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Abstract

We propose in this paper to unify two different ap-

proaches to image restoration: On the one hand, learning a

basis set (dictionary) adapted to sparse signal descriptions

has proven to be very effective in image reconstruction and

classification tasks. On the other hand, explicitly exploiting

the self-similarities of natural images has led to the success-

ful non-local means approach to image restoration. We pro-

pose simultaneous sparse coding as a framework for com-

bining these two approaches in a natural manner. This is

achieved by jointly decomposing groups of similar signals

on subsets of the learned dictionary. Experimental results

in image denoising and demosaicking tasks with synthetic

and real noise show that the proposed method outperforms

the state of the art, making it possible to effectively restore

raw images from digital cameras at a reasonable speed and

memory cost.

1. Introduction

This paper addresses the problem of reconstructing and

enhancing a color image given the noisy observations gath-

ered by a digital camera sensor. Today, with advances in

sensor design, the signal is relatively clean for digital SLRs

at low sensitivities, but it remains noisy for consumer-grade

and mobile-phone cameras at high sensitivities (low-light

and/or high-speed conditions). The restoration problem is

thus still of acute and in fact growing importance (e.g.,

[3, 7, 11, 15]), and we present a novel learned image model

that outperforms the state of the art in denoising and de-

mosaicking tasks on images with real and synthetic noise.

This model should also prove of interest in deblurring and

inpainting tasks that have become the topic of much recent

research (e.g., [2, 6, 23]) with the emergence of computa-

tional photography. Working with noisy images recorded

by digital cameras is difficult since different devices pro-

duce different kinds of noise, and introduce different types

of artefacts and spatial correlations in the noise as a re-
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sult of internal post-processing (demosaicking, white bal-

ance, etc.). In this paper, we operate directly on the raw

sensor output, that suffers from non-homogeneous noise,

but is less spatially correlated and not corrupted by post-

processing artefacts. In turn, this requires demosaicking

the raw signal—that is, reconstructing a full color image

from the sensor’s RGB (Bayer) pattern—a difficult prob-

lem in itself. Whereas demosaicking is usually tackled us-

ing interpolation-based methods [13, 20, 32], much of the

denoising effort has been aimed at finding a good model

for natural images. Early work relied on various smooth-

ness assumptions—such as anisotropic filtering [21], total

variation [25], or image decompositions on fixed bases such

as wavelets [17] for example. More recent approaches in-

clude non-local means filtering [3], which exploits image

self-similarities, learned sparse models [11, 15], Gaussian

scale mixtures [22], fields of experts [24], and block match-

ing with 3D filtering (BM3D) [7].

In this paper, we view both denoising and demosaick-

ing as image reconstruction problems, and propose a novel

image model that combines two now classical techniques

into a single framework: The non-local means approach to

image restoration explicitly exploits self-similarities in nat-

ural images [3, 10] to average out the noise among simi-

lar patches, whereas sparse coding encodes natural image

statistics by decomposing each image patch into a linear

combination of a few elements from a basis set called a dic-

tionary.1 Although fixed dictionaries based on various types

of wavelets [17] have been used in this setting, sparse de-

compositions based on learned, possibly overcomplete, dic-

tionaries adapted to specific images have been shown to pro-

vide better results in practice [11, 15]. We propose to extend

and combine these two approaches by using simultaneous

sparse coding [28, 29, 31] to impose that similar patches

share the same dictionary elements in their sparse decompo-

sition. To the best of our knowledge, this is the first time that

the corresponding models of image self-similarities are ex-

plicitly used in a common setting with learned dictionaries

(the BM3D procedure [7] exploits both self-similarities and

sparsity for the denoising task, but it is based on classical,

1The usage of the word “basis” is slightly abusive here since the ele-

ments of the dictionaries are not (a priori) necessarily independent.
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fixed orthogonal dictionaries). Experiments with images

corrupted by synthetic or real noise show that the proposed

method outperforms the state of the art in both image de-

noising and image demosaicking tasks, making it possible

to effectively restore raw images from digital cameras at a

reasonable speed and memory cost. Furthermore, although

it is demonstrated on image denoising and demosaicking

tasks in this paper, our model is generic, admits straight-

forward extensions to various image and video restoration

tasks such as inpainting, and can adapt to a large class of

data, e.g., multispectral images or MRI data.

2. Related Work

We start with a brief description of well-established ap-

proaches to image restoration that are relevant and related

to the approach proposed in the next section. Since it is dif-

ficult to design a standard model for digital camera noise,

these methods assume white Gaussian noise. Even though

this generic setting slightly differs from that of real image

denoising, it has allowed the development of effective al-

gorithms that are now widely used in digital cameras and

commercial software packages. We will use the same as-

sumption in the rest of this paper, but will demonstrate em-

pirically that our approach is effective at restoring real im-

ages corrupted by non-Gaussian, non-uniform noise.

2.1. Non-Local Means Filtering

Efros and Leung showed in [10] that the self-similarities

inherent to natural images could effectively be used in

texture synthesis tasks. Following their insight, Buades,

Coll and Morel introduced in [3] the non-local means ap-

proach to image denoising, where the prominence of self-

similarities is used as a prior on natural images.2 Con-

cretely, let us consider a noisy image written as a column

vector y in R
n, and denote by y[i] the i-th pixel and by yi

the patch of sizem centered on this pixel for some appropri-
ate sizem. This approach exploits the simple but very effec-
tive idea that two pixels associated with similar patches yi

and yj should have similar values y[i] and y[j]. Using yi as

an explanatory variable for y[i] leads to the non-local means
formulation, where the denoised pixel x[i] is obtained by a
weighted average (the corresponding Nadaraya-Watson es-

timator [3]):

x[i] =

n∑

j=1

Kh(yi − yj)∑n

l=1 Kh(yi − yl)
y[j], (1)

andKh is a Gaussian kernel of bandwidth h.

2This idea has in fact appeared in the literature in various guises and un-

der different equivalent interpretations, e.g., kernel density estimation [10],

Nadaraya-Watson estimators [3], mean-shift iterations [1], diffusion pro-

cesses on graphs [26], and long-range random fields [14].

2.2. Learned Sparse Coding

An alternative is to assume that the clean signal can be

approximated by a sparse linear combination of elements

from a basis set called dictionary. Under this assumption,

denoising a patch yi in R
m with a dictionary D in R

m×k

composed of k elements, amounts to solving the sparse de-
composition problem

min
αi∈Rk

||αi||p s.t. ||yi − Dα||22 ≤ ε, (2)

where Dα is an estimate of the clean signal, and ||α||p is
a sparsity-inducing regularization term. This regularizer is

associated with the ℓ1 norm when p = 1, leading to the
well-known Lasso [27] and basis pursuit [5] problems, and

with the ℓ0 pseudo norm when p = 0.3 Note that the dictio-
nary may be overcomplete—that is, the number of columns

ofDmay be greater than the number of its rows. Following

[11, 15], ε can be chosen according to the (supposed known)
standard deviation σ of the noise. One indeed expects the
residual yi −Dαi to behave as a Gaussian vector, and thus

||yi − Dαi||
2
2/σ2 to follow a chi-squared distribution χ2

m

concentrated around m. The strategy proposed in [15] is
to threshold the cumulative distribution function Fm of the

χ2
m distribution and choose ε as ε = σ2F−1

m (τ), where F−1
m

is the inverse of Fm. Selecting the value τ = 0.9 leads in
practice to acceptable values of ε [15].
Various types of wavelets [17] have been used as dic-

tionaries for natural images. Building on ideas proposed

in [19] to model neuronal responses in the V1 area of the

brain, Elad and Aharon [11] have proposed instead to learn

a dictionary D adapted to the image at hand, and demon-

strated that learned dictionaries lead to better empirical per-

formance than off-the-shelf ones. Since images may be very

large, efficiency concerns naturally lead to sparsely decom-

posing image patches rather than the full image. For an

image of size n, a dictionary in R
m×k adapted to the n

overlapping patches of size m (typically m = 8 × 8 ≪ n)
associated with the image pixels, is learned by addressing

the following optimization problem

min
D∈C,A

n∑

i=1

||αi||p s.t. ||yi − Dαi||
2
2 ≤ ε, (3)

where C is the set of matrices in R
m×k with unit ℓ2-norm

columns, A = [α1, . . . ,αn] is a matrix in R
k×n, yi is the

i-th patch of the noisy image y, αi is the corresponding

code, and Dαi is the estimate of the denoised patch. Note

that this procedure implicitly assumes that the patches are

independent from each other, which is questionable since

3The ℓp norm of a vector x in R
m is defined, for p ≥ 1, by ||x||p

△

=
(
Pm

i=1
|x[i]|p)1/p. Following tradition, we denote by ||x||0 the number

of nonzero elements of the vector x. This “ℓ0” sparsity measure is not a
true norm.
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they overlap. However, this approximation makes the cor-

responding optimization tractable. Indeed, although dictio-

nary learning is traditionally considered as extremely costly,

online procedures such as [16] make it possible to effi-

ciently process millions of patches, allowing the use of large

photographs and/or large image databases.

Once the dictionary D and codes αi have been learned,

every pixel admits m estimates (one per patch containing
it), and its value can be computed by averaging these:

x =
1

m

n∑

i=1

RiDαi, (4)

whereRi in R
n×m is the binary matrix which places patch

number i at its proper position in the image. This approach
learns the dictionary on the set of overlapping noisy patches,

thereby adapting the dictionary to the image itself, which is

a key element in obtaining better results.

How to choose between p = 0 or p = 1 is not a pri-
ori clear. Solving Eq. (2) with p = 0 is NP hard, leading
to approximate solutions obtained with a greedy algorithm

such as forward selection [30] (also known as orthogonal

matching pursuit [18]). When p = 1, the problem is convex
and can be solved efficiently with the LARS algorithm [9].

Following Elad and Aharon [11], we have observed experi-

mentally that, given a fixed dictionaryD, the reconstructed

image is in general of better quality when using the ℓ0
pseudo norm rather than its convex ℓ1 counterpart. How-
ever, we have also observed that dictionaries learned with

the ℓ1 norm are usually better for denoising, even when the
final reconstruction is done with the ℓ0 pseudo norm.

2.3. Block Matching 3D (BM3D)

Dabov et al. propose in [7] a patch-based procedure that

exploits image self-similarities and gives state-of-the-art re-

sults. As in [11], they estimate the codes of overlapping

patches and average the estimates. However, similar to non-

local means filtering [3], they reconstruct patches by finding

similar ones in the image (block matching), stacking them

together into a 3D signal block, and denoising the block

using hard or soft thresholding [8] with a 3D orthogonal

dictionary (3D filtering). In conjunction with a few heuris-

tics,4 this simple idea has proven to be very efficient and

gives better results than regular non-local means. A key

idea of our paper is to implement a similar joint decompo-

sition approach in the context of sparse coding with learned

dictionaries, as explained in the next section.

3. Proposed Formulation

We show in this section how image self-similarities can

be used to improve learned sparse models with simultane-

4Namely, using a combination of weighted averages of overlapping

patches, Kaiser windows, and Wiener filtering to further improve results.

Figure 1. Sparsity vs. joint sparsity: Grey squares represents non-

zeros values in vectors (left) or matrix (right).

ous sparse coding, which encourages similar patches to ad-

mit similar sparse decompositions.

3.1. Simultaneous Sparse Coding

A joint sparsity pattern—that is, a common set of

nonzero coefficients—can be imposed to a set of vectors

α1, . . . ,αl through a grouped-sparsity regularizer on the

matrixA = [α1, . . . ,αl] in R
k×l (Figure 1). This amounts

to restricting the number of nonzero rows ofA, or replacing

the ℓp vector (pseudo) norm in Eq. (3) by the ℓp,q (pseudo)

matrix norm

||A||p,q
△

=

k∑

i=1

||αi||pq , (5)

whereαi denotes the i-th row ofA. In practice, one usually
chooses for the pair (p, q) the values (1, 2) or (0,∞), the
former leading to a convex norm, while the latter actually

counts the number of nonzero rows and is only a pseudo

norm [28].

3.2. Principle of the Formulation

Non-local means filtering has proven very effective in

general, but it fails in some cases. In the extreme, when

a patch does not look like any other one in the image, it

is impossible to exploit self-similarities to denoise the cor-

responding pixel value. Sparse image models can handle

such situations by exploiting the redundancy between over-

lapping patches, but they suffer from another drawback:

Similar patches sometimes admit very different estimates

due to the potential instability of sparse decompositions (the

ℓ0 pseudo norm is, after all, piecewise constant, and its ℓ1
counterpart is only piecewise differentiable), which can re-

sult in practice in noticeable reconstruction artefacts. In this

paper, we address this problem by forcing similar patches to

admit similar decompositions. Concretely, let us define for

each patch yi the set Si of similar patches as

Si
△

= {j = 1, . . . , n s.t. ||yi − yj ||
2
2 ≤ ξ}, (6)

where ξ is some threshold. Let us also consider for the mo-
ment a fixed dictionaryD inR

m×k. Decomposing the patch

yi with a grouped-sparsity regularizer on the set Si amounts

to solving

min
Ai

||Ai||p,q s.t.
∑

j∈Si

||yj − Dαij ||
2
2 ≤ εi, (7)
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whereAi = [αij ]j∈Si
∈ R

k×|Si|. We adopt the same strat-

egy as in Section 2.2 to choose εi accordingly to the size of

Si: εi = σ2F−1
m|Si|

(τ). In the ℓ1,2-case, this optimization

problem is convex and can be solved efficiently [12]. In the

ℓ0,∞ case, on the other hand, it is intractable, and a greedy

approach such as simultaneous orthogonal matching pursuit

[28] must be used to obtain an approximate solution.

In the framework of learned sparse coding, adapting D

to the image(s) of interest naturally leads to the following

optimization problem

min
(Ai)n

i=1
,D∈C

n∑

i=1

||Ai||p,q

|Si|p
s.t. ∀i

∑

j∈Si

||yj − Dαij ||
2
2 ≤ εi

(8)

where D is in R
m×k with unit ℓ2-norm columns. The nor-

malization by |Si|
p is used to ensure equal weights for all

groups (as before, we only consider the cases where (p, q)
is (1, 2) or (0,∞)). As noted in the previous section, in
classical learned sparse coding, we prefer the ℓ1 norm for
learning the dictionary and the ℓ0 pseudo norm for the final
reconstruction. We adopt here a similar choice: We use the

convex ℓ1,2 norm for learning the dictionary, which can be

done efficiently using a simple modification of [16], and we

use the ℓ0,∞ pseudo-norm for the final reconstruction. As

in [11], this formulation allows all the image patches to be

processed as if they were independent of each other. To re-

construct the final image, we average the estimates of each

pixel,

x = diag(

n∑

i=1

∑

j∈Si

Rj1m)−1
n∑

i=1

∑

j∈Si

RjDαij , (9)

whereRj is defined as in Eq. (4) and 1m is a vector of size

m filled with ones. The term on the left is a scaling diago-
nal matrix, counting the number of estimates for each pixel.

Note that when Si = {i}, our formulation is equivalent to
regular learned sparse coding.

At first sight, the proposed technique may seem partic-

ularly costly, since decomposing a single patch requires

solving a large-scale optimization problem (7). Similar

concerns hold for the original formulations of non-local

means [3] and BM3D [7]. As in these cases, slight changes

to our approach are sufficient to make it efficient.

3.3. Practical Formulation and Implementation

The computational cost of the optimization problem (8)

is dominated by the computation of the vectors αij . In the

worst case scenario, n2 of these vectors have to be com-

puted. We show in the rest of this section how to modify

our original formulation in order to make this number lin-

ear in n and allow efficient optimization.
Semi-local grouping. When building Si, one can restrict

the search for patches similar to yi to a window of size

w × w. This semi-local approach is also used in [7], and
it reduces the worst-case number of vectors αij to nw2. In

practice, we never use w greater than 64 in this paper.
Clustering. It is also possible to cluster pixels into disjoint

groups Ck such that all pixels i in Ck share the same set Si.

The optimization problems (7) associated with all pixels in

the same cluster are identical, further reducing the overall

computational cost: In fact, only n vectors αij are com-

puted in this case since each pixel belongs to exactly one

cluster. This is a key ingredient to the efficiency of our im-

plementation. Other strategies are also possible, allowing a

few clusters to overlap for instance.

Initialization of D. One important asset of sparse repre-

sentations is that they can benefit from dictionaries learned

offline on a database of natural images, which can be used

as a good initial dictionaries for the denoising procedure

[11]. Using the online procedure of [16], our initial dic-

tionaries are learned on 2 × 107 patches of natural images

taken randomly from the 10 000 images of the PASCAL
VOC’07 database. As shown in the next section, using this

online procedure and such a large training sample has led to

a significant performance improvement compared to meth-

ods such as [15] that use batch learning methods such as

K-SVD [11] and are unusable with such large-scale data.

Improved matching. Following [7], we have noticed that

better groups of similar patches can be found by using a

first round of denoising on the patches (using, for example,

the classical sparse coding approach of Eq. (3) presented

in the previous section) before grouping them. In turn, as

shown by our experiments, our simultaneous sparse coding

approach greatly improves on this initial denoising step.

Patch normalization. To improve the numerical stability

of sparse coding, the mean intensity (or RGB color) value

of a patch is often subtracted from all its pixel values before

decomposing it, then added back to the estimated values

[11]. We have adopted this approach in our implementation,

and our experiments have shown that it improves the visual

quality of the results.

Reducing the memory cost. At first sight, Eq. (8) requires

storing a large number of codes αij . Even though these

are sparse, and their number can be reduced to the number

of pixels using the clustering strategy presented above, this

could potentially be a problem for large images. In fact,

only a small subset of the vectors αij is stored at any given

time: The online procedure of [16] computes them on the

fly and does not require storing them to learn the dictionary.

In the case of Eq. (8), the maximum number of vectors αij

that have to be stored at any given time is the size of the

largest cluster Ck of similar patches.

3.4. Real Images and Demosaicking

Single-chip digital cameras do not capture a noisy RGB

signal at each pixel. Instead, combined with a red (R), green
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(G), or blue (B) filter, the sensor associated with each pixel

integrates the incoming light flux over the corresponding

frequency range and a short period of time. The relation

between the pixels and the color information they record is

obtained through a specific pattern, the most famous one

being the Bayer pattern, G-R-G-R on odd lines and B-G-

B-G on even ones. The demosaicking problem consists

of reconstructing the whole color image given the sensor

measurements. Although most of the approaches found in

the literature to solve this problem are based on interpola-

tion [13, 20, 32], the image models investigated in this pa-

per have also been used for demosaicking: Self-similarities

have been exploited in [4], and learned sparse coding has

been used in [15]. We adapt here [15] to our simultaneous

sparse coding framework. First we learn an initial dictio-

nary D0 using [16] on a database of natural color images.

Our demosaicking procedure can then be decomposed into

four simple steps:

(1) Cluster similar patches on the mosaicked image y.

(2) Reconstruct each patch usingD0, addressing for all i

min
Ai∈Rk×|Si|

||Ai||0,∞ s.t. ∀j Mj(yj − D0αij) = 0, (10)

where Mj is a binary masked corresponding to the Bayer

pattern of measured values, and average the reconstructions

to obtain an estimate x of the demosaicked image.

(3) Learn a dictionary D1 for x with a strong

regularization—that is, replace y by x in Eq. (8), solving

this equation with a large value for εi.

(4) Reconstruct each patch usingD2 = [D0 D1] instead of
D0 in Eq. (10), and average the estimates using Eq. (9) to

obtain the final demosaicked image.

As shown in the next section, this procedure outperforms

the state of the art from quantitative and qualitative points

of view. The raw mosaicked signal of digital cameras in

low-light, short-exposure settings is noisy. It should there-

fore be denoised before demosaicking is attempted. Since

our denoising procedure is generic and does not necessary

assume the input data to be natural images, the denoising

procedure can be performed on the mosaicked image itself.

4. Experimental Validation

4.1. Denoising – Synthetic Noise

Experiments on denoising with synthetic white Gaus-

sian noise have carried out with 12 standard benchmark im-
ages. The parameters used in this experiment are k = 512,
m = 9 × 9 for σ ≤ 25, m = 12 × 12 for σ = 50 and
m = 16 × 16 for σ = 100. The value of τ is chosen a
bit more conservatively than in [15] and is set to 0.8, while
ξ is chosen according to an empirical rule, ξ = (32σ)2/m
for images scaled between 0 and 255, which has shown to
be appropriate in all of our denoising experiments for both

real and synthetic noise. Peak signal-to-noise ratio (PNSR)

is used as performance measure in our quantitative evalu-

ation.5 Table 1 reports the results obtained on each image

for different values of the (known) standard deviation of the

noise σ, and Table 2 compares the average PSNR on these
images obtained by several state-of-the-art image denoising

methods—namely GSM [22], FoE [24], K-SVD [11] and

BM3D [7]—with our method in three settings: SC (sparse

coding) uses a fixed dictionary learned on a database of

natural images without grouping the patches. It is there-

fore similar to the global approach to denoising of [11].

The only differences are that we have used the online pro-

cedure of [16] to learn the dictionary from 2 × 107 natu-

ral image patches instead of the 105 patches used in [11],

and we have used an ℓ1 regularizer instead of an ℓ0 one to
learn the dictionary. In the second setting (LSC, for learned

sparse coding), the dictionary is adapted to the test image,

again using an ℓ1 regularizer, which is similar to the adap-
tive approach of [11] except for our (better) initial dictio-

nary and their ℓ0 regularizer. The last setting (LSSC, for
learned simultaneous sparse coding) adds a grouping step

and uses the full power of our simultaneous sparse coding

framework. These PSNR comparisons show that our model

leads to better performance than the state-of-the-art tech-

niques in general, and is always at least as good as BM3D,

the top performer among those, especially for high values

of σ. Additional qualitative examples are given in Figure 2.
Note that the parameters have not been optimized for

speed but for quality in these experiments. On a recent Intel

Q9450 2.66Ghz CPU, it takes for instance 0.5s to denoise
the 256 × 256 image peppers with σ = 25 and the setting
SC, 85s with LSC, and 220s with LSSC. With parameters
optimized for speed (k = 256, fewer iterations in the dic-
tionary learning procedure), the computation times become

respectively 0.25s for SC, 10s for LSC, and 21s for LSC,
and the final results’ quality only drops by 0.05dB, which is
visually imperceptible. Our framework is therefore flexible

in terms of speed/quality compromise.

4.2. Demosaicking

We have used the standard Kodak PhotoCD benchmark

to evaluate the performance of our demosaicking algorithm.

This dataset consists of 24 RGB images of size 512 × 768
to which a Bayer mask has been applied. Ground truth is

thus available, allowing quantitative comparisons. We have

arbitrarily tuned the parameters of our method to optimize

its performance on the 5 last images, choosing k = 256
(dictionary size),m = 8 × 8 (patch size), and ξ = 3 × 104

(for images scaled between 0 and 255). These parameters

5Denoting by MSE the mean-squared-error for images whose in-

tensities are between 0 and 255, the PSNR is defined as PSNR =
10 log

10
(2552/MSE) and is measured in dB. A gain of 1dB reduces the

MSE by approximately 20%.
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σ 5 10 15 20 25 50 100

house 39.93 36.96 35.35 34.16 33.15 30.04 25.83

peppers 38.18 34.80 32.82 31.37 30.21 26.62 23.00

camera. 38.32 34.21 32.01 30.57 29.51 26.42 23.08

lena 38.69 35.83 34.15 32.90 31.87 28.87 25.82

barbara 38.48 34.97 33.00 31.57 30.47 27.06 23.59

boat 37.35 34.02 32.20 30.89 29.87 26.74 23.84

hill 37.17 33.67 31.89 30.71 29.80 27.05 24.44

couple 37.45 33.98 32.06 30.69 29.61 26.30 23.28

man 37.89 34.06 32.01 30.64 29.63 26.69 24.00

fingerp. 36.70 32.57 30.31 28.78 27.62 24.25 21.26

bridge 35.78 31.22 28.92 27.46 26.42 23.68 21.46

flintst. 36.13 32.46 30.78 29.63 28.71 25.16 21.10

Av. 37.67 34.06 32.12 30.78 29.74 26.57 23.39

Table 1. Quantitative denoising experiments on 12 standard im-

ages. The PSNR values are averaged over 5 experiments with 5

different noise realizations and values of σ between 5 and 100.

The variance is negligible and not reported due to space limita-

tions.

σ [22] [24] [11] [7] SC LSC LSSC

5 37.05 37.03 37.42 37.62 37.46 37.66 37.67

10 33.34 33.11 33.62 34.00 33.76 33.98 34.06

15 31.31 30.99 31.58 32.05 31.72 31.99 32.12

20 29.91 29.62 30.18 30.73 30.29 30.60 30.78

25 28.84 28.36 29.10 29.72 29.18 29.52 29.74

50 25.66 24.36 25.61 26.38 25.83 26.18 26.57

100 22.80 21.36 22.10 23.25 22.46 22.62 23.39

Table 2. Quantitative comparative evaluation. We compare our al-

gorithm to GSM [22], FoE [24], K-SVD [11] and BM3D [7], that

were the top performers so far on this benchmark, and whose im-

plementations are available online. The PSNR is chosen as before

as performance measure. Best results are in bold.

Figure 2. Qualitative evaluation of our denoising method with

standard images. Left: noisy images. Right: restored images.

Note that we reproduce the original brick texture in the house im-

age (σ = 15) and the hair texture for the man image (σ = 50),

both hardly visible in the noisy images. (The details are better seen

by zooming on a computer screen.)

Figure 3. Left: Demosaicking with LSC sometimes causes arte-

facts such as the yellow and blue pixels in the middle of the fence.

Right: The reconstruction obtained with the LSSC algorithm does

not exhibit such artefacts. (This figure should be viewed in color.)

have been used for all 24 photos.

We evaluate the performance of the three variants SC,

LSC, LSSC of our framework defined in the previous sub-

section, and compare them with the state of the art using

the experimental protocol of Paliy et al. [20] whose LPA

method is, to the best of our knowledge, the top performer

so far in terms of PSNR (or equivalently mean-squared er-

ror) on the Kodak PhotoCD benchmark. Following [20], we

have excluded a 15-pixel border in fairness to methods that

are susceptible to boundary effects. Table 3 adds our results

to those reported in [20] for each one of the 24 photos. The

proposed LSSC method outperforms the state-of-the-art al-

gorithms AP [13], DL [32] and LPA [20] by a significant

margin of 0.87dB even though our formulation is generic
and not tuned to the task of demosaicking, demonstrating

the promise of our image model.

When including the image border so as to be able to com-

pare our results with those of [15], it is interesting to note

that, in the SC setting, we achieve a mean PSNR of 40.72dB
on the 24 images, compared to the 39.56dB of [15]. Clearly,
it is thus preferable in this case to learn the dictionary from

a large dataset of natural images. With LSC, we achieve a

mean PSNR of 40.98dB, compared to the 40.32dB of [15],
reaching a mean PSNR of 41.24dB with LSSC. Although
this quantitative improvement may seem small, it is qualita-

tively quite significant. Even though SC and LSC perform

very well in terms of PSNR, they suffer from classical de-

mosaicking artefacts, as shown by the example of Figure 3.

On the other hand, our new LSSC model, which exploits

self-similarities as well as learned sparse coding, is usually

free of most of these artefacts.

4.3. Denoising – Real Noise

To evaluate qualitatively our denoising method on real

images, we have taken three RAW photographs using a

Canon Powershot G9 digital camera at 1600 ISO with a

short time exposure. At such a setting, the images are

quite noisy. We have extracted the mosaicked data from

the RAW image using the open-source dcraw software. We

have then scaled manually the R,G,B channels so that they
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Im. AP DL LPA SC LSC LSSC

1 37.84 38.46 40.47 40.84 40.92 41.36

2 39.64 40.89 41.36 41.76 42.03 42.24

3 41.40 42.66 43.47 43.15 43.92 44.24

4 39.92 40.49 40.84 41.99 42.14 42.45

5 37.28 38.07 37.51 38.72 39.15 39.45

6 38.69 40.19 40.92 41.29 41.36 41.71

7 41.75 42.35 43.06 43.30 43.59 44.06

8 35.58 36.02 37.13 37.42 37.38 37.57

9 41.84 43.05 43.50 43.17 43.74 43.83

10 41.93 42.54 42.77 43.01 43.17 43.33

11 39.25 40.01 40.51 41.19 41.29 41.51

12 42.62 43.45 44.01 44.29 44.49 44.90

13 34.28 34.75 36.08 36.16 36.29 36.35

14 35.66 36.91 36.86 37.64 38.48 38.77

15 39.17 39.82 40.09 41.04 41.24 41.74

16 42.10 43.75 44.02 44.36 44.42 44.91

17 41.23 41.68 41.75 41.75 41.86 41.98

18 37.31 37.64 37.59 38.05 38.27 38.38

19 39.99 41.01 41.55 41.58 41.71 42.31

20 40.63 41.24 41.48 41.95 42.25 42.27

21 38.72 39.10 39.61 40.55 40.59 40.65

22 37.63 38.37 38.44 38.73 38.97 39.24

23 41.93 43.22 43.92 43.47 43.93 44.34

24 34.74 35.55 35.44 35.59 35.85 35.89

Av. 39.21 40.05 40.52 40.88 41.13 41.39

Table 3. Comparison of demosaicking performance in terms of

PSNR between AP [13], DL [32], LPA [20] and the SC, LSC and

LSSC variants of our method. Best results are in bold.

visually appear to contain similar amounts of noise. At this

point, the noise is, to a first approximation, roughly uni-

form, and we apply our denoising algorithm to the scaled

mosaicked image, before performing demosaicking, white

balance, sRGB space conversion, gamma correction, and

contrast enhancement to reconstruct the final image. This

approach has proven experimentally to lead to better re-

sults than denoising each R,G,B channel independently. Of

course, assuming that the noise is uniform is only a rough

approximation. Non-spatially uniform noise models are

available for specific cameras, and exploited by commer-

cial software packages such at those discussed later in this

section. Incorporating these models into our framework is

feasible (following [15]), but beyond the scope of this paper.

Instead, we demonstrate that, even with a uniform assump-

tion, our algorithm is qualitatively competitive with top-of-

the-line commercial denoising software.

The parameters we have used are a patch size of m =
8 × 8 pixels, and k = 256 dictionary elements, which is
typical for sparse coding methods [11, 15]. The noise level

σ is estimated by the user and assumed to be uniform across
the image, and ξ is chosen according to the empirical rule
presented in Section 4.1. Demosaicking is performed using

the same parameters as in Section 4.2. Figure 4 compares

closeups of the images reconstructed from the RAW file

by the camera itself (jpeg output), the image obtained with

Adobe Camera Raw 5.0 (no denoising), two state-of-the-art

denoising softwares NoiseWare 4.2 and the DxO Optics Pro

5.3 package, and our method. The commercial programs

have been run with their default parameters, and these could

certainly be further tuned to improve image quality a bit.6

However, note that, unlike ours, these programs do take ad-

vantage of a detailed, non-uniform noise model specific to

the camera, yet do not appear to give qualitatively better

results. Although a quantitative comparison is not possi-

ble, we believe (subjectively) that our method does best on

the first and third images, while DxO Optics Pro is slightly

better for the second one. As in our previous experiments,

LSSC suffers from fewer artefacts than LSC in general. The

noise’s non-uniformity does not seem to affect our results

much, except perhaps for the background of the third im-

age, where part of the noise is reconstructed.

5. Conclusion

We have proposed in this paper a new image model

that combines the non-local means and sparse coding ap-

proaches to image restoration into a unified framework

where similar patches are decomposed using similar spar-

sity patterns. Quantitative and qualitative experiments with

images corrupted with synthetic or real noise have shown

that the proposed algorithm outperforms the state of the

art in image demosaicking and denoising tasks. Next on

our agenda is to include non-uniform noise models in the

reconstruction process, then adapt our approach to other

challenging image manipulation problems in computational

photography, including deblurring, inpainting, and texture

synthesis in still images and video sequences.
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