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This paper reviews the emergence of non-local flow phenomena in granular materials

and discusses a range of models that have been proposed to integrate an intrinsic

length-scale into granular rheology. The frameworks discussed include micro-polar

modeling, kinetic theory, three particular order-parameter-based models, and strongly

non-local integral-based models. An extensive commentary is included discussing the

current capabilities of these existing models as well as their implementational ease,

physical motivation, and breadth of predictive ability.
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1. INTRODUCTION

Let us define a local rheology as a constitutive model whose well-developed strain-rate response
depends only on the stress and no higher-gradients of kinematic quantities or stress. Such models
include relations between the stress tensor and the tensors of strain and/or strain-rate and state
variables evolving locally within eachmaterial element. In granular flowmodeling, local models can
provide qualitative and sometimes quantitative predictions for flows and stresses [1–13]. However,
it is now widely accepted that such models lack robustness in their ability to predict all flow
phenomena and, in many cases, predictions of local models disagree with experiments by nontrivial
amounts [14–19]. This is true even though such models predict uniform flows well, such as steady
simple shearing. It is the fact that these models succeed in homogeneous cases but break down
in the presence of spatial inhomogeneity that the origin of this difference can be attributed to a
non-local effect. In such models, a microscopic length-scale emerges on dimensional grounds. In
the case of granular media, it is evident that the mean grain size d provides this microscopic length
unit, and the observed length-scale of non-local effects should be some multiple of d.

2. COMMONLY OBSERVED MANIFESTATIONS OF
NON-LOCALITY IN GRANULAR FLOWS

There are a few particular manifestations of non-locality in granular flow that bear mentioning as
canonical examples. All of these effects are evident in systems of the simplest grains—round, stiff,
frictional particles, with a restitution coefficient.

First, there is the class of problems wherein the size of shear features is influenced by the grain
size, not just the size scale of stress gradients.

• In geometries with wall-located shear bands at steady state, such as flow in an annular couette
cell, the shear stress decays gradually toward zero as one moves away from the rapid zone near
the inner wall. Therefore, any local concept of a yield stress would predict that the velocity field
should vanish in some extended domain outside the main shear band. However, slow, creeping
flow is seen throughout the entire geometry. The velocity field has an exponential-type decay
moving away from the rapid flow zone, with decay length governed by the grain size [20–23].
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• A similar phenomena is observed in steady flow geometries
where the zone of flow is not concentrated near walls, such
as silo flows [24–27], split-bottom couette flows [16, 28], or
sub-surface flows in heaps/rotating-drums [19, 29]. In these
cases, despite the fact that there are spatial zones where the
stress varies below what a local model may predict to be the
yield stress, non-zero flow is observed everywhere. In triaxial
compression of a highly packed column of grains, an unsteady
flow case, a shear-band of grain-size-dependent width emerges
within the sample to mitigate the boundary displacement
[30, 31].

Another non-local effect is connected to the reverse problem—
rather than material flowing even though the stress seems too
small, there are cases where material does not flow even though
the stress appears to be above the yield limit. In these cases,
non-locality makes thinner domains act stronger. There are two
common examples of this effect.

• In silos, hoppers, and hourglasses, it is common experience
that the nozzle arch-jams when the opening size is on the
order of a few d [26, 32–34]. The critical opening size plays
a key role in models that predict silo outflow rates such as the
seminal Beverloo correlation [33]. However, local continuum
models cannot capture this effect. Nozzle jamming requires an
intrinsic length-scale in order to give a critical opening size.

• In flows down rough inclined surfaces, classical understanding
gives an angle of repose characteristic of the material; material
flows until the tilt is reduced below this angle. However,
as layers get thinner it is observed that the repose angle is
not constant; it is thickness dependent with thinner layers
acting stronger [14, 35, 36]. This effect is often described
inversely through the function Hstop(θ)/d, which maps tilt
angles to the critical thickness Hstop at which such a flow
would arrest.

The third non-local effect we discuss is the “secondary rheology,”
where flow somewhere causes the rest of the domain to lose its yield
stress. This more recently studied non-local effect can be seen
in tests where a constant-force probe is placed in approximately
rigid subdomains of a flowing collection of grains. For example:

• A heavy ball that is placed on the surface of a cup of grains
will sit on the free surface after some mild sinkage [37, 38].
However, if any part of the cup’s boundary is moved—such as
by replacing the bottom of the cup with a rotating turn-table—
the ball will sink even though the material near it is otherwise
quiescent. This is true even if the free surface of the grains is
far from the moving bottom boundary of the container. The
notion that perturbations from a boundary cause rheological
changes away has been observed as well in suspensions of fine
particles [39].

• In annular shear of a granular media, the material far from the
rotating wall appears to be still. However, if a probe is placed
in this part of the domain and a constant force applied to it,
it is observed to move through the material even as the force
on the probe shrinks to zero [18]. When the rotation of the
inner wall stops, the same probe only moves if the force on it
exceeds a critical value; i.e., the yield stress is “restored” once
the far-away boundary stops moving.

3. NON-LOCAL MODELING APPROACHES

Below is a non-exhaustive summary of non-local granular flow
models with a brief description of the model assumptions and
how the length-scale is introduced. The discussion is limited to
models that address (at least) steady-state flow behavior.

3.1. Cosserat Continuum
One of the most straightforward and oldest ways to introduce
a size-scale is to presume the continuum is a “micropolar” or
“Cosserat” continuum [40–43]. In such models it is assumed that
a body posseses not just a stress field σ and velocity field v but also
a couple-stress field M and intrinsic spin field ω (see Figure 1).
Like a standard continuum, on any internal surface with outward
normal n the force per area (traction) on the surface is given by
σn. However, Cosserat material elements are presumed to also
have a non-vanishing torque-per-area given by Mn. As a result,
while standard continua satisfy torque balance as long as one
imposes σ = σ

T , a Cosserat continuum requires an additional,
non-trivial differential equation for angular momentum balance
invoking the divergence of the tensor M, possible asymmetry in
σ , and the rate-of-change of ω. It is understood that ω represents
the spin of the individual microscopic components of the media,
which can differ from the vorticity, ∇ × v, which measures the
spin of a collection of those components as seen from following
their center-of-mass velocities. An intrinsic length-scale arises in
such models when imposing a constitutive relation, in our case
a yield criterion—since the couple-stress and stress differ by a
unit of length, a yield criterion mixing these two fields requires
a length-scale [44].

The motivation to connect Cosserat continuum assumptions
to granular media stems from the clear possibility that the
microscopic components are the grains themselves, and that their
individual spins give rise to ω. Thus, the needed length-scale is
some multiple of the grain size d. One might visualize a “rolling
resistance” mechanism, where couple-stress per d governs the
onset of rolling, which blends with sliding to produce a joint
yield condition.

3.2. Kinetic Theory
The kinetic theory of gases has a well-known extension to the
case of granular media, which ultimately brings a dependence on
granular temperature (given microscopically by particle velocity
fluctuations) into the granular constitutive relations [45–49].
While it may at first seem odd to describe a thermal flow
model as non-local, note that it passes our definition from the
introduction—by letting the rheology depend on the temperature
field, the length-scale controlling the spread in temperature, a
multiple of d, can now influence the flow field.

Unlike an ideal gas, granular media lose energy every collision.
Thus, energy balance can be expressed via

ρ

2
Ṫ = 2ηǫ̇ijǫ̇ij +

∂

∂xj
K

∂T

∂xj
− Ŵ

where, up to prefactors involving packing fraction and
restitution, the viscosity η and conductivity K are ∼ d

√
T,

and the dissipation rate Ŵ is ∼ 1
d
T3/2. At steady state the

temperature field finds a distribution whereby the thermal
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FIGURE 1 | Primary fields in a Cosserat continuum (in-plane components

shown). Note that σ21 may differ from σ12, ω may differ from ∇ × v, and the

couple stress tensor components Mij admit surface moment down to the

continuum scale.

energy generated by the work term (the first on the right side) is
diffused by the conduction term (second on the right side), and
reduced by the dissipation term (last term). Therefore, thanks
to the non-vanishing conductivity K, non-locality emerges
through a self-heating process; work done deforming a material
element somewhere produces heat that spreads to material
nearby and changes its rheology (see Figure 2). As will be seen
in the upcoming sections, this notion that fluctuations spread
into neighboring material and alter the flow rule is important in
a variety of non-local theories.

3.3. Order Parameter Models
Some models append a scalar order parameter to the system of
equations, which indicates how “fluid-like” the material is. The
idea to use an order parameter is connected to the notion that the
transition from solid to flowing is a type of phase change. The
order-parameter is presumed to obey a diffusion-like equation
and its value affects the rheology, thereby imbuing a length-scale
into the flow. While these features are similar to kinetic theory,
different order-parameter models differ on what precise variable
is diffusing and what its diffusion equation looks like.

3.3.1. Partial Fluidization Theory
One of the first granular models of this type was the partial
fluidization theory of Aranson and Tsimring [50, 54] and Volfson
et al. [55]. Their order parameter, ρ, varies from 1 (solid)
to 0 (fluid). In its common usage, the material’s viscosity is
presumed to obey ηf /(1 − ρ) so that the viscosity diverges as
the material becomes solid and reverts to a (constant) fluid-
like viscosity ηf when ρ goes to zero. The order parameter
is assumed to participate in a free-energy functional F ∼

FIGURE 2 | The basic “self-heating” picture common to many recent non-local

models [50–53]. Zones whose stress ratio µ are beneath the local friction

coefficient µs can be made to flow in inhomogeneous stress environments by

diffusive passage of a state field (e.g., temperature, order-parameter,

force-fluctuations) sourced in higher stress media nearby, which spreads over

some grain-size dependent correlation length. The influx elevates the value of

the state field in the low-stress media, which reduces its flow resistance and

allows flow to occur. The newly “heated” material then “heats” neighboring

material triggering a cascade that causes all material to flow.

∫

l
2 |∇ρ|2 + f (ρ, σ ) dV and its evolution is obtained assuming

purely dissipative dynamics, ρ̇ = δF/δρ. The evolution equation
that emerges looks like a basic diffusion equation but with a
source term given by the choice of f . Their suggested choice of
f gives the final result:

τ
Dρ

Dt
= l2∇2ρ + ρ(1− ρ)(ρ − δ) (1)

where δ ≡ (µ − µd)/(µs − µd). The constants µs and µd

represent static and dynamic friction coefficients, respectively,
and µ is the ratio of local shear stress to pressure. The cubic
nature of the source term causes stability switches that give rise
to frictional hysteresis. By setting l ∼ d, the equation forces an
inherent grain-size dependent length-scale into the model’s flow
predictions, and causes flow stability to be size-sensitive, giving
rise to size-dependent flow start/stoppage.

3.3.2. Non-local Granular Fluidity
The Non-local Granular Fluidity (NGF) model is a more recent
approach, developed by the author and coworkers (primarily
Henann and Koval) [51, 56, 57]. Inspired by a similar model
for emulsions [58, 59], the NGF model presumes a scalar-valued
order-parameter-like field called the granular fluidity, g, whose
value ranges from zero to infinity. Whereas, the fluidity in the
emulsion flow model operates as an inverse-viscosity-like field in
their flow rule, the granular fluidity g enters the flow rule through
γ̇ = gµ and hence may be interpreted as a pressure-weighted
inverse viscosity field. The fluidity field, in steady flow, is then
posited to obey

g = gloc(µ, P)+ ξ 2∇2g , where ξ = A
d

√
|µ − µs|

. (2)

The diverging of the correlation length, ξ , whereµ = µs has been
shown directly in simulations [51, 56] and experiments [23], with

Frontiers in Physics | www.frontiersin.org 3 August 2019 | Volume 7 | Article 116

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kamrin Non-locality in Granular Flow

A an order-one material constant. The function gloc is what the
fluidity would be if the rheology were local. The local rheology,
obtained in uniform simple shearing, is the µ(I) rheology [1],
where the stress ratio µ = τ/P is given by the normalized shear

rate I = γ̇
√

d2ρs/P. The fluidity at a point is then viewed as
having a contribution from local effects (gloc) and a non-local
contribution due to “disturbances” from neighboring material
(ξ 2∇2g). Out of the many choices of “flow variable”/“load
variable” one could choose for the role of fluidity, g = γ̇ /µ

was initially selected for practical reasons as it was the only
one that produced quantitative flow predictions for a range of
data from several different flow geometries [51, 56]. This choice
gained additional support when it was shown that g has a clear
kinematic meaning as a function of particle velocity fluctuations
and packing fraction; other possible fluidity definitions do not
[52]. This suggests the fluidity field measures the degree of
fluctuation-based activation in the material. Parameter studies
indicate the NGF model is robust to material changes—varying
particle properties such as surface friction affects the parameters,
including A, but the model itself maintains its accuracy [60]. The
model has been extended into a transient form that evolves g over
time, which can be used to model the smaller-is-stronger effect as
an instability process [57, 61]. The more primitive transient form
can be justified thermomechanically under the virtual power
principle with g as an energetic order parameter [61].

3.3.3. I-gradient Model
Shortly after the NGF model, an alternative model for steady-
state non-local flow was proposed in Bouzid et al. [62, 63].
The proposed form is a more direct non-local expansion of the
µ(I) rheology:

µ = µ(I) (1− ν∇2I/I). (3)

The above does not propose an independent order parameter
with its own equation, but rather treats I itself as a fluidity-type
field within a gradient expansion of the flow rule. If an İ term
were added to account for unsteady cases (like in [64]), the model
would claim direct diffusion of the I field. For constant ν ∼ d2,
the form above has the primary feature that effective friction
µ is reduced when neighboring material is flowing faster, and
increased when neighboring material flows slower. In doing so,
the model can, by design, replicate the effect of creeping flow
beneath the local yield criterion, µs, as well as rate independence
of the non-local response due to the scaling of ∇2I by 1/I. Like
NGF, the model replicates the effect of a diverging length-scale
about µs.

3.4. Integral Equation Approaches
While the previous models produce non-locality by letting a
rheological variable obey an additional PDE, non-locality can
also be achieved through an integral equation, which describes
the flow response at a point in terms of influences coming from
surrounding material finite distances away. In simplified 1D,
these “strongly non-local” models generally take the form

γ̇ (x) =
∫

H
F
(

γ̇ (x′), σ (x′), x′, γ̇ (x), σ (x), x
) 1

d
dx′ (4)

where H can be the entire domain, or be limited to a horizon
a finite distance away. It is well known that one can Taylor
expand in x′ under the integral and integrate through to obtain
an approximate model in the form of a PDE.

One model of the strongly non-local type is the self-activation
model of Pouliquen and Forterre [53], in which the function F is
selected to represent the product of the frequency of fluctuations
emitted from position x′ and the probability that a fluctuation
from x′ will result in a forward vs. backward shear event at x.
Another strongly non-local model is the recent model of Nott
[65], in which the integral is a weighted spatial convolution of
what the local flow-rate formula would give in the surrounding
media. A strongly non-local eddy-viscosity-type model has also
been written [66], in which the shear-rate has a contribution from
redistribution of vorticity occurring through the geometry. The
corresponding PDE approximation of this model takes a form
similar to an order-parameter model [66, 67].

4. COMMENTARY

All models discussed could be evaluated based on three
criteria: (i) ease of implementation, (ii) physical motivation,
and (iii) breadth of predictive capability. Below, we summarize
where each model stands, and conversely where models need
further understanding.

On issue (i), clearly, PDE’s are simpler to solve than integral
equations. Kinetic theory, partial fluidization, and NGF propose
one additional PDE involving one new state variable. These can
be solved numerically using the finite-element method (see for
example, the implementation in [68]) and sometimes analytically
in unidirectional flow cases [44, 54, 57, 62, 69]. Based on its
mathematical form, it is not clear what the difficulty of numerical
integration of the I−gradient model would be in arbitrary cases.
However, the fact that it requires no new state variables and is
a straightforward extension of µ(I) is a plus. Another issue is
that of (Hadamard) well-posedness, which determines if small
wavelength flow perturbations grow unboundedly in the linear
regime, an issue known to arise for basic local models [70, 71].
Hadamard unstable models may lack existence of a solution,
and/or have grid-size dependent or unstable numerical solutions.
It is known that gradient corrections have the potential to resolve
the ill-posedness [72]. It has been directly shown that NGF
and certain strongly non-local models [65] are Hadamard well-
posed, while the I−gradient model has been proven Hadamard
ill-posed [73].

On issue (ii), kinetic theory and Cosserat continua have
a strong microscopic basis, with their additional PDE’s
representing energy balance and moment balance, respectively.
The physics of the boundary conditions are, hence, fairly clear
in these models. While derived for dilute systems, the kinetic
theory has gone through a number of recent enhancements
to bring it closer to representing dense media [74, 75]. With
Cosserat theory, to this author’s knowledge, stress asymmetry,
couple stresses, and spin-differences are notably small in tests
of simple particles excluding cases of non-negligible rolling
resistance or directly wall-adjacent behavior [15, 76, 77]. The
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partial fluidization and NGF models have each identified (post-
facto) kinematic observables that match the behavior of their
hypothesized order parameter, i.e., static contact fraction for
partial fluidization [55], and weighted velocity fluctuations
for NGF [52]. The full physical meaning of these models’
phenomenological PDE’s is not understood, and selection of
boundary conditions can be unclear. That said, NGF has been
shown to follow a virtual power principle, which aids in boundary
condition selection [61]. The I-gradient model does not require a
new state variable, though it is also conceivable, in cases of high
∇2I, that the model produces negative µ values, violating non-
negative dissipation. Strongly non-local models have the benefit
of absolving the question of boundary conditions [65]. Moreover,
the strongly non-local self-activation model is obtained entirely
from statistical and mechanical propositions at the small scale.

On issue (iii), the extent to which the different models have
been tested varies quite a bit. NGF, with its own dedicated
numerical solver [68], has been validated in the most geometries
and conditions [78]. The NGF and the I−gradient models have
each shown quantitative agreement with non-local creep in
multiple 2D experiments [23, 51, 62], capturing proper flow
spreading and the emergence of rate-independence. NGF also
produces quantitative predictions in 3D cases such as flows
in split-bottom cells [56] and wall-bounded heap flows [79].
It also captures smaller-is-stronger phenomenology in multiple
geometries including Hstop [57, 69], as well as all features of
secondary rheology [80] including the effect’s direction sensitivity
[81]. Partial fluidization captures these different phenomena to a

qualitative level [50], and additionally is equipped to model stick-
slip and start-stop differences due to the inclusion of hysteresis
(although our understanding of the form for frictional hysteresis
is evolving [82]). The strongly non-local self-activationmodel has
matched an experimental Hstop curve and produces reasonable
non-local flow-spreading [53]. Cosserat and kinetic theories
produce non-local flow spreading as well [44, 83], and certain
kinetic theories can also produce an Hstop effect [84]. It is not
clear if these predictions are quantitative across many geometries.
Similarly, the strongly non-local plasticity model of Nott [65]
possesses qualitative elements of non-local flow spreading.

In closing, to those interested in new model development, it
should be emphasized that the universe of non-local models is
not unconstrained. The reader is directed to Gurtin et al. [85] and
Maugin [42] for a review of the constraints of thermodynamic
consistency and existing modeling formalisms.
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