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The London model describes strongly type-2 superconductors as massive vector field theories, where the

magnetic field decays exponentially at the length scale of the London penetration length. This also holds for

isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration

length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this

simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This

results in the magnetic field in such systems having N + 1 penetration lengths, where N is the number of field

components or bands. That is, in a given direction, the magnetic field decay is described by N + 1 modes with

different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with

complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set

by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away

from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the

anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal

magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the

magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor

and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London

superconductor is shown to form weakly-bound states of vortices.

DOI: 10.1103/PhysRevB.97.174504

I. INTRODUCTION

The work by F. London and H. London that formulated

hydromagnetostatic theory of superconductivity is one of

the most influential works in condensed matter physics. It

demonstrated that the magnetic field in a superconductor is

described by a massive vector field theory [1]

∇2 B =
1

�2
B. (1)

One of the direct consequences is that an externally applied

magnetic field decays in a superconductor exponentially at the

length scale of the London magnetic field penetration length

�: B ∝ B0e
−r/�. The superconducting current J varies at the

same length scale due to its relation to the magnetic field

J = ∇ × B. The work also paved the way to Anderson’s

demonstration of the Higgs mechanism [2].

Multiband superconducting materials are currently of cen-

tral interest. For these systems the pairing of electrons is

supposed to take place in several Fermi surfaces, formed due

to the overlapping of electronic bands [3–9].

The range of validity of London electrodynamics is well

understood in single component or single band superconduc-

tors and should not, in general, be applicable at the length

scale ξ0 associated with the superconducting carrier, namely

the estimated Cooper pair size. In a weak-coupled BCS

superconductor ξ0 can exceed the magnetic field penetration

length �, leading to markedly different electrodynamics. Such

a state cannot be described by the local London model [10,11]

and is termed Pippard electrodynamics [12]. In contrast, the

limiting case when ξ0 ≪ � is described by local London

electrodynamics, which is typically applicable to extreme

type-2 superconductors.

In this paper we will only be interested in multiband

anisotropic materials. Furthermore we focus on the case where

ξ
(α)
0 ≪ �, where α is a band index and therefore where one

can neglect the effects that lead to Pippard electrodynamics.

We will study how the crystal anisotropy of superconducting

materials affects their magnetic properties even at the level of

London’s model. In a single component case, the anisotropy

effects in London electrodynamics are well studied [13–15].

In the single component case the anisotropy leads, in general,

to an electrodynamic kernel that is characterized by two

real-valued penetration lengths, corresponding to the different

polarizations of the magnetic field. We show that the situation

is principally different in the multiband London model due to

the presence of additional massive modes, associated with the

variations of the phase differences between order parameter

components, known as the Leggett modes [16].

In the isotropic case the magnetic and Leggett modes are

decoupled, however we show that, in general, this coupling

appears in the London model with the introduction of crystal

anisotropy. On the qualitative level, this coupling arises due

to differing anisotropy in the superconducting bands which

enables the gradients of the interband phase differences to

produce nonzero transverse charge currents, which generate

magnetic field.
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The London model then exhibits N + 1 magnetic modes,

where N is the number of superconducting components.

Namely, the two independent components of the magnetic field

and N − 1 interband phase differences, yielding in total N + 1

massive scalar fields [17,18]. We analyze this behavior in detail

using the minimal model of the two-component superconduc-

tor. The results can be straightforwardly generalized to the

larger number of bands, e.g., the three-component model with

phase frustrations yielding the intrinsically complex s + is

state. This opens interesting possibilities to study the behavior

of magnetic signatures of the broken-time reversal symmetry

phase transition to the s + is characterized by the soft Leggett

mode which becomes massless at the transition point [19,20].

One of the interesting properties is that the masses and corre-

spondingly the relaxation lengths can become complex under

certain conditions. The unconventional behavior of magnetic

modes will be shown to result in magnetic field reversal near

the boundaries and vortices leading to the formation of vortex

bound states.

II. THE MODEL

It is illustrative to view the London model as a constant

density limit of the Ginzburg-Landau model for complex fields

(although indeed the model is much more general and is valid at

low temperatures). The simplest Ginzburg-Landau free energy

density for an N -component anisotropic system is given by

F =
N

∑

α=1

(

λ−1
ijαDjψα

)(

λ−1
ikαDkψα

)

+ B2 + Fp, (2)

where D = i∇ + 2πeA/c is the covariant derivative, e and

c are the electron charge and light velocity, respectively

(hereafter we use the units with h̄ = 1), and the fields ψα =
|ψα|eiθα represent the different superconducting components.

Greek indices will always be used to denote superconducting

components and Latin indices will be spatial with the summa-

tion principle applied for repeated Latin indices.

The inverse mass tensors λ−1
ijα represents a three-

dimensional diagonal matrix for each component,

λ−1
ijα =

⎛

⎝

λ−1
xα

λ−1
yα

λ−1
zα

⎞

⎠. (3)

In Eq. (2) Fp collects together the potential (nongradient) terms

which can be any from a large range. The simplest example

is the standard single band potential terms and the Josephson

interband coupling term

Fp =
N

∑

α=1

γα

4

(

ψ0
α

2 − |ψα|2
)2

−
N

∑

α=1

∑

β<α

ηαβ |ψα||ψβ | cos (θαβ), (4)

where ψ0
α , γα , and ηαβ are positive real constants. The second

term above is the Josephson interband coupling, where θαβ =
θα − θβ is the interband phase difference between components

α and β. The simplest multicomponent system is the isotropic

case λα = I3 without interband coupling ηαβ = 0, which has

the maximal symmetry U (1) × U (1)... = U (1)N . However the

introduction of the simplest nonfrustrated Josephson terms,

that in the ground state locks all phase differences to zero,

breaks this symmetry to a U (1) symmetry. In the isotropic

case, the phase differences are neutral massive modes. In the

absence of a coupling to the gauge field the phase sum gives

rise to the massless Goldstone mode. In the presence of a gauge

field coupling that mode is the massive London mode. As we

are interested in strongly type 2 systems we neglect density

variations, but, following Leggett, we retain the massive degree

of freedom associated with the phase difference mode [16,21].

We consider the limit |ψα|2 ≈ const , leading to the follow-

ing free energy (for brevity below we refer to the approximation

that neglects density variations as the London limit).

F =
16π2

c2

N
∑

α=1

(

λ̂2
α jα · jα

)

−
N

∑

α=1

∑

β<α

Jαβ cos θαβ + B2. (5)

Here jα are the partial superconducting currents

4π

c
jα = λ̂−2

α

(

�0

2π
∇θα − A

)

, (6)

where �0 = πc/e is the flux quantum, λ̂k are coefficients

characterizing the contribution of each band to the Meissner

screening, A is the vector potential, and Jαβ the Josephson

coupling. Parameters of the London model (5) are related

to that of the Ginzburg-Landau functional Eq. (2) by Jαβ =
ηαβ |ψα||ψβ | and λ̂−2

α = (2e|ψα|/c)2λ−2
α , where the matrix

indices are suppressed for λ̂.

Considering the total current, which is a sum of partial

current contributions from each band j =
∑

α jα , we get an

expression for the magnetic field, which provides an extension

of the London theory in multicomponent systems [22,23]

B = −
4π

c
∇ ×

(

λ̂2
L j

)

+
�0

2πN

∑

α>β

∇ ×
[

λ̂2
L

(

λ̂−2
α − λ̂−2

β

)

∇θαβ

]

, (7)

where N is the number of components, and λ̂2
L = (

∑

α λ̂−2
α )−1

and θαβ = θα − θβ are the relative interband phases. Expres-

sion (7) shows that the phase difference gradients in the second

term can generate magnetic field in anisotropic materials.

We will demonstrate that the coupling between magnetic

field and interband phase differences leads to the nonlocal mag-

netic response. Importantly the nonlocality here has nothing

to do with the Pippards nonlocality [12] associated with the

Cooper pair dimension [10,11].

Rather it can be obtained already within the the standard

anisotropic London model, which has only “local” terms. As

a result of that, the magnetic response of such a system is

characterized by the multiple magnetic modes with different

penetration lengths which depend on the degree of anisotropy

in different bands and the strength of interband pairing inter-

action. In the next sections of the paper we will consider the

influence of these anisotropic effects on the magnetic response

of multiband superconductors and demonstrate that they have

many observable physical consequences both for the Meissner

and vortex states.

174504-2
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To connect the general model given by the Eqs. (5)–(7) with

real materials we can use the multiband weak-pairing pairing

models and express the Josephson couplings Jαβ through

the microscopic parameters, such as the pairing coefficients

Vij , Fermi velocities in different bands, and the lengths λ̂k

characterizing magnetic responses of each band in Eq. (6). For

the generic case of a two-band superconductor there is only

one Josephson energy scale EJ = J12, which determines the

Leggett mode frequency [16].

Since we are dealing with a static but spatially inhomo-

geneous problem and aim to describe the coupling between

the phase difference and magnetic field, it is natural to

construct the inverse characteristic length scale as follows

k0 = [2π2EJ /�2
0]1/4. This parameter does not depend on

the anisotropy or condensate stiffness. Therefore it can be

expressed through the weak-coupling pairing coefficients

k4
0 = −

32π3

�2
0

ν1(V̂ −1)12�1�2, (8)

where �i is the superconducting gap amplitude for the

ith band. The density of states in the ith band νi can

be found using the magnetic response length (λ̂−2
i )αβ =

νi〈vFαvFβ〉FS(2π )3/�2
0, where vFα is the αth spatial compo-

nent of the Fermi velocity, and 〈...〉FS denotes the Fermi surface

average. For the parameters [24,25] of the uniaxial anisotropic

two-band superconductor MgB2 we get k0λ1⊥ = 1.3 for the

σ band with larger gap and k0λ2⊥ = 0.9 for the π band with

smaller gap. Although the London length anisotropy in MgB2

is quite weak [26], it has a rather pronounced anisotropy of the

partial magnetic responses in the almost cylindrical σ band.

According to the expression above it is determined by the

Fermi velocity anisotropy vF⊥/vFz ≈ 8.6 [27]. Therefore we

can estimate λ2z ≈ λ2⊥ and λ1z ≈ 8.6λ1⊥.

The other example of multiband anisotropic superconductor

is Sr2RuO4. The nature of the superconducting state for this

material is still highly debated. In order to make one more

estimate, we consider a weak-coupling three-band model from

Ref. [28]. The suggested coupling matrix V̂ for Sr2RuO4

contains two bands with strong interband interactions and the

third band which has much weaker interband pairing, such

that the elements V13 and V23 are much smaller than the

others. Therefore one can use an effective two-band model

to describe the low-energy and large-scale variations of the

interband phase differences θ13 = θ23 and assuming θ12 = 0.

Additionally, we use the same values of gaps, and lengths

λi⊥, in all bands [29] to obtain an estimation of k0λ⊥i =
2.8. The overall London length anisotropy in Sr2RuO4 is

about λLz/λL⊥ ≈ 20, although the anisotropy of each band

contribution is not known. Therefore, in realistic multiband

compounds k0 can be of the order of the penetration length

and the anisotropy of λ̂k in each band can change in the wide

limits.

III. ELECTROMAGNETIC RESPONSE

In this section we consider the system in the absence

of vortices and demonstrate that the anisotropy qualitatively

changes the electromagnetic modes in multiband supercon-

ductors. To obtain the equations of motion we rewrite the

condensate phases in Eq. (5) as θα =
∑

β θαβ/N + θ� where

θ� =
∑

α θα/N .

Let us assume for simplicity the same strength of Josephson

coupling between all bands Jαβ = EJ . Then varying the free

energy (5) by θαβ and A we obtain the system of coupled

equations for the phase differences and magnetic field

∇ ·
[(

λ̂−2
α + λ̂−2

β

)

∇θαβ + N
(

λ̂−2
α − λ̂−2

β

)

ps

]

= N2k4
0 sin θαβ, (9)

2π

�0

∇ × B =
1

N

∑

β>α

(

λ̂−2
α − λ̂−2

β

)

∇θαβ + λ̂−2
L ps,

(10)

where we have introduced the gauge invariant term ps =
∇θ� − 2π A/�0.

In the absence of phase singularities we can choose the

gauge so that the common phase is constant
∑

α ∇θα = 0

and therefore ps = −2π A/�0. For isotropic superconductors

where the total current is j ∝ ps this choice corresponds to the

London gauge. In the anisotropic case the relation between ps

and the current is more complicated so that the gauge in general

depends on the specific choice of the anisotropy parameters.

To study the linear electromagnetic response we linearize

the above equations of motion and switch to the momentum

representation. Then we get the algebraic relation between the

current and vector potential

−
4π

c
ji = Qij (k)Aj , (11)

where Q is known as the polarization operator and tells us how

changes to the gauge field relate to the current. It is given to be

Qij (k) = −λ̂−2
Lij +

∑

β>α

(

λ̂−2
αik − λ̂−2

βik

)(

λ̂−2
αjl − λ̂−2

βjl

)

kkkl

N2k4
0 +

(

k ·
[

λ̂−2
α + λ̂−2

β

]

k
) . (12)

During the derivation we used the commutator λ̂−2
α λ̂−2

β =
λ̂−2

β λ̂−2
α .

In the isotropic limit the kernel becomes local due to the

second term in Eq. (13) becoming zero, through the London

gauge choice k · A = 0. In general one can see that the nonlo-

cality scale of Q(k) is determined by the interband Josephson

length k−1
0 which is not related to the BCS nonlocality scale

determined by the Cooper pair size. In the absence of coupling

between θαβ and B we obtain the usual local response, similar

to the single-component superconductors determined by the

constant tensor λ̂L.

The complicated structure of the second term in Q(k)

points to some unusual magnetic properties of anisotropic

multiband superconductors. In particular, that it produces

multiple magnetic modes in which the magnetic field and the

interband phase difference are coupled. This is what has lead

us to calling them magnetic phase difference modes.

IV. MAGNETIC MODES AND FIELD SCREENING IN THE

TWO-BAND SUPERCONDUCTOR

Let us consider the magnetic response of a two-band

anisotropic superconductor. A good example of such a kind

174504-3
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FIG. 1. (Left) Two Fermi surfaces in an anisotropic multiband

superconductor, qualitatively similar to that of the uniaxial compound

MgB2. The crystal structure anisotropy axis is c. The magnetic field

B is declined with respect to the c axis. (Right) Polarizations of

one ordinary B0 and two extraordinary Be1,2 magnetic modes in

a multiband superconductor with uniaxial anisotropy. The ordinary

mode is decoupled from interband phase difference θ12 while the

extraordinary modes give a coupled magnetic field and θ12.

of material is the MgB2 compound [30] which has two

superconducting Fermi surfaces with the structure qualitatively

similar to the one shown in Fig. 1(a). The two-band polarization

operator (12) with N = 2 becomes

Qij (k) = −λ−2
Lij +

(

λ̂−2
1ik − λ̂−2

2ik

)(

λ̂−2
1j l − λ̂−2

2j l

)

kkkl

4k4
0 +

(

k · λ̂−2
L k

) . (13)

In the limiting cases of large and small Josephson in-

teraction (i) k4
0 ≫ (k · λ̂−2

L k) and (ii) k4
0 ≪ (k · λ̂−2

L k) the

response becomes local but with very different magnetic field

penetration lengths. From Eq. (13) we get (i) Q = −λ̂−2
L and

(ii) Q = −4λ̂2
Lλ̂−2

1 λ̂−2
2 . In the first case the amplitude of θ12

is small so that the condensate phases are effectively “glued

together.” In the second case θ12 can be large due to negligible

interband Josephson coupling.

The coupling between θ12 and magnetic field also leads to

especially important consequences when k4
0 ∼ (k · λ̂−2

L k). In

this case the magnetic response has multiple length scales.

It means that the magnetic field penetration into such a

superconductor is determined by the superposition of several

fundamental modes, which can be found from Eq. (9), by

FIG. 2. (a) Orientation of the superconductor boundary with

respect to the crystal axes. The anisotropy axis z(c) lies in the plane

perpendicular to the boundary and makes the angle θ to the normal

direction. The field B applied parallel to the boundary depends on the

coordinate r along the surface normal. (b) The cylinder of anisotropic

superconductor subjected to the external magnetic field applied along

the cylinder axis y.

FIG. 3. Wave numbers of the extraordinary magnetic modes as

functions of the interband Josephson coupling k1,2 = k1,2(k0). (a)

Strong anisotropy λ2z = 0.1λ2⊥ = 0.1λ. (b) Weak anisotropy λ2z =
0.8λ2⊥ = 0.8λ.

linearizing the Josephson term near the ground state value

θ12 = 0 and searching for solutions in the form of plain waves

B,θ12 ∼ ei k·r . Thus we obtain the linear system

k ×
(

λ̂2
Lk × h

)

− h = k ×
(

λ̂−2
1 λ̂2

Lk
)

θ12 (14)

k ·
(

λ̂−2
1 λ̂−2

2 λ̂2
Lk

)

θ12 + k4
0θ12 = k ·

(

λ̂−2
1 λ̂2

Lk × h
)

, (15)

where we denote h = 2π B/�0. This system is of the sixth

order, since magnetic field has only two independent com-

ponents k · h = 0. Hence in general for each direction of k

there exists three different solutions with Imk > 0. Therefore

the system (14) cannot be solved analytically. However as we

will see below, we can ascertain properties and even analytical

solutions for certain symmetries, including the most realistic

model of uniaxial anisotropy.

Assume that the x and y axes are equivalent λαx = λαy and

z is the anisotropy axis. In this case the general system [(14),

(15)] splits into the second order and the fourth order equa-

tions which determine the usual and unconventional magnetic

modes, respectively, discussed below.

FIG. 4. A plot of the negative magnetic field at θ = π/4 for strong

anisotropy λ2x = λ1y = 1 and λ1x = λ2y = 0.1 for various values

of k0.

174504-4
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FIG. 5. A contour plot and a radial slice at various angles of the magnetic field, negative magnetic field, and phase difference for the

1d boundary problem solution with strong anisotropy in a single component k0 = 0.7, λ2x = λ2y = λ1y = 1, and λ1x = 0.1λ1y . Vertical and

horizontal axes on upper panels correspond to y and x directions, respectively. A radial curve from the center of the plot represents the field

orthogonal to a 1d boundary crossing the origin in the x-y plane. This way every possible direction (or θ ) is plotted for equations (24) and (25)

with the radial distance representing r . The plot quantities are: magnetic field Bz (left), negative magnetic field |Bz| − Bz (center), and phase

difference θ12 (right).

Let us consider first the magnetic field with polarization

B = Bo coplanar with the anisotropy axis and the wave vector,

ẑ and k as shown in Fig. 1. In this case we get k = ±iλ−1
Lx and

the magnetic field is decoupled from the phase θ12 = 0. We

call this magnetic mode the ordinary one. Alternately, let us

consider the extraordinary modes B = Be, which are coupled

to the interband phase. The magnetic field is perpendicular to

both k and ẑ as shown in Fig. 1. In this case Eqs. (14) and

(15) yield a finite coupling between the magnetic field and the

interband phase difference.

FIG. 6. A contour plot and a radial slice at various angles for the 1d boundary problem solution with strong anisotropy in opposite directions

in each component k0 = 0.7, λ2x = λ1y = 1, and λ1x = λ2y = 0.1. Vertical and horizontal axes on upper panels correspond to y and x directions,

respectively. A radial curve from the center of the plot represents the field orthogonal to a 1d boundary crossing the origin in the x-y plane.

This way every possible direction (or θ ) is plotted for equations (24) and (25) with the radial distance representing r . The plot quantities are

magnetic field Bz (left), negative magnetic field |Bz| − Bz (center), and phase difference θ12 (right).

174504-5
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FIG. 7. Meissner state numerical solution for strong anisotropy in

opposite directions on a disk of radius 5 λ−1
x1 = λ−1

y2 = 1, λ−1
x2 = λ−1

y1 =
0.1, η12 = 0.5, and γ1 = γ2 = 10. The full 2d plots are accompanied

by 1d slices at θ = 0, π

4
, π

2
below. The quantities plotted are (a) Bz

magnetic field, (b) Bz − |Bz| negative magnetic field, (c) E energy

density, (d) |φ1|2, (e) |φ2|2, and (f) θ12 phase difference.

To analyze the extraordinary mode in detail we parametrize

the wave vector components as kz = k sin θ , kx = k cos θ sin ϕ,

and ky = k cos θ sin ϕ where k⊥ = k cos θ . The direction ϕ

drops out from the equations due to the rotational symmetry

in the xy plane.

Then we get the following relation between the interband

phase and magnetic field amplitudes

h = θ12

k⊥kz

(

λ−2
1⊥λ2

L⊥ − λ−2
1z λ2

Lz

)

k2
⊥λ2

Lz + k2
zλ

2
L⊥ + 1

. (16)

Note that in the isotropic case with λ1⊥ = λ1z and λL⊥ =
λLz Eq. (16) yields h = 0 so that this mode becomes the

nonmagnetic pure phased-difference excitation.

The wave number of the extraordinary mode is then given

by the following biquadratic equation

(

k2
⊥λ2

Lz + k2
zλ

2
L⊥ + 1

)(

k2
⊥λ−2

1⊥λ−2
2⊥λ2

L⊥ + k2
zλ

−2
1z λ−2

2z λ2
Lz + k4

0

)

+ k2
⊥k2

z

(

λ−2
1⊥λ2

L⊥ − λ−2
1z λ2

Lz

)2 = 0. (17)

FIG. 8. Meissner state numerical solution for strong anisotropy

in opposite directions on a disk of radius 12 λ−1
x1 = λ−1

y2 = 1, λ−1
x2 =

λ−1
y1 = 0.1, η12 = 0.5, and γ1 = γ2 = 10. The full 2d plots are accom-

panied by 1d slices at θ = 0, π

4
, π

2
below. The quantities plotted are (a)

Bz magnetic field, (b) Bz − |Bz| negative magnetic field, (c) E energy

density, (d) |φ1|2, (e) |φ2|2, and (f) θ12 phase difference.

It has two complex solutions with Imk > 0 yielding two

extraordinary magnetic modes with the polarization shown

schematically in Fig. 1(b). The wave number of these modes

can have nonzero real parts Rek �= 0 at the intermediate values

of k0, yielding the oscillating behavior of the magnetic field.

Example solutions of Eq. (17) corresponding to both modes

k1,2 = k1,2(k0) are shown in Fig. 3 as functions of the interband

pairing strength k0. Here we assume that the first band is

isotropic λ1⊥ = λ1z = λ. The second band has either a weak

anisotropy with λ2z = 0.8λ2⊥ [Fig. 3(a)] or a strong one with

λ2z = 0.1λ2⊥ [Fig. 3(b)] and λ2⊥ = λ.

As shown in Fig. 3 for large and small Josephson couplings,

the wave numbers of the two modes are quite different. One of

them is proportional to k2
0 and hence either diverges or goes to

zero at k0 → ∞ and k0 → 0, respectively. At the same time

the other one tends to the constant values corresponding to the

local response approximation discussed above.

The general solution of Eq. (17) reads

k2
1,2 =

−b ±
√

b2 − 4ac

2a
, (18)
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FIG. 9. Meissner state numerical solution for strong anisotropy in

similar directions on a disk of radius 12 λ−1
x1 = λ−1

y1 = λ−1
y2 = 1, λ−1

x2 =
0.1, η12 = 0.5, and γ1 = γ2 = 10. The full 2d plots are accompanied

by 1d slices at θ = 0, π

4
, π

2
below. The quantities plotted are (a) Bz

magnetic field, (b) Bz − |Bz| negative magnetic field, (c) E energy

density, (d) |φ1|2, (e) |φ2|2, and (f) θ12 phase difference.

where

a =
(

λ−2
1⊥ cos2 θ + λ−2

1z sin2 θ
)(

λ−2
2⊥ cos2 θ + λ−2

2z sin2 θ
)

,

(19)

b = λ−2
1⊥λ−2

2⊥λ−2
Lz cos2 θ + λ−2

1z λ−2
2z λ−2

L⊥ sin2 θ

+ k4
0

(

λ−2
L⊥ cos2 θ + λ−2

Lz sin2 θ
)

, (20)

c = k4
0λ

−2
L⊥λ−2

Lz . (21)

There are a few interesting limiting cases for k1,2. First, the

strong interband coupling k0 ≫ λ−1
i⊥ ,λ−1

iz leads to b2 ≫ 4ac

and hence gives purely imaginary solutions,

k1 =
ik2

0

√

λ−2
L⊥ cos2 θ + λ−2

Lz sin2 θ
√

(

λ−2
1⊥ cos2 θ + λ−2

1z sin2 θ
)(

λ−2
2⊥ cos2 θ + λ−2

2z sin2 θ
)

,

(22)

k2 =
iλ−1

L⊥λ−1
Lz

√

λ−2
L⊥ cos2 θ + λ−2

Lz sin2 θ

.

FIG. 10. Negative part of the magnetic field B̃z = Bz − |Bz|
distribution around a single vortex, normalized by �0/λ

2. The

parameters correspond to either (a) strong anisotropy or (b) weak

anisotropy.

The weak interband coupling k0 ≪ λ−1
i⊥ ,λ−1

iz leads again

to b2 ≫ 4ac giving slightly different purely imaginary

solutions,

k1 =
i

√

λ−2
1⊥λ−2

2⊥λ−2
Lz cos2 θ + λ−2

1z λ−2
2z λ−2

L⊥ sin2 θ
√

(

λ−2
1⊥ cos2 θ + λ−2

1z sin2 θ
)(

λ−2
2⊥ cos2 θ + λ−2

2z sin2 θ
)

,

(23)

k2 =
ik2

0λ
−1
L⊥λ−1

Lz
√

λ−2
1⊥λ−2

2⊥λ−2
Lz cos2 θ + λ−2

1z λ−2
2z λ−2

L⊥ sin2 θ

.

The imaginary wave numbers obtained in the limits consid-

ered above correspond to the real-valued masses or the inverse

decay length scales of the magnetic modes. A completely dif-

ferent regime is possible when the masses of magnetic modes

become complex, resulting in damped oscillating behavior of

the magnetic field. Indeed in the range of parameters when

b2 < 4ac the solutions (18) have finite real parts, the examples

of such solutions are shown in Fig. 3 where Rek1,2 �= 0 for

an interval of k0 which expands with increasing degree of

anisotropy. Generically, this regime can be realized when a

strong anisotropy is applied in each band in different directions,

λ−1
1⊥ ≫ λ−1

1z and λ−1
2z ≫ λ−1

2⊥. In this case we have λ−2
L⊥ ≈ λ−2

1⊥
and λ−2

Lz ≈ λ−2
1z . Then in the wide range of Josephson couplings

λ−1
1⊥λ−1

2z ≫ k2
0 ≫ λ−1

1⊥λ−1
2⊥,λ−1

1z λ−1
2z we obtain the wave number

k1,2 = (i ± 1)k0/
√

2 which has the amplitudes of real and

imaginary parts.

A. Flux expulsion in the anisotropic two-band model

We now consider the problem of magnetic field screening

at the surface of an anisotropic multiband superconductor. Let

us consider cylindrical geometry with magnetic field applied

in the y direction B = H0 ŷ parallel to the boundary of the

superconducting sample as shown in Fig. 2(a). Unlike the

usual isotropic superconductors, the boundary orientation with

respect to the crystal axes is important and is considered by

the angle θ in polar coordinates, introduced previously in

considering the normal modes. The wave vectors of excited

magnetic modes are directed perpendicular to the surface

k = k(cos θ,0, sin θ ). We use r to indicate the coordinate

orthogonal to the boundary, such that in the presence of two
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FIG. 11. Magnetic field Bz for a fractional vortex in U (1) × U (1)model (i.e., k0 = 0), with various types of anisotropy (a) λ1x = 0.8λ1y ,

λ2x = λ2y = λ1y , (b) λ1x = 0.4λ1y , λ2x = λ2y = λ1y , (c) λ1x = λ2y = 0.8λ1y , (d) λ1x = λ2y = 0.4λ1y , λ2x = λ1y . The field is in units of �0/λ
2
1y .

magnetic field penetration lengths, the magnetic field decay

and phase difference follow a double-exponential law,

B = B1e
−r/�1 + B2e

−r/�2 (24)

θ12 = θ
(1)
12 e−r/�1 + θ

(2)
12 e−r/�2 , (25)

where �1 = −i k−1
1 and �2 = −i k−1

2 are two magnetic field

penetration lengths. We have previously made the assumption

that θ12 is small and hence linear in nature. This does not neces-

sarily have to be the case and indeed removing this assumption

could lead to more unconventional physics, e.g., oscillation

of the interband phase difference parallel to the boundary. To

discover if this has an effect one would have to consider the full

equations numerically. For our one-dimensional equation, the

boundary conditions are given by the value of the magnetic

field on the boundary due to the external field B1 + B2 =
H0 and the requirement for the normal current to vanish at

the boundary n · j = 0. The contribution from each of the

magnetic modes (24) to the normal current can be found as

n · jα = −i∇ · jα/kα = −ieEJ θ12/kα . The relation between

phase difference and magnetic field in each of the modes is

given by Eq. (16).

Then we get the following solution for the amplitudes B1,2

in Eq. (24):

B1 =
(

H0k
3
1

k1 − k2

)

(

λ−2
L⊥ cos2 θ + λ−2

Lz sin2 θ
)

k2
2 + λ−2

L⊥λ−2
Lz

k2
1k

2
2

(

λ−2
L⊥ cos2 θ + λ−2

Lz sin2 θ
)

+ λ−2
L⊥λ−2

Lz

(

k2
1 + k1k2 + k2

2

) (26)

B2 =
(

H0k
3
2

k2 − k1

)

(

λ−2
L⊥ cos2 θ + λ−2

Lz sin2 θ
)

k2
1 + λ−2

L⊥λ−2
Lz

k2
1k

2
2

(

λ−2
L⊥ cos2 θ + λ−2

Lz sin2 θ
)

+ λ−2
L⊥λ−2

Lz

(

k2
1 + k1k2 + k2

2

) . (27)

Example solutions for various parameters are plotted in

Figs. 5 and 6. The two key features that differ from the isotropic

case is the double-exponential decay of the magnetic field

and a self-induced gradient of the phase difference between

the superconducting components. The origin of both effects

is the hybridization of the Leggett mode with the magnetic
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FIG. 12. N = 1 single quanta numerical solution for weak anisotropy in one band λx1 = λy1 = λx2 = 1, λy2 = 0.5, η12 = 0.5, and γ1 =
γ2 = 2. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, (d) |φ1|2, (e) |φ2|2, and (f) θ12

phase difference.

mode. Also note that the solution matches the fourfold sym-

metry of the free energy, which is to be expected due to

the anisotropy. Additionally, the limiting cases of k0 → ∞
and the isotropic case decouples the phase difference and

magnetic field and we are left with a single penetration length as

expected.

An interesting limit to consider is where the Leggett

mode becomes massless, for example the zero Josephson

coupling limit (k0 → 0). As the Josephson coupling becomes

smaller one of the magnetic field penetration lengths diverges

�1 → ∞. The physical consequence of a diverging magnetic

field penetration length in our two-scale system is markedly

different from the divergence of magnetic field penetration

length at Tc in a single-component system; namely in our case

it doesn’t imply absence of magnetic screening. This is due to

the amplitude of the mode vanishing as the penetration length

diverges (B1 → 0). Simultaneously the other mode becomes

the isotropic case deformed by the anisotropy, as one would

expect if the anisotropy in the different components matched

and could hence be rescaled.

FIG. 13. N = 1 single quanta numerical solution for strong anisotropy in one band λx1 = λy1 = λx2 = 1, λy2 = 0.1, η12 = 0.5, and γ1 =
γ2 = 2. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, (d) |φ1|2, (e) |φ2|2, and (f) θ12

phase difference.
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FIG. 14. N = 1 single quanta numerical solution for anisotropy in equivalent directions in both bands λ−1
1x = 0.7, λ−1

1y = 0.4, λ2x = 1 and

λ−1
2y = 0.1, η12 = 0.5, and γ1 = γ2 = 2. The contour plots are (a) Bz magnetic field (b) |Bz| − Bz negative magnetic field, (c) E energy density,

(d) |φ1|2, (e) |φ2|2, and (f) θ12 phase difference.

This implies that in such a limit, most of the magnetic

field’s amplitude decays at the length scale �2 along with

an increasingly long-range penetration of a small “tail” of

magnetic field. The situation should occur for example in

multiband systems close to s + is transitions where the Leggett

mode becomes massless [19,20,22,31].

Finally, and rather interestingly, the multimode magnetic

response implies that the magnetic field is not necessarily

monotonic. This nonmonotonic behavior can lead to field

inversion for a range of parameters. This means interactions

between vortices and boundaries and also intervortex inter-

actions will be nontrivial. It is likely that should the external

field be increased such that vortices enter into the sample, their

position will be affected by the negative magnetic field which

would attract the vortices. Again it should be emphasized that

the field inversion here is not related to oscillatory behavior of

the magnetic field in the nonlocal Pippard’s model.

This field inversion can be seen most clearly in the plots

of the solutions for various parameters below. In Fig. 5 we

have looked at strong anisotropy in one of the components

FIG. 15. N = 1 single quanta numerical solution for strong anisotropy in opposite directions λx1 = λy2 = 1, λ−1
y1 = λ−1

x2 = 0.1, η12 = 0.5,

and γ1 = γ2 = 2. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, (d) |φ1|2, (e) |φ2|2,

and (f) θ12 phase difference.
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FIG. 16. N = 1 single quanta numerical solution for strong anisotropy in opposite directions but with no Josephson coupling γ1 = γ2 = 2,

η12 = 0.0, λx1 = λy2 = 1, and λ−1
y1 = λ−1

x2 = 0.1. Note that the grid size of 50 × 50 is due to the long range nature of the negative magnetic

field. (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, (d) |φ1|2, (e) |φ2|2, and (f) θ12 phase difference.

and in Fig. 28 in the appendix we have plotted anisotropy

in a single component for increasing strength. It is clear that

the strength of the field inversion increases as the anisotropy

is increased. Additionally the generated phase difference is

also more pronounced. In Fig. 6 we have looked at strong

anisotropy in different directions in each component and in

Fig. 29 in the appendix we have plotted anisotropy in opposite

directions for increasing strength. Again as in the other plot the

field inversion and phase difference are increased in magnitude

at the anisotropy amount increases. Due to the choice of

parameters however, we observe a far more symmetrical

dihedral solution.

Finally we have considered the negative magnetic field

at θ = π
4

for various strengths of k0, shown in Fig. 4. We

can observe here the effect of decreasing the Josephson

coupling strength as discussed above. This leads to one

of the modes becoming weaker (and also the strength of

the negative magnetic field becoming weaker) but also long

range.

FIG. 17. Minimal energy multiquanta solution to the London

model with weak anisotropy in both bands, in opposite directions,

found using simulated annealing for composite vortices. The param-

eters are λ1x = λ2y = λ, λ2x = λ1y = 0.5λ, and k0 = 0.7/λ.

B. Numerical solution for the boundary problem

We now perform a numerical simulation of the Meissner

state of the two-band anisotropic full Ginzburg-Landau model

(2). This was performed using the FreeFem++ numerical

library [32,33], which utilizes a finite element space, over

which conjugate gradient flow is performed. The simulations

were performed on a disk as the problem is directionally

dependent. We minimize the Gibbs free energy G =
∫

R3 F −
∫

R3 B · H +
∫

R2 Fsurface, where H = Hzez in an external field,

applied orthogonal to our 2D system, where we have chosen a

finite domain with the boundary conditions ∇ × A = H and

for the current to vanish n · j = 0. We then slowly increase

the external field strength |Hz| in steps of 10−3, through the

various Meissner states. When the external field is below

the first critical value we get the Meissner state solutions

shown in Figs. 7, 8, and 9. Note all simulations were run

with ψ0
α = e = h̄ = c = 1 and γα = 10, so in the strong type

2 regime, hence our results should be comparable with the

London model above.

FIG. 18. Minimal energy multiquanta solution to the London

model with stronger anisotropy in both bands, in opposite directions,

found using simulated annealing for composite vortices. The param-

eters are λ1x = λ2y = λ, λ2x = λ1y = 0.3λ, and k0 = 0.7/λ.
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FIG. 19. Minimal energy multiquanta solution to the London

model with stronger anisotropy in both bands, in opposite directions,

found using simulated annealing for composite vortices. The param-

eters are λ1x = λ2y = λ, λ2x = λ1y = 0.1λ, and k0 = 0.7/λ.

In Fig. 7 we see a small sample in the Meissner state,

with parameters λx1 = λy2 = 1, λy1 = λx2 = 10, and ηαβ =
0.5. The key effect to note is the oscillation of the phase

difference away from the axis: a consequence of the anisotropy

driven hybridization of the Leggett mode and magnetic mode

discussed above. When the angle of the boundary is away from

θ = nπ/2. When looking at the magnetic field however we

don’t see the expected oscillation. This is due to the effect

being long range, so if we increase the radius of the disk for

similar parameters, as shown in Fig. 8, we can see the inversion

of magnetic field.

We also have depicted the Meissner state for anisotropy

in only one band in Fig. 9 for the parameters λx1 = λy2 =
λx2 = 1, λy1 = 10, and ηαβ = 0.5. This leads to a similar effect

on the shape of the various plots, matching the symmetry

of the anisotropy. However the negative component of the

magnetic field is far smaller, which is as we predicted when

we considered the limiting cases in the London model. Finally

switching off the Josephson term removes the magnetic field

inversion as was discussed in the London approximations. So

the results from the full field numerics seem to qualitatively

support the London model calculations and all the predictions

that came from them.

V. VORTEX STRUCTURE

Let us now consider how the multiple magnetic modes

in anisotropic multiband superconductors modify the vortex

states in the London model. We begin by studying vortex solu-

tions carrying a single flux quantum, where both components

have 2π phase winding around the core. We later consider

a solution for fractional flux vortex, i.e., the vortex that has

phase winding only in one phase and carries a fraction of flux

quantum (for details of flux fractionalization and energetical

preference of fractional and composite vortices in multiband

systems see the discussions for isotropic systems [34,35]).

A. Integer-flux vortex

The field distribution around a single vortex line can be

found in the form of a Fourier transform,

B(r) =
�0

2π

∫

h(k)eik·rd2k, (28)

where r is a coordinate vector in the plane perpendicular to the

vortex line and the 2D integration is done by the corresponding

FIG. 20. Minimal energy multiquanta solution to the London

model with stronger anisotropy in one band, found using simulated

annealing for composite vortices. The parameters are λ1x = λ2y =
λ1y = λ, λ2x = 0.3λ, and k0 = 0.7/λ.

momentum space cross section. The components h(k) are now

determined by the nonhomogeneous system

h − k ×
(

λ̂2
Lk × h

)

+ k ×
(

λ̂−2
1 λ̂2

Lk
)

θ12 = 2πnv (29)

k ·
(

λ̂−2
1 λ̂−2

2 λ̂2
Lk

)

θ12 + k4
0θ12 − k ·

(

λ̂−2
1 λ̂2

Lk × h
)

= 0, (30)

where nv is the direction of the vortex line.

The anisotropy in the plane perpendicular to the vortex line

can be caused by two reasons. (i) When the magnetic field is

directed along the c axis, there can be anisotropy in the ab plane

either if the crystal is biaxial or as a result of the strain-induced

distortions. (ii) The effective anisotropy can be caused by a

misalignment between the external field and the anisotropy

c axis. The distribution of the magnetic field around vortices

will be different in these two cases since in (i) only two of the

magnetic modes are excited and in (ii) the amplitudes of all

three magnetic modes are nonzero.

In this paper we consider in detail only the case (i) when

the magnetic field around the vortex is h = hzz, where

hz = 2π
k4

(

λ−2
1x λ−2

2x λ2
Lxk

2
x + λ−2

1y λ−2
2y λ2

Lyk
2
y + k4

0

)

a
(

k2 + k2
1

)(

k2 + k2
2

) (31)

a =
(

λ−2
1x k2

x + λ−2
1y k2

y

)(

λ−2
2x k2

x + λ−2
2y k2

y

)

. (32)

Here the poles k1,2 are given by Eq. (18).

Using expressions (31) and (28) one can consider the

asymptotics of the field far from the vortex center. We introduce

the polar coordinates k = k(cos θ, sin θ,0) and integrate first

by k taking into account the symmetry hz(k) = hz(−k) which

allows the integration to be extended to the domain k < 0.

Using Eq. (31) we get the magnetic field distribution in the

real space polar coordinates (r,ϕ) with the origin at the vortex

center

Bz(r,ϕ) = �0

(

h1(ϕ)
e−k1r

√
k1r

− h2(ϕ)
e−k2r

√
k2r

)

, (33)

hj (ϕ) =
k2
j

(

λ−2
1x λ−2

2x λ2
Lx cos2 ϕ + λ−2

1z λ−2
2z λ2

Lz sin2 ϕ
)

− k4
0

a
(

k2
1 − k2

2

) ,

(34)

where hj (ϕ) = Res(hz(k,ϕ),ikj (ϕ)) is a residue of the function

hz(k,ϕ) at the pole k = ikj (ϕ). For the angle integration we
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FIG. 21. N = 2 two quanta numerical solution for strong anisotropy in a single component γ1 = γ2 = 2, η12 = 0.5, λx1 = λy1 = λx2 = 1,

and λ−1
y2 = 0.1. (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, (d) |φ1|2, (e) |φ2|2, and (f) θ12 phase difference.

used an approximation kj r cos(θ − ϕ) ≈ kj r(1 − (θ − ϕ)2/2)

which is valid provided kj r ≫ 1.

In general due to the ab-plane anisotropy Eqs. (33) and

(34) yield the expected fourfold magnetic field profile around

a vortex. But the most important point is the nonmonotonic

field behavior with field inversion at some distance from the

vortex center, as with the boundary problems. For this it is

necessary and sufficient to satisfy two conditions: h2 < 0 and

k1 > k2, so that the mode with negative amplitude can become

dominating at some distance from the vortex.

To demonstrate the possibility of field inversion we consider

the parameters λ1x = 0.7λ, λ1y = 0.8λ, λ2x = λ2y = λ, and

k0 = 0.7/λ which result in the correct fourfold magnetic field

profile with field inversion far from the vortex core. The

negative parts of field distribution Bz − |Bz| are shown in

Fig. 10. Field inversion leads to a nontrivial fourfold nonmono-

tonic interaction between vortices and thus bound states. This

will be considered in more detail below in Sec. VI. Finally

the above modifications to vortex solutions point towards

a new mechanism for vortex stripe formation in multiband

superconductors.

B. Fractional vortex solution

For fractional vortices we have a singularity appearing in

just one of the components (chosen to be component 1 without

loss of generality). It follows immediately that this will lead to a

singularity appearing in θ12 itself unlike in the composite case.

This means the previous approach of linearizing the equations

and approximating sin θ12 ≈ θ12 is no longer valid. This is

unsurprising as it is due to the presence of Josephson strings

when the coupling is switched on. Here it is illustrative to

consider the fractional vortex in the U (1) × U (1) model.

We follow a similar procedure by Fourier transforming

the equations of motion, however the singularity now exists

in ∇θ1, allowing us to utilize the fact that ps − ∇θ12/2 is

singularity free. The equations of motion can be rearranged to

isolate the singularity and yield in the Fourier representation

the following,

k ×
(

λ̂2
1k × h

)

− h

= ik ×
[

λ̂−2
2 λ̂2

1

(

ps +
i

2
kθ12

)]

+ 2πnv, (35)

k · λ−2
2

(

ps +
i

2
kθ12

)

= 0. (36)

If the magnetic field lies in the z direction only h = hz ẑ the

solution of this system is given by

hz(k) =
2π

(

λ2
1y cos2 θ + λ2

1x sin2 θ
)(

k2 + k2
1

) (37)

k2
1 =

(

1 + λ2
1yλ

−2
2y

)

λ2
2y cos2 θ +

(

1 + λ2
1xλ

−2
2x

)

λ2
2x sin2 θ

(

λ2
1y cos2 θ + λ2

1x sin2 θ
)(

λ2
2y cos2 θ + λ2

2x sin2 θ
) ,

(38)

where we have used k = k(cos θ, sin θ,0) again.

Using a similar method to before we can find the magnetic

field to be

Bz(r,ψ) =
�0e

−k1r

(

λ2
1y cos2 θ + λ2

1x sin2 θ
)√

k1r
. (39)

This illustrates that when interband Josephson coupling is zero

k0 = 0, the Leggett mode becomes nonmagnetic and does not

contribute to the magnetic response despite gradients of the

phase difference [36]. The solution is plotted for a number of

values in Fig. 11.

C. Numerical vortex solutions

We now consider the numerical solutions for type 2 vor-

tices in the full anisotropic Ginzburg-Landau equations. All
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FIG. 22. N = 2 two quanta numerical solution for strong anisotropy in both bands in opposite directions γ1 = γ2 = 2, η12 = 0.5, λy1 =
λx2 = 1, and λ−1

x1 = λ−1
y2 = 0.1. (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, (d) |φ1|2, (e) |φ2|2, and (f) θ12

phase difference.

numerical simulations were performed using the FreeFem++

numerical library [32,33], which utilizes a finite element space

over which conjugate gradient flow is performed. We take ex-

pression (2) to be our energy functional, where all the solutions

were found in a type 2 superconductor with parameters γα = 2

and ψ0
α = e = h̄ = c = 1 for all components. We also restrict

to the x-y two-dimensional plane, where we can now refer to

different solutions in terms of the number of flux quanta,

N =
�

�0

=
1

2π

∫

R2

Bzd
2x. (40)

We first consider the single-quantum vortex solution with

weak anisotropy in one band λ1x = λ1y = λ2x , λ2y = 2λ

shown in Fig. 12 and strong anisotropy in one band λ1x =
λ1y = λ2x , λ2y = 10λ shown in Fig. 13. The salient point

is the confirmation of magnetic field inversion for both sets

of parameters, increasing in strength as the anisotropy is

increased. This along with the self induced phase difference

gradients confirm that the results from the above London model

calculations do transition into the full Ginzburg-Landau model

as expected. Another thing to note is that the symmetry of the

solutions match the broken symmetry of the energy functional

as with the London model. The isotropic component appears to

retain its axial symmetry from an unbroken model, while the

anisotropic components symmetry is broken to the expected

fourfold symmetry or squashed as one might expect of a single

component system.

We now consider the effect of having anisotropy exhibited

in both bands in a similar direction as shown in Fig. 14. As

the anisotropies in the two band approach each other the field

inversion gets weaker and once they are the same the model is

in many respects analogous to a single component anisotropic

system. The closer the anisotropies are to each other in each

of the bands the more diminished the exotic behavior we have

observed becomes and eventually vanishes as the anisotropies

coincide.

For anisotropy in different directions however, we see

a more pronounced effect by the anisotropy, as can be

seen in Fig. 15 for parameters λx1 = λy2 = λ, λy1 = λx2 =
10λ, η12 = 0.5. When compared to a similar solution with

anisotropy in a single band in Fig. 13 the magnetic field

inversion is more notable and the deformation of the shape

while retaining the D4 symmetry of the free energy is more

deformed.

D. Field inversion beyond the London limit

We now consider the effect of altering the Josephson

coupling strength. If we increase the coupling to become very

strong it leads to a diminished disparity of the magnetic field

penetration lengths. Thus the magnetic field becomes more

localized and the inversion less pronounced. If we take the

Josephson coupling to be of a similar scale as the covariant

derivative pre-factors, then the anisotropic effects are max-

imal, as predicted in the London model. Finally taking the

Josephson strength to be small we observe the magnetic field

becoming continually longer range and the field inversion less

pronounced.

In the limit of zero Josephson coupling the London model

predicts that the Leggett mode decouples from the magnetic

field. That is, as η12 → 0 one of the modes becomes zero and

the magnetic field decay is described by a single exponential,

hence the London model predicts absence of magnetic field

inversion. However this is not what is found in the full model

as can be seen in Fig. 16 for the parameters γ1 = γ2 = 2, η12 =
0.0, λx1 = λy2 = λ and λy1 = λx2 = 10λ. Here we see that

the magnetic field still exhibits inversion, though at very long

range. This result refutes the applicability of the London model

for this regime.
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FIG. 23. N = 3 three quanta local solutions for anisotropy in both bands in opposite directions γ1 = γ2 = 2, η12 = 0.5, λx2 = λy1 = 1, and

λ−1
y2 = λ−1

x1 = 0.5. (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) |φ1|2, (d) |φ2|2, and (e) θ12 phase difference.

The origin of this behavior must be the interplay of

anisotropy with an additional effect that appears beyond the

London model. It has been proposed that in the isotropic

Ginzburg-Landau model, the magnetic response has the form

of a massive vector field coupled to Faddeev-Skyrme terms

[37,38]. The Faddeev-Skyrme terms represent magnetic field

contribution that is generated by cross-gradients of relative

densities and relative phases of components. This leads to

magnetic field inversion in fractional vortex solutions [39],

however in the standard isotropic model, for axially symmetric

integer flux vortices, solutions do not have gradients of relative

phases and the effect is absent. Hence in the anisotropic

case, the self-induced phase differences and relative density

gradients lead to magnetic field inversion even in the case of

zero Josephson coupling, beyond the London limit. For finite

Josephson coupling this effect coexists with the contributions

discussed above in the London model.

VI. VORTEX BOUND STATES

In this section we consider intervortex interactions that are

likely to lead to nontrivial multisolitons, due to the nonmono-

tonic nature of the magnetic field and the property of field

inversion. If we return to the London-Leggett model energy

formulated in Eq. (5), we can expand with respect to the key

terms θ12, ps , and B,

ε =
(

�0

2π

)2[
1

2
λ−2

L ∇θ12 · ∇θ12 + 2λ−2
L ps · ps

+2
(

λ−2
1 − λ−2

2

)

∇θ12

]

+ EJ θ2
12 + B2. (41)

We now want to find the interaction energy of two composite

vortices with winding in both components in the London

model. We assume that they are well separated, such that we

can write the various terms as the sums of the tail interactions

of the two solitons, B = B(1) + B(2), θ12 = θ
(1)
12 + θ

(2)
12 , and

ps = p(1)
s + p(2)

s . If we then separate and integrate Eq. (41)

by parts, we can use the equations of motion to reduce the

interaction energy to the simple form,

εint = 2�0

[

B(1)(x2) · nv2 + B(2)(x1) · nv1

]

. (42)

Hence, by substituting in the form of the parallel field around

a single composite vortex given in Eq. (33), we can calculate

the total interaction energy of a given configuration. For the

system in question, the only required data to represent a

given configuration is then the positions of each individual

composite vortex or a collection of 2n parameters, where

n is the total number of quanta or winding number of the

system. We can now minimize the interaction energy for a

given winding number over the 2n-dim space of positions, to

find the optimal configurations for type 2 composite vortices

in the London model. Equation (42) was minimized using a

simulated annealing method.

We first consider the solutions for equal and opposite

anisotropies for various strengths of anisotropy, some of which

are plotted in Figs. 17, 18 and 19. If we consider the solution

for weaker anisotropies, presented in Fig. 17 for λ1x = λ2y =
0.5λ, λ2x = λ1y = λ, and k0 = 0.84/λ, we see that the form of

the minimal energy solutions is that of polyominoes (geometric

plane figures formed by connecting n squares along their

edges, each square representing a D4 symmetric composite

174504-15



MIHAIL SILAEV, THOMAS WINYARD, AND EGOR BABAEV PHYSICAL REVIEW B 97, 174504 (2018)

FIG. 24. N = 3 three quanta local solutions for strong anisotropy in both bands in opposite directionsγ1 = γ2 = 2,η12 = 0.5,λx2 = λy1 = 1,

and λ−1
y2 = λ−1

x1 = 0.1. (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) |φ1|2, (d) |φ2|2, and (e) θ12 phase difference.

vortex). The rule for the minimal energy polyominoe is then

the one that maximizes the total number of neighbors for all

the vortices. This is no surprise, as the chosen anisotropy leads

to a D4 dihedral symmetry to the magnetic field density of

the vortex. To minimize the form of the interaction energy

(42), a good candidate is placing the vortex positions into

the maximal negative magnetic field locations of the other

composite vortices. This would suggest that local minima

should appear for each of the various polyominoes in the

London model. Similar types of interaction and corresponding

minimal soliton configurations have been studied before in

the baby Skyrme model [40], where it appears for different

reasons.

Increasing the strength of the anisotropy to λ1x = λ2y =
0.3λ, λ2x = λ1y = λ, and k0 = 0.84/λ the polyominoes pat-

tern no longer applies and the form of the minimal energy

solutions are more complex, as can be seen in Fig. 18. Up

to n = 4 we see similar solutions to before, but for n = 5

we see a rotated N = 4 solutions with an additional vortex

in the center of the configuration. As the winding number

increases a pattern emerges, that of chains that are just off the
π
4

diagonal, interlaced with each other, such that the chains are

staggered.

Finally if we increase the strength of anisotropy to extremely

strong values, we get a continuation of the above to more

extreme behaviors. This can be seen in Fig. 19 for λ1x = λ2y =
0.1λ, λ2x = λ1y = λ, and k0 = 0.84/λ. We now see the above

shifting away from the polyominoe form for n � 3.

If we now consider anisotropy in a single direction we get

a very different result, as shown in Fig. 20 for λ1x = 0.3λ,

λ1y = λ2x = λ2y = λ, and k0 = 0.84/λ. Here we see that the

form of the solutions is now of chains. As the winding number

increases the chains develop kinks, looking at the solution for

n = 4 this is due to the additional vortex being far enough away

from the one directly above it to interact weakly, but close

enough to the one at the tip of the chain to be affected by the

negative magnetic field which is longer range. The chains form

on a line with an angle to the x axis determined by the form of

the anisotropy. As the winding number increases further, the

interlacing effect of the chains appears as before.

If we were to consider more complicated forms of

anisotropy it is likely the minimal energy solution will take

some hybrid of the two presented above based upon how the

warped symmetry is away from the maximal D4.

We can now compare this to the results of the Ginzburg-

Landau field theory. We naturally start with the 2 quanta N = 2

solutions, shown in Fig. 21 for anisotropy in one band and

Fig. 22 for anisotropy in both bands in opposite directions,

demonstrating that the bound states do exist in the full model

also. The direction of separation also matches that predicted

by the above London model and is based on the parameters

of the model. We can find the energies of this formation by

simulating the 2 quanta, 1 quanta, and vacuum solution on the

same grid to compare energies. For the parameters γ1 = γ2 =
2, η12 = 0.5, λx1 = λy1 = λx2 = λ, and λy2 = 10λ shown in

Fig. 21 we get E′
1 = E1 − E0 = 1.6416 and E′

2 = E2 − E0 =
3.2773, where each Ei is the minimal energy solution for the

i quanta system, which means the 2 quanta normalized energy

is lower than the single vortex normalized energy per vortex

E′
2 < 2E′

1 and a bound state has been formed. The binding
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FIG. 25. N = 3,4 three and four quanta local solutions for strong anisotropy in one direction γ1 = γ2 = 2, η12 = 0.5, λx2 = λx1 = λy1 = 1,

and λ−1
y2 = 0.1. (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) |φ1|2, (d) |φ2|2, and (e) θ12 phase difference.
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FIG. 26. N = 4 four quanta local solutions for strong anisotropy in both bands in opposite directions γ1 = γ2 = 2, η12 = 0.5, λx2 = λy1 = 1,

and λ−1
y2 = λ−1

x1 = 0.1. (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) |φ1|2, (d) |φ2|2, and (e) θ12 phase difference.

energy of this bound state is small which is no surprise, due

to the small levels of the magnetic field inversion compared to

other terms in the free energy.

We now move onto the n = 3 quanta solutions; for equal

anisotropies in opposite directions we are interested in stronger

and weaker anisotropies and the effect on the minimal energy

solutions. For weaker anisotropy, shown in Fig. 23, we observe

three key local solutions in the form of a line, an L shape, and a

T shape. The first two of these are polyominoes, the second is

not. If we compare the energies we get the following, E′
line =

4.7652, E′
L = 4.7678, and E′

T = 4.7689, which gives the line

solution as the global minima, as predicted by the London

model. It is instructive however to compare the energies of

the other two local minima, as the London model predicts

polyominoes being more favored over interlaced solutions,

thus one would expect the L solution to have lower energy

than the T solution, which is the case.

For stronger anisotropy, shown in Fig. 24, we can see the

same local solutions, however the energies are now given

as E′
line = 3.1098, E′

L = 3.1199, and E′
T = 3.1110, such that

the line solution is still the global minima. Here we see that

Ginzburg-Landau solutions do not agree with the London

model. However the energy difference has decreased between

the various solutions so the trend is the same. This is likely

174504-18



NON-LONDON ELECTRODYNAMICS IN A MULTIBAND … PHYSICAL REVIEW B 97, 174504 (2018)

FIG. 27. N = 4 our quanta local solutions for anisotropy in both bands in opposite directions γ1 = γ2 = 2, η12 = 0.5, λ−1
x2 = λ−1

y1 = 1, and

λ−1
y2 = λ−1

x1 = 0.5. (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) |φ1|2, (d) |φ2|2, and (e) θ12 phase difference.

due to the London model not allowing the form of the

individual vortices to deform. Note that the minimal value

when comparing the L and T solutions has now switched

to the T solution. This means that the interlaced solutions

are more favored now, as predicted by the London model

above.

We finally show the local solutions for N = 4 for equal

anisotropies in the bands in Figs. 26 and 27. The global minima

for weak anisotropy is the line, however the square solution is

extremely close in energy as the London model predicted. For

stronger anisotropy we observe the square being rotated and

deformed as predicted by the London model. It is now the Z

solution that is close to the line solution, which is again as the

London model predicted.

Finally, for anisotropy in one direction we observe similar

results to the London model, with chain solutions taking the

minimal energy solutions as expected. Various local and global

minima solutions are plotted for N = 3,4 in Fig. 25. Note

that the energy of the L solution approaches that of the line

solution, due to the deformation from the line discussed in the

London model. The other local solutions have much higher

energy compared to the L and line solutions.

This means that for the type 2 regime, the London model

is good at predicting the qualitative form for the higher quanta
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FIG. 28. A contour plot and a radial slice at various angles of the magnetic field, negative magnetic field, and phase difference for the 1d

boundary problem solution with anisotropy in a single component (λ2x = λ2y = λ1y = 1). A radial curve from the center of the plot represents

the field orthogonal to a 1d boundary crossing the origin in the x-y plane. This way every possible direction (or θ ) is plotted for equations (24)

and (25) with the radial distance representing r . The plot quantities are magnetic field Bz (left), negative magnetic field |Bz| − Bz (center), and

phase difference θ12 (right) for various strengths of anisotropy from weak to strong (a) λ1x = 0.8λ1y , (b) λ1x = 0.5λ1y , and (c) λ1x = 0.1λ1y .
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FIG. 29. A contour plot and a radial slice at various angles for the 1d boundary problem solution with anisotropy in opposite directions

in each component (λ2x = λ1y = 1 and λ1x = λ2y). A radial curve from the center of the plot represents the field orthogonal to a 1d boundary

crossing the origin in the x-y plane. This way every possible direction (or θ ) is plotted for equations (24) and (25) with the radial distance

representing r . The plot quantities are magnetic field Bz (left), negative magnetic field |Bz| − Bz (center), and phase difference θ12 (right) for

various strengths of anisotropy from weak to strong (a) λ1x = λ2y = 0.8λ1y , (b) λ1x = λ2y = 0.5λ1y , (c) λ1x = λ2y = 0.1λ1y .

174504-21



MIHAIL SILAEV, THOMAS WINYARD, AND EGOR BABAEV PHYSICAL REVIEW B 97, 174504 (2018)

solutions. This is despite the fact that when one goes beyond the

London limit, there appear additional terms that contribute to

field inversion [39]. Hence it would be likely to continue to take

the various forms predicted for higher quanta above. A different

regime, that appears in the Ginzburg-Landau theory and is

not captured by a London model, is where coherence lengths

exceed magnetic field penetration lengths. In that regime vortex

bound states form via a different mechanism (see discussion for

the isotropic case in Refs. [41–44]). Addition of anisotropy to

these regimes also leads to anisotropic vortex cluster solutions

and vortex chains [45].

VII. CONCLUSIONS

The magnetic response of isotropic single-component su-

perconductors can be cast in the form of a massive vector field

theory characterized by the London magnetic field penetration

length. However superconducting materials are often multi-

band and anisotropic. We have demonstrated that this leads to

deviation of the magnetic properties of the model from Lon-

don’s hydromagnetostatics even at the level of the anisotropic

multiband London model. We showed that anisotropy leads to

hybridization of the Leggett and the London modes, causing

the gradients of the phase difference to create transverse charge

currents, generating magnetic field. This in turn leads to the

existence of several magnetic field penetration lengths (in

general N + 1 magnetic field penetration lengths for an N -

band London model) and also to a nonlocal magnetic response

in the nominally local London model. For example in the case

of the two-band anisotropic Meissner state, the magnetic field,

directed along one of the crystal axes, decays according to a

double-exponential law. In the general case of arbitrary direc-

tions of such a two-band case, there are three magnetic modes

with different penetration lengths. In the limit of vanishingly

small mass for the Leggett mode (e.g., near s + is transition),

one of the magnetic field penetration lengths diverged, leading

to long-range, small-amplitude penetration of magnetic field

even far below the superconducting phase transition.

Under certain conditions the magnetic field is described by

a massive vector field theory with complex mass, which means

that magnetic field decay cannot be entirely characterized by

real length scales but has oscillating behavior. Moreover the

combination of different magnetic modes gives the overall

magnetic field profile a nonmonotonic form and even mag-

netic field inversion. This affects the nature of vortex states:

The nonmonotonic behavior and field inversion leads to the

formation of vortex bound states. The minimal energy bound

states were shown to depend on the symmetry of the system

and have forms of polyominoe vortex clusters and chains.
A number of multiband superconductors are currently

the subject of detailed experimental research. The examples
studied in this paper give inverted magnetic field up to 10−3

of applied magnetic field. Such field strength makes the effect
in principle measurable either by SQUIDs or in muon spin
rotation experiments. The interband coupling strength is often
difficult to calculate precisely. Measuring the effect that we
report for samples with different boundaries, cut relative to
crystalline axes, can be used as a tool to experimentally assess
interband coupling strength and relative anisotropies of bands.
It can additionally be used to distinguish the vortex bound
states that we report from vortex clusters and chains forming
for different reasons. In anisotropic multiband systems, there
are at least two other mechanisms for formation of vortex
bound states. Inclusion of density variations in the theory yields
“type-1.5” regimes where coherence lengths are larger than
magnetic field penetration lengths and vortex bound states form
due to core-core interaction [45]. Compared to the core-core-
interaction-driven vortex binding, the mechanism considered
on this paper yields much weaker vortex interaction forces.
Thus vortex bound states considered here should be relatively
easily destroyed by thermal fluctuations. Note also that one
should expect vortices sticking to sample’s boundaries due
to the fact that those also feature inverted field. A different
situation appears for strong anisotropies where integer flux
vortices split into bound states of fractional vortices [46]. Those
are easily distinguishable, due to the different magnetic field
profile and coreless nature.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Julien Garaud,
Vadim Grinenko, and Stephen Lee. The work was supported
by the Academy of Finland, Swedish Research Council Grants
No. 642-2013-7837 and No. VR2016-06122, Goran Gustafs-
son Foundation for Research in Natural Sciences and Medicine
and EPSERC Grant No. EP/P024688/1. The computations
were performed on resources provided by the Swedish Na-
tional Infrastructure for Computing (SNIC) at the National
Supercomputer Center at Linköping, Sweden.

APPENDIX: ADDITIONAL SOLUTIONS

See Figs. 28 and 29 for additional plots for the 1d boundary

problem discussed in Sec. IV A.
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