Institute of Biomedical Engineering Department of Engineering

<u>Mattias P. Heinrich</u>, Mark Jenkinson, Manav Bhushan, Tahreema Matin, Fergus V. Gleeson, Sir J. Michael Brady and Julia A. Schnabel

14th International Conference on Medical Image Computing and Computer Assisted Intervention

2011, September 19th

Motivation for multimodal image registration

 <u>Combine</u> complementary information from modalities in medical imaging: Ultrasound, CT, MRI, PET, etc...

• Align CT and MRI scans of lung disease patients to improve diagnosis

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

- Features used to derive similarity: (needed for registration cost function)
 - Image intensities (iconic)
 - Tissue boundaries / gradients
 - Corners / point features (geometric)
- Challenging to relate features between modalities
 - different types of features relate to corresponding anatomies in different modalities
 - higher-level models of intensity relations (statistical similarity metrics) need large (up to global) support
 - common similarity metrics use only one feature

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

- Features used to derive similarity: (needed for registration cost function)
 - Image intensities (iconic)
 - Tissue boundaries / gradients
 - Corners / point features (geometric)
- Challenging to relate features between modalities
 - different types of features relate to corresponding anatomies in different modalities
 - higher-level models of intensity relations (statistical similarity metrics) need large (up to global) support
 - common similarity metrics use only one feature

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

- Features used to derive similarity: (needed for registration cost function)
 - Image intensities (iconic)
 - Tissue boundaries / gradients
 - Corners / point features (geometric)
- Challenging to relate features between modalities
 - different types of features relate to corresponding anatomies in different modalities
 - higher-level models of intensity relations (statistical similarity metrics) need large (up to global) support_
 - common similarity metrics use only one feature

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

- Features used to derive similarity: (needed for registration cost function)
 - Image intensities (iconic)
 - Tissue boundaries / gradients
 - Corners / point features (geometric)
- Challenging to relate features between modalities
 - different types of features relate to corresponding anatomies in different modalities
 - higher-level models of intensity relations (statistical similarity metrics) need large (up to global) support
 - common similarity metrics use only one feature

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Concept of non-local shape descriptor

- Single-modal similarity formulations are simple
 - multiple features (intensities, boundaries, textures)
 - more general: image patches
 - similarity metric: sum of squared differences (SSD)

M. Heinrich: Non-local shape

September 19th 2011 Page 7

Concept of non-local shape descriptor

- Single-modal similarity formulations are simple
 - multiple features (intensities, boundaries, textures)
 - more general: image patches
 - similarity metric: sum of squared differences (SSD)
- Idea of our shape descriptor
 - define a spatial descriptor for a voxel
 - within non-local search region in the same image
 - based on an intensity difference within modality (SSD)

non-local search region N

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Concept of non-local shape descriptor

- Single-modal similarity formulations are simple
 - multiple features (intensities, boundaries, textures)
 - more general: image patches
 - similarity metric: sum of squared differences (SSD)
- Idea of our shape descriptor
 - define a spatial descriptor for a voxel
 - within non-local search region in the same image
 - based on an intensity difference within modality (SSD)
 - compare descriptors of two multimodal images
- Advantages
 - no global relations of intensities is assumed
 - highly discriminative and robust to noise

non-local search region N

Related work: application of internal similarity

Image denoising: non-local means

P. Coupe, IEEE Trans Med Imag 2008

Object detection: self-similarities

• E. Shechtman: CVPR 2007

Our contribution: Similarity metric for deformable multi-modal registration

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Internal similarity: non-local weights

- Uses same principle as non-local means filtering
- (A. Buades, CVPR 2005)
- spatial weight for x₀ is given by distance function between patches P₀ and P_i (within same image)

 $w(\mathbf{x}_0, \mathbf{x}_i) = \exp(-\mathrm{SSD}(P_0, P_i)/\sigma^2)$

- non-local weights for 3 voxels in MRI slice
- weights are a good measure of shape

patch P₀ centred at x₀ patches P_i within N

tissue boundary

search region N weight $w(x_0, x_i)$

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Internal similarity: non-local weights

- Uses same principle as non-local means filtering
- (A. Buades, CVPR 2005)
- spatial weight for x₀ is given by distance function between patches P₀ and P_i (within same image)

 $w(\mathbf{x}_0, \mathbf{x}_i) = \exp(-\mathrm{SSD}(P_0, P_i)/\sigma^2)$

- non-local weights for 3 voxels in MRI slice
- weights are a good measure of shape

patch P₀ centred at ×₀ patches P_i within N

homogeneous region

search region N weight $w(x_0,x_i)$

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Internal similarity: non-local weights

- Uses same principle as non-local means filtering
- (A. Buades, CVPR 2005)
- spatial weight for x₀ is given by distance function between patches P₀ and P_i (within same image)

 $w(\mathbf{x}_0, \mathbf{x}_i) = \exp(-\mathrm{SSD}(P_0, P_i)/\sigma^2)$

- non-local weights for 3 voxels in MRI slice
- weights are a good measure of shape

patch P₀ centred at x₀ patches P_i within N

corner point

search region N weight $w(x_0, x_i)$

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Shape descriptor as similarity metric

- Calculate weights in both modalities for each voxel based on patch similarities
- Similarity is defined as cross-correlation between two weights w₁ and w₂:
 NLSD(x₀) = NCC(w¹(x₀, x_i), w²(x₀, x_i))

- weights are almost independent of contrast in different modalities
- using cross-correlation allows to compare regions with different local noise magnitude
 - global noise variance σ is estimate from data
- fast implementation using convolution filter

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Comparison to mutual information

- Popular similarity metric Viola et al., IJCV 1997 and Maes et al., TMI 1997
- Measures the mutual dependency of two image intensity distributions
- Difficult local estimation (MI is global measure)
 - Local normalized mutual information (based on global histogram)

LNMI(**x**) = log
$$\left(\frac{p_{12}(I_1(\mathbf{x}), I_2(\mathbf{x}))}{p_1(I_1(\mathbf{x})) \cdot p_2(I_2(\mathbf{x}))}\right) \frac{1}{\int_{\mathbf{x}} p_1(I_1(\mathbf{x})) \log(p_1(I_1(\mathbf{x}))) d\mathbf{x}}$$

Hermosillo et al., IJCV 2002 and Rogelj et al., CVIU 2003

- Converges to local minima if initialisation is far away
- Sensitive to varying contrast (bias field) and noise

Similarity maps of both metrics

 Comparison of similarity metrics for three different image features in MRI (step, homogenous, corner) over large search region in CT slice

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Similarity maps of both metrics

- Feature: Corners / point feature
 Point feature in MRI
 CT search region
 NLSD (non-local shape descriptor)
 Image: CT search region
 Image: CT search region</l
- Both metrics show local maxima at correct location

high local similarity

low local similarity

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Similarity maps of both metrics • feature: Image intensities / homogenous region Homogenous region in MRI CT search region NLSD (non-local shape descriptor) Image: CT search region Image:

 The maximum for NLSD in homogenous area is more informative than for mutual information

high local similarity

low local similarity

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Similarity maps of both metrics

- <u>Feature</u>: Tissue boundaries / step feature
 - Tissue boundary
in MRICT search
regionNLSD
(non-local shape
descriptor)LNMI
(local normalized
mutual information)Image: Descriptor of the second sec
- NLSD distinguishes step features clearly better than LNMI

high local similarity

low local similarity

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Saliency and robustness of correspondences

- 2D multimodal test images (intrinsically aligned)
 - two colour channels of cryosection (Visible Human)
 - 220 automatic landmarks (Harris corner detector)
- False correspondences (robustness)

- NLSD shows better robustness
 - with increasing noise and bias field

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Saliency and robustness of correspondences

- 2D multimodal test images (intrinsically aligned)
 - two colour channels of cryosection (Visible Human)
 - 220 automatic landmarks (Harris corner detector)
- False correspondences (robustness)
- Saliency of maxima (discrimination)

- NLSD shows better robustness and discrimination
 - with increasing noise and bias field

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Saliency and robustness of correspondences

- 2D multimodal test images (intrinsically aligned)
 - two colour channels of cryosection (Visible Human)
 - Synthetic B-Spline deformation of one channel
- Non-rigid deformations (average target error)

- Registration accuracy is higher for NLSD
 - for larger non-rigid deformations

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Application to clinical 3D CT/MRI fusion

- Diagnostic scans (CT and MRI) for patients with lung disease
- Challenges for registration
 - large deformations (collapsed lungs)
 - low z-resolution (up to 8 mm) in MRI
 - bias field in MRI
 - lower soft tissue contrast in CT
- Example of registration outcome

- Deformable registration framework
 - initial rigid alignment
 - diffusion regularized Gauss-Newton optimization
 - multi-resolution scheme (3 levels)
 - more details: please see poster

rigidly aligned

CT colour MRI gray

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Application to clinical 3D CT/MRI fusion

- Diagnostic scans (CT and MRI) for patients with lung disease
- Challenges for registration
 - large deformations (collapsed lungs)
 - low z-resolution (up to 8 mm) in MRI
 - bias field in MRI
 - lower soft tissue contrast in CT
- Example of registration outcome

- Deformable registration framework
 - initial rigid alignment
 - diffusion regularized Gauss-Newton optimization
 - multi-resolution scheme (3 levels)
 - more details: please see poster

nonrigidly aligned using NLSD

> CT colour MRI gray

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Landmark results for 3D CT/MRI fusion

- Comparison of gold standard with registration outcome (examples)
 - CT contours shown for guidance (red)
 - top row: descending aorta \circ carina \Box
 - bottom row: dome of the diaphragm →

CT target volume MRI, aligned MRI, aligned mutual information shape descriptor

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Landmark results for 3D CT/MRI fusion

- Comparison of gold standard with registration outcome (examples)
 - CT contours shown for guidance (red)
 - top row: descending aorta \circ carina \Box
 - bottom row: dome of the diaphragm →

- Manually selected 15 corresponding anatomical landmarks (per case)
 - Evaluation of target registration error
 - Difficult selection of landmarks for expert

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Conclusion

- Non-local shape descriptor
 - based on intrinsic similarity of image patches
 - sensitive to several image features
 - intensities, gradients, points
- Advantages compared to mutual information
 - robust against: noise, varying contrast, bias fields ..
 - reduces number of (false) local minima
 - can recover larger deformations
 - lower landmark error for 3D CT/MRI fusion

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration

Thank you for your attention!

- Acknowledgements
 - We would like to thank EPSRC and Cancer Research UK for funding this work within the Oxford Cancer Imaging Centre.
 - JAS also acknowledges funding from EPSRC EP/H050892/1.
 - We thank the MICCAI society for supporting us with a Student Travel Award.
- Poster presentation
 - P8 I02 T (Registration I)
 - Tuesday 13:15 14:30

M. Heinrich: Non-local shape descriptor: A new similarity metric for deformable multimodal registration