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Motivation for multimodal image registration

= Combine complementary information from modalities in medical
imaging: Ultrasound, CT, MRI, PET, etc...
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= Align CT and MRI scans of lung disease patients to improve diagnosis
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Similarity in multimodal images

= Features used to derive similarity:
(needed for registration cost function)

= Image intensities (iconic) H
= Tissue boundaries / gradients ®

= Corners / point features (geometric)

= Challenging to relate features between modalities

= different types of features relate to corresponding
anatomies in different modalities

= higher-level models of intensity relations (statistical
similarity metrics) need large (up to global) support

= common similarity metrics use only one feature
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Concept of non-local shape descriptor

= Single-modal similarity formulations are simple
= multiple features (intensities, boundaries, textures)
= more general: image patches

= similarity metric: sum of squared differences (SSD)
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Concept of non-local shape descriptor

= Single-modal similarity formulations are simple
= multiple features (intensities, boundaries, textures)
= more general: image patches
= similarity metric: sum of squared differences (SSD)
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non-local search region N

= ldea of our shape descriptor

= define a spatial descriptor for a voxel

= within non-local search region in the same image ’mage |
= based on an intensity difference within modality (SSD)
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Concept of non-local shape descriptor

= Single-modal similarity formulations are simple
= multiple features (intensities, boundaries, textures)
= more general: image patches

= similarity metric: sum of squared differences (SSD)
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non-local search region N

= Idea of our shape descriptor
= define a spatial descriptor for a voxel
= within non-local search region in the same image ’mage |
= based on an intensity difference within modality (SSD)

= compare descriptors of two multimodal images

= Advantages
= no global relations of intensities is assumed

= highly discriminative and robust to noise
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Related work: application of internal similarity

= P. Coupe, IEEE Trans Med Imag 2008 = E. Shechtman: CVPR 2007

Our contribution: Similarity metric for deformable multi-modal registration
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Internal similarity: non-local weights

= Uses same principle as non-local means filtering
- (A. Buades, CVPR 2005)

= spatial weight for x, is given by distance function
between patches P, and P, (within same image)

w(xg,%;) = exp(—SSD(P,, P;) /o?)

patch P,

= non-local weights for 3 voxels in MRI slice
= weights are a good measure of shape
tissue boundary

4

search region N weight w(x,,x.)
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Internal similarity: non-local weights

= Uses same principle as non-local means filtering
= (A. Buades, CVPR 2005)

= spatial weight for x, is given by distance function
between patches P, and P, (within same image)

w(xg,%;) = exp(—SSD(P,, P;) /o?)

patch P,

= non-local weights for 3 voxels in MRI slice

= weights are a good measure of shape
homogeneous region
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search region N weight w(x,,x.)
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Internal similarity: non-local weights

= Uses same principle as non-local means filtering
- (A. Buades, CVPR 2005)

= spatial weight for x, is given by distance function
between patches P, and P, (within same image)

w(xo,%;) = exp(—SSD(Py, B;)/c?)

= non-local weights for 3 voxels in MRI slice

= weights are a good measure of shape
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patch P,

corner point

search region N weight w(x,,x.)
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Shape descriptor as similarity metric

= Calculate weights in both modalities for each voxel based on patch
similarities
= Similarity is defined as cross-correlation between two weights w, and w:
NLSD(xg) = NCC(w"(x0,X;), w*(xq, X;))

= weights are almost independent of contrast in

’mage |

different modalities

= using cross-correlation allows to compare regions
with different local noise magnitude

= global noise variance O is estimate from data

= fast implementation using convolution filter

M. Heinrich: Non-local shape
UNIVERSITY OF % . . September 19 201 |
descriptor:A new similarity

5%
CANCER RESEARCH UK _e_®
R D - - °® . . P 14
OXFO Lroneetingresean PO metric for deformable multi- age

modal registration



Comparison to mutual information

= Popular similarity metric Viola et al,, [JCVY 1997 and Maes et al, TMI 1997
= Measures the mutual dependency of two image intensity distributions

= Difficult local estimation (Ml is global measure)
= Local normalized mutual information (based on global histogram)
p12(11(x), I>(x)) ) 1
LNMI(x) =1
() = 1oz (o S o) T Toe TG
Hermosillo et al., [[CV 2002 and Rogel;j et al., CVIU 2003

= Converges to local minima if initialisation is far away
= Sensitive to varying contrast (bias field) and noise
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Similarity maps of both metrics

= Comparison of similarity metrics for three different image features in
MRI (step, homogenous, ) over large search region in CT slice

homogenous

step

search within bounding boxes
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Similarity maps of both metrics

= Feature: Corners / point feature

: : NLSD LNMI
Point feature in CT search :
(non-local shape (local normalized
MRI region descriptor) mutual information)
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= Both metrics show local maxima at correct location

high local similarity low local similarity
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Similarity maps of both metrics

= Feature: Image intensities / homogenous region H

NLSD LNMI
Homogenous CT search :
(non-local shape (local normalized
region in MRI region descriptor) mutual information)

- r

= The maximum for NLSD in homogenous area is more
informative than for mutual information

high local similarity low local similarity
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Similarity maps of both metrics

= Feature: Tissue boundaries / step feature H

: NLSD LNMI
Tissue boundary CT search :
(non-local shape (local normalized
in MRI region descriptor) mutual information)
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= NLSD distinguishes step features clearly better than LNMI

high local similarity low local similarity
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Saliency and robustness of correspondences

= 2D multimodal test images (intrinsically aligned)

= two colour channels of cryosection (Visible Human)

= False correspondences (robustness)
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false correspondences

= NLSD shows better robustness
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= 220 automatic landmarks (Harris corner detector)

Gaussian noise
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= with increasing noise and bias field
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Saliency and robustness of corres

= 2D multimodal test images (intrinsically aligned) ’ +_++l+t' '
= two colour channels of cryosection (Visible Human)' s g
= 220 automatic landmarks (Harris corner detector) :

= False correspondences (robustness)

= Saliency of maxima (discrimination)
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= NLSD shows better robustness and discrimination

= with increasing noise and bias field
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= 2D multimodal test images (intrinsically aligned)
= two colour channels of cryosection (Visible Human)
= Synthetic B-Spline deformation of one channel

= Non-rigid deformations (average target error)

2r >
deformations

— O local normalised
mutual information (LNMI)
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— [ non-local shape
descriptor (NLSD)

average target registration
error (TRE) in voxels
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maximum deformation in voxels

= Registration accuracy is higher for NLSD

= for larger non-rigid deformations
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Application to clinical 3D CT/MRI fusion

= Diagnostic scans (CT and MRI) for
patients with lung disease

= Challenges for registration
= large deformations (collapsed lungs)
= low z-resolution (up to 8 mm) in MRI

= bias field in MRI
» |ower soft tissue contrast in CT

= Example of registration outcome
rigidly aligned

CT colour
MRI gray

Pioneering research
and skills

= Deformable registration
framework

EPSRC CANCER RESEARCH UK :::o

initial rigid alignment
diffusion regularized Gauss-Newton
optimization
multi-resolution scheme (3 levels)
= more details: please see poster
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Application to clinical 3D CT/MRI fusion

= Diagnostic scans (CT and MRI) for = Deformable registration
framework

patients with lung disease

= Challenges for registration
= large deformations (collapsed lungs)
= low z-resolution (up to 8 mm) in MRI

= bias field in MRI
» |ower soft tissue contrast in CT

= Example of registration outcome

nonrigidly aligned
using NLSD

CT colour
MRI gray
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Pioneering research
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initial rigid alignment
diffusion regularized Gauss-Newton
optimization
multi-resolution scheme (3 levels)
= more details: please see poster
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Landmark results for 3D CT/MRI fusion

= Comparison of gold standard with

registration outcome (examples)
= CT contours shown for guidance (red)
= top row: descending aorta ° carina []
= bottom row: dome of the diaphragm =»

CT target volume MR, aligned MRI, aligned
mutual information shape descriptor

...
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Landmark results for 3D CT/MRI fusion

= Comparison of gold standard with = Manually selected |5 corresponding
registration outcome (examples) anatomical landmarks (per case)
= CT contours shown for guidance (red) = Evaluation of target registration error

" top row: descending aorta ° carina L1 = Difficult selection of landmarks for expert

i

case 8 case 9 case 10 case 11

= bottom row: dome of the diaphragm =»
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MR, aligned MR, aligned
mutual information shape descriptor

CT target volume
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target registration error (TRE) in mm

= before registration mutual information

* rigid registration = shape descriptor
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Conclusion

= Non-local shape descriptor

= based on intrinsic similarity of image patches

= sensitive to several image features

= intensities, gradients, points A= e
) j
= Advantages compared to mutual information

= robust against: noise, varying contrast, bias fields ..

= reduces number of (false) local minima

= can recover larger deformations )

= lower landmark error for 3D CT/MRI fusion ; | |
Mhikik
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