation for each pixel of images

using global contextual features. Based on the above analysis,

The non-local module can be efficiently implemented using

an RNN that is based on the Reseg [41] for semantic segmen-

tation tasks. Next, we modify and extend it to perform the

multi-focus image fusion task.

As shown in Fig.1, the non-local module contains four

RNN layers consisting of two horizontal and vertical RNN

layers, which scan along the horizontal and vertical direc-

tions of an image respectively, aiming at learning long range

pixel dependencies. Considering that more layers will bring

a higher burden of computational efficiency, in our work,

four RNN layers are sufficient to obtain robust features.

Specifically, let X = {xi,j} be the feature map from the

feature extraction sub-network, where x ∈ R
h×w×c and h,

w, c are the height, width, number of features, respectively.

In our work, the horizontal RNN layer sweeps horizontally

using two RNNs fl and fr , which move left-right and right-left

respectively. Each RNNworks along each row ofX , receiving

input from both a pixel xi,j and its hidden state, where i, j

are the coordinates in the matrix of features. We choose an

independent pixel instead of a patch as the input, mainly since

the patch size could influence fused performance, especially

when both focused and defocused information exist in one

patch. At every time step, each RNN inputs the next pixel

and its hidden state, outputs o∗
i,j and updates its state z∗i,j.

This process of the horizontal RNN layer can be expressed

as follows:

oli,j = fl(z
l
i,j−1, xi,j), for i = 1, . . . ,w (1)

ori,j = fr (z
r
i,j+1, xi,j), for i = w, . . . , 1 (2)

where fl and fr return the activation of the recurrent hidden

state, which contain N Gated Recurrent units [42] (25 units

in our work), respectively. Based on the above process for

all pixels of the input X , we can obtain a composite feature

map Oh = {ohi,j} by concatenating oli,j and o
r
i,j, where o

h
i,j ∈

R
h×w×2N .

After the horizontal sweep, we present the vertical RNN

layer that integrates the features of the input image to per-

form global contextual information. Similar to the horizontal

sweep, the vertical RNN layer uses two newRNNs (top-down

and bottom-up) to work along each column of the feature

map Oh from horizontal sweep, generating the feature map

Ov = {ovi,j}, where ovi,j ∈ R
h×w×2N . Through the joint

process of the horizontal and vertical RNN layers, our non-

local module transforms the local representation of the image

to the global representation.

3) MAP GENERATION

Having local and global contextual representations of multi-

focus images, we apply a non-linearity function to the output

of the last convolutional layer of size 1 × 1 S, generating the

confidence mapM . The confidence map is computed as

Mr = exp(Sr )/(exp(S1) + exp(S2), r = 1, 2 (3)
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FIGURE 3. A portion of test images used in our experiments.

The generated map matrix ranges from 0 to 1. It estimates

the focus degree of each pixel and 0, 1 imply defocused

and focused information, respectively. As shown in Fig.1, the

generated maps are supervised during training.

In the testing phase, we adopt a ‘‘choose-max’’ strategy to

confidence maps for generating initial maps as below:

T1(i, j) =

{

1 M1(i, j) > M2(i, j)

0 otherwise
(4)

where i and j are the coordinates in the matrix of the image.

T2 = 1 − T1 (5)

Finally, the fused image is calculated with the following pixel

weighted average rule.

Ft = I1T1 + I2T2 (6)

B. LOSS FUNCTION

In order to conveniently describe the loss function, we assume

there are two input images that are fed to our model.

Given the training samples {{In1 ,Dn1}, {I
n
2 ,Dn2}}

N
n=1, con-

taining the training image {In1 , In2 } and its ground-truth

focus map {Dn1,D
n
2} from our training dataset, we com-

pute the mean square error (MSE) between the gener-

ated focus map {Mn
1 ,Mn

2 } and the ground-truth {Dn1,D
n
2} as

follows:

Lossm =
1

Nhw

N
∑

n=1

||Mn
1 − Dn1||

2 + ||Mn
2 − Dn2||

2 (7)

where N is batch size. The above map loss can guide the

proposed network to learn effectively focused and defocused

features of images by the ground-truth. However, only utiliz-

ing the map loss to train the proposed network could limit the

fusion effect, due to lack of the ground-truth fused image.

For this problem, we add a pixel-wise regression loss that

supervises the fused image Fn with the ground-truth fused

image Gn, aiming at penalizing the map loss. The pixel-

wise supervision is more proper than patch-wise supervision

for avoiding the interference of texture information that is

usually beneficial for the image classification task rather than

FIGURE 4. This is an ablation showing the visual effects of adding
non-local module and the regression loss. The last three columns show
the initial maps of the baseline model without the non-local module and
the regression loss, the non-local model without the regression loss (B),
and the final proposed model of this paper with both non-local module
and the regression loss, respectively.

the fusion task. Similarly, the MSE is adopted to compute

the regression loss. The Fn can be directly generated by

considering the pixel weighted average rule, that is

Fn = In1M
n
1 + In2M

n
2 (8)

The regression loss is computed as

Lossf =
1

Nhw

N
∑

n=1

||Fn − Gn||2 (9)

Overall, our loss function consists of the map loss and regres-

sion loss, that is

Loss = Lossm + Lossf (10)

As shown in Fig.1, we use Loss as our final objective function

to train our proposed model, which can generate better fusion

results.

C. TRAINING

Our non-local model belongs to the image-to-image

model, which requires substantial multi-focus images and

135288 VOLUME 8, 2020



Z. Duan et al.: Non-Local Multi-Focus Image Fusion With RNNs

FIGURE 5. A comparison of initial and final segmentation maps (with and without post-processing) and corresponding fused images of the
proposed method.

TABLE 1. This is an ablation showing the objective assessments of
adding non-local module and the regression loss. The best results are
shown in red color.

all-in-focus images for training. To obtain the training dataset,

an intuitive way is to create the partially-focused image pairs.

We generated the training data using VOC 2012 JPEGImages

[53] which consists of 17125 high-quality nature images. All

the images were randomly cropped and their resulting size

was 300 × 300.

As shown in Fig.2, we assume that the source image is

the all-in-focus image G and a pair of multi-focus images

is generated according to it. We randomly select one part

of the all-in-focus to blur with Gaussian filtering, while

the rest part does not do anything, generating a partially-

focused image (such as I1 in Fig.2) and a focus map with

the values of 0 and 1 in corresponding parts (D1 in Fig.2).

To obtain the other one partially-focused image and its focus

map of that pair, the similar process is applied to the all-in-

focus image but on converse parts as shown in Fig.2 I2,D2.

Therefore, we can generate thousands of multi-focus images

and their focus maps by applying the above process to the

source images. It is worth noting that the assumed all-in-focus

images and generated multi-focus images are reasonable for

training, since the focused region of a partially-focused image

and its defocused region in the other one partially-focused

image are simultaneously looked by our fusion network.

During the process of creating the training dataset, our source

images are randomly passed through different Gaussian fil-

ters with the kernel size range of 3 to 15. The standard

deviation of Gaussian filters is computed from Gaussian

kernels.

Our method is implemented based on PyTorch [51] frame-

work and trained on a GeForce-GTX1080-8GB GPU. The

Adam [43] is used to optimize the entire network and the

learning rate 0.00001 is set constantly during the training
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FIGURE 6. (a)-(l) Fusion results of ‘‘flower’’ obtained by different methods. (m)-(x) difference images obtained by different methods.

process. We use 17000 pairs of multi-focus images, iterating

about 30 epochs to train our model. The batch size is 4.

III. EXPERIMENTS

A. EXPERIMENTAL SETTING

In this section, we use 23 pairs of multi-focus images from

the ‘‘Lytro’’ dataset [15] and other famous test multi-focus

images such as ‘‘flower’’ and ‘‘lab’’ [52] for evaluation.

A portion of the test images is shown in Fig.3. The proposed

fusion method is compared with eleven state-of-the-art multi-

focus image fusion methods, including the nonsubsampled

contourlet transform and sparse representation (NSCT-SR)

[8], the multi-scale weight gradient fusion (MWGF) [44],

the image matting (IMF) [18], the dense SIFT (DSIFT)

[25], the convolutional neural network (CNN) [27], self-

similarity and depth information (SSSDI) [26], boundary

finding (BFMM) [45], cross bilateral filter (CBF) [46],

the convolutional sparse representation (CSR) [16], themulti-

scale convolutional neural network (MADCNN) [35] and

IFCNN [37]. In addition, in order to compare the proposed

method with the eleven previous methods in fair condition,

the default parameters of these methods are set to keep con-

sistent with their original papers.

In order to evaluate the performance of different algo-

rithms objectively, four metrics are adopted: mutual infor-

mation (MI ) [47], edge information preservation (QAB/F )

[48], modified structural similarity metric(MSSIM ) [49] and

spatial frequency (SF) [50]. MI can be used to reflect

fused effects by measuring the similarity of global statistical

characteristics on the gray level (via grayscale histograms)

between input images and fused images. QAB/F is a mea-

sure of fusion performance to evaluate the amount of edge

information that is transferred from input images to the fused

image. The greater the value of QAB/F is, the better the

fusion effect is. TheMSSIM is used to measure the degree of

structure preservation by considering three aspects: structure,

luminance, and contrast. SF indicates the overall activity

level in an image. The larger the value of SF is, the better

the fusion image is.

B. ABLATION STUDY

In this subsection, we conduct ablation experiments to ana-

lyze the influence of the non-local module and the regression

loss. We design two different network architectures based on

the proposed non-local network architecture for detailed com-

parisons: a baseline model without both non-local module

and the regression loss (A), a non-local network architecture

without the regression loss (B). In Fig.4, we can obviously

observe that the maps of the non-local model (B) are better

than those of the baseline model. It is indicated that the non-

local module can improve visual perception results. However,

the maps of the non-local model without using the regression
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FIGURE 7. (a)-(l) Fusion results of ‘‘lytro-01’’ obtained by different methods. (m)-(x) difference images obtained by different methods.

loss (B) show more errors compared with the maps of the

final proposed non-local model using the regression loss,

which implies our model can obtain benefits by using the

regression loss. Furthermore, comparing the objective results

of the two network architectures and proposed model listed

in Table.1, we can easily find that the objective results of

the non-local model (B) are higher than those of the baseline

model but are lower than those of the final proposed non-

local model in most cases. From the analyses based on visual

perception and objective metrics, adding non-local module

and the regression loss achieved a significant improvement

in fusion performance.

C. QUALITATIVE EVALUATION

First, we evaluate the effectiveness of the proposed multi-

focus image fusion method by utilizing visual quality. As

shown in Fig.5, there are two types of segmented maps,

initial maps which are obtained by applying the ‘‘choose-

max’’ strategy to immediate results of the proposed method

and final maps which are obtained by applying some

post-processing (such as small region removal and guided

filtering) to the immediate results. Compared with final maps,

the initial maps are already very accurate that most pixels

are correctly classified, which shows the good capacity of

augmenting features of our proposed model.

To further verify the effectiveness of the proposed method,

we visualize difference images and fused images of four

pairs test images obtained by different algorithms in Fig.6,

Fig.7, Fig.8 and Fig.9. The difference images are produced

by subtracting the first source image from the fusion images.

The values of each difference image are normalized to the

range of 0 to 1. When the focused region is completely

detected, the difference image will not show any information

of that. From Fig.6 (n), (t), (u), (v), (w), it’s obvious that

the CBF, NSCT-SR, MADCNN, IFCNN show undesirable

artifacts and the SSSDI fails to detect the focused regions. In

Fig.6 (r), (s), the pixels around the boundary regions between

focused and defocused are white, illustrating the edge details

are weakened. Besides, as shown in the red rectangular region

of Fig.6 (m), (p), the edge of focused regions also contains
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FIGURE 8. (a)-(l) Fusion results of ‘‘lab’’ obtained by different methods. (m)-(x) difference images obtained by different methods.

some artifacts. The CSR detects well the focused regions

except for causing the coarse contour edge. Therefore, we can

see that the DSIFT and proposed method perform well on the

edge of focused and defocused regions and accurately detect

focused regions.

In Fig.7, results similar to the observation above, the CBF

(n), NSCT-SR (t), IFCNN (w) still show many obvious

artifacts and the BFMM (m), IMF (r), MWGF (s), DCNN

(p) make border regions of near focused regions blurry. In

addition, the BFMM and MWGF incorrectly detect focused

regions in the bottom left corner. Compared with the CSR and

DSIFT, the SSSDI and proposed method have more accurate

contour of near focused regions. However, we can see that

Fig.7 (u) contains white holes inside the man, meaning the

SSSDI produces some defocused pixels in focused regions.

Fig.7 (v) also presents some undesirable noise-like pixels

inside the man, which means the fusion result loss some

information. Through the further comparative experiment,

the proposed method can efficiently preserve the edges and

reduce artifacts.

In Fig.8, it is obvious that the difference images from CBF,

CSR, NSCT-SR, SSSDI, MADCNN and IFCNN show abun-

dant residuals in the ‘‘clock’’ region, indicating many details

of fusion results are lost. Observing the magnified red rectan-

gular regions from BFMM, DCNN, IMF and MWGF, we can

find that these methods incur some undesirable artifacts in

the top right corner of the ‘‘clock’’. Besides, compared with

DSIFT, the proposed method presents more accurate contour

between focused and defocused regions. The above compar-

isons are enough to prove that the proposed method has a

strong ability for fusing multi-focus gray images. To make a

more challenging comparison, we perform the experiment on

‘‘lytro-02’’. In Fig.9, the focused regions are the fence. Obvi-

ously, all methods show artifacts in focused regions except

the proposed method. These experiments above demonstrate

that the proposed method reached a better visual perception

result.

D. QUANTITATIVE EVALUATION

To further verify the performance of the proposed method,

the twelve algorithms perform on 22 pairs multi-focus images

and MI, QAB/F, MSSIM and SF are used to quantitatively

analyze the fusion results. We have listed the average scores

for the various methods on the four metrics shown in Table.2.

Each red, blue, cyan value in this table are the maximum, sec-

ond maximum, third maximum in that corresponding row,

respectively. In overall comparison, values in the table indi-

cate that the proposed method shows better results than

the other eleven methods. The proposed method, without

any post-processing algorithms, is better than those of the

others with or without post-processing algorithms. This is

mainly because the proposed method could accurately find

135292 VOLUME 8, 2020
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FIGURE 9. (a)-(l) Fusion results of ‘‘lytro-02’’ obtained by different methods. (m)-(x) difference images obtained by different methods.

TABLE 2. Comparison of objective quality metrics of our proposed multi-focus image fusion method and the others. The column ‘‘Proposed*’’ and
‘‘Proposed’’ indicate the proposed method without and with any post-processing algorithms, respectively.

boundaries and detect focused regions. Besides, the proposed

method with post-processing algorithms has more better con-

sistency in focused regions, due to the processing of filtering,

although a little border information of focused regions is lost

as shown from QAB/F metric.

Considering the above comparisons based on visual per-

ception and evaluation metrics together, our proposed fusion

method outperforms the other eleven state-of-the-art algo-

rithms for multi-focus image fusion.

E. TIME COST COMPARISON

To evaluate the computational efficiency, we calculate and

list the fusion time for producing one fusion image of size

520 × 520 from two input images in Table.3. Experiments

VOLUME 8, 2020 135293



Z. Duan et al.: Non-Local Multi-Focus Image Fusion With RNNs

TABLE 3. Time cost comparison. The column ‘‘Proposed*’’ indicates the proposed method without any post-processing algorithms (Image size: 520 × 520,
Time unit: second).

are conducted on the platform with Intel Core i7-8700k CPU,

3.2GHz dominant frequency and 32Gmemory. Table.3 shows

that our proposed algorithm is remarkably faster than NSCT-

SR, DCNN, SSSDI, CSR and CBF, but is slightly slower

than MWGF, DSIFT, IMF, BFMM, MADCNN and IFCNN.

It means that the proposed algorithm can meet the require-

ment of many applications. Moreover, the running time of the

proposed algorithm can be notably curtailed by running it on

a GPU. Therefore, it is promising to employ our image fusion

algorithm in practice.

IV. CONCLUSION

In this work, we have proposed a non-local deep network

architecture for multi-focus image fusion. It learns local and

non-local self-similarity to achieve superior performance.We

introduced RNN that retrieves long distance pixel depen-

dencies to perform the non-local processing. To the best of

our knowledge, the proposed method is first ever non-local

deep learning method based on the RNN to perform multi-

focus image fusion. In addition, we designed a regression

loss to avoid the interference of texture information. Exper-

imental results show that the proposed method can produce

high-quality fusion results and outperform the state-of-the-

art methods, both qualitatively and quantitatively. Currently,

our non-local network performs well in fusing multi-focus

images. For future research, an interesting direction is to

explore some necessary modifications on the design of our

current non-local model that allow it to be efficiently trans-

planted to multi-exposure image fusion and other image

fusion applications.
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