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Abstract

We introduce the notion of “non-malleable codes” which relaxes the notion of error-correction and error-
detection. Informally, a code is non-malleable if the message contained in a modified codeword is either the
original message, or a completely unrelated value. In contrast to error-correction and error-detection, non-
malleability can be achieved for very rich classes of modifications.

We construct an efficient code that is non-malleable with respect to modifications that effect each bit of the
codeword arbitrarily (i.e. leave it untouched, flip it or set it to either 0 or 1), but independently of the value of the
other bits of the codeword. Using the probabilistic method, we also show a very strong and general statement:
there exists a non-malleable code for every “small enough” family F of functions via which codewords can be
modified. Although this probabilistic method argument does not directly yield efficient constructions, it gives
us efficient non-malleable codes in the random-oracle model for very general classes of tampering functions —
e.g. functions where every bit in the tampered codeword can depend arbitrarily on any 99% of the bits in the
original codeword.

As an application of non-malleable codes, we show that they provide an elegant algorithmic solution to the
task of protecting functionalities implemented in hardware (e.g. signature cards) against “tampering attacks”.
In such attacks, the secret state of a physical system is tampered, in the hopes that future interaction with the
modified system will reveal some secret information. This problem, was previously studied in the work of
Gennaro et al. in 2004 under the name “algorithmic tamper proof security” (ATP). We show that non-malleable
codes can be used to achieve important improvements over the prior work. In particular, we show that any
functionality can be made secure against a large class of tampering attacks, simply by encoding the secret-state
with a non-malleable code while it is stored in memory.

1 Introduction

Consider the following three-step process, which we call the “tampering experiment”:

1. A source message s is encoded via a (possibly randomized) procedure Enc, yielding a codeword c = Enc(s).
2. The codeword is modified under some tampering-function f ∈ F to an erroneous-codeword c̃ = f(c).
3. The erroneous-codeword c̃ is decoded using a procedure Dec, resulting in a decoded-message s̃ = Dec(c̃).

The tampering experiment can be used to model several interesting real-world settings, such as data transmitted
over a noisy channel, or adversarial tampering of data stored in the memory of a physical device, which we will
talk about more later. We would like to build special encoding/decoding procedures (Enc,Dec), which give us
some meaningful guarantees about the results of the above tampering experiment, for large and interesting families
F of tampering functions. Let us explore several possibilities for the type of guarantees that we may hope for.
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Error Correction. One very natural guarantee, called error correction, would be to require that for any tampering-
function f ∈ F and any source-message s, the tampering experiment always produces the correct decoded-
message s̃ = s. This notion of correction was first studied in the seminal work of Shannon in 1948 [33] with
respect to random noise (e.g each bit of the codeword c is flipped with some probability p < 1/2) and later by
Hamming in 1950 [18], who introduced the notion of an error-correcting code with respect to worst-case errors.
In particular, we can think of Hamming’s notion of an error-correcting code (with distance d) as guaranteeing the
error-correction property for the family F of functions f for which the Hamming distance between an erroneous-
codeword c̃ = f(c) and c is small (at most d/2− 1). Since their introduction, error-correcting codes have received
much attention and found countless applications in both theory and practice. There has also been some study of
error correction for other families F , such as ones where tampering functions preserve edit distance instead of
Hamming distance (see the survey of [25]). However, it is also clear that error correction cannot be achieved for
many natural (and simple) function families – such as even the single “zero function” f that maps all values x to
the all-zero string.

Error Detection. A weaker guarantee, called error-detection, requires that the tampering-experiment always
results in either the correct value s̃ = s or a special symbol s̃ = ⊥ indicating that tampering has been detected
(where the latter can only happen when the codeword has been modified to c̃ 6= c). This notion of error-detection
is a weaker guarantee than error-correction, and achievable for larger families F of tampering functions. For
example, Hamming’s notion of an error-correcting code with distance d can detect up to d − 1 errors (but only
correct d/2− 1 errors).

The recent work of Cramer et al. [11] introduced the notion of “Algebraic Manipulation Detection” (AMD)
codes. Such codes have an inherently randomized encoding procedure and guarantee that for any a-priori chosen
error-vector ∆ 6= 0, we get Dec(Enc(s) + ∆) = ⊥ with overwhelming probability over the randomness of the
encoding.1 In other words, these codes guarantee error-detection with respect to the family Ferr consisting of all
constant-error functions f∆ given by f∆(x) def= x + ∆. The definition of AMD codes is an interesting departure
from the traditional study of error correction/detection, where restrictions are usually placed on the relationship
between the codeword c and the erroneous-codeword c̃ (e.g. they are assumed to be close in some metric space).
Under the tampering-family Ferr, the erroneous-codeword c̃ = f∆(c) = c + ∆ can in principle take on any
possible value, and hence the final relationship between c and c̃ can be arbitrary. However, the tampering functions
f∆ ∈ Ferr are restricted in how they derive the erroneous-codeword c̃ from c, since the error-vector ∆ is specified
a-priori and independently of the value of c (which contains some randomness from the encoding procedure). We
take a similar view in this work, and study restrictions on the family F of tampering functions rather than just the
final relationship between a codeword and an erroneous codeword.

Unfortunately, even error detection cannot be achieved for many other natural (and simple) function families
F . For example, the family Fconst of all constant-functions fc∗(x) def= c∗, always contains some function that maps
all values to a “valid” codeword c∗ (for which Dec(c∗) 6= ⊥), and hence is neither correctable nor detectable.

Non-Malleability. As the main focus of this work, we present yet another meaningful and previously unexplored
notion, which we call “non-malleability”. A non-malleable code ensures that either the tampering experiment
results in a correct decoded-message s̃ = s, or the decoded-message s̃ is completely independent of and unrelated
to the source-message s. In particular, if the decoded-message is s̃ 6= s, then it does not reveal any information
about the source-message s. Compared to error correction or error detection, the “right” formalization of non-
malleability is somewhat harder to define.

Let Tamperfs be a random variable for the value of the decoded-message s̃, which results when we run the
tampering experiment with source-message s and tampering-function f , over the randomness of the encoding
procedure. Intuitively, we wish to say that the distribution of Tamperfs is independent of the encoded message s.
Of course, we also want to allow for the case where the tampering experiment results in s̃ = s (for example, if the
tampering function is identity), which clearly depends on s. Thus, we require that for every tampering-function

1We will often just use the addition operation + over bit-strings, where an n-bit string is interpreted as a value in Fn
2 .
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f ∈ F , there exists a distribution Df which outputs either concrete values s̃ or a special same? symbol, and
faithfully models the distributions of Tamperfs in the following sense: for every source-message s, the distributions
of Tamperfs and Df are statistically close when the same? symbol is interpreted as s. That is, Df specifies a
distribution for the “outcomes” of the tampering-experiment with a function f ∈ F , except that it is allowed some
ambiguity by outputting a same? symbol to indicate that the decoded-message should be the same as the source-
message, without specifying what the exact value is. The fact that Df depends on only f and not on s, shows that
the outcome of Tamperfs is independent of s, exempting equality.

Error-correction w.r.t. to some class F of tampering functions trivially implies non-malleability w.r.t. to F :
simply define Df to always output the same? symbol. Error-detection only implies non-malleability if for every
f ∈ F , the probability Pr[Dec(f(Enc(s))) = ⊥] (i.e. that a tampered codeword is invalid) is the same for all
source-message s. In that case, for each f ∈ F there is a distribution Df over {same?,⊥} which satisfies the
definition of non-malleability. For example, the above is the case for AMD codes where, for each f∆ ∈ Ferr,
Pr[Dec(f∆(Enc(s))) = ⊥] = Pr[Dec(Enc(s) + ∆) = ⊥] is either 0 if ∆ = 0, or negligbily close to 1 if ∆ 6= 0,
independently of s.

1.1 Main Results for Non-Malleability

We show that non-malleability can be achieved for many rich families F of tampering functions, for which error-
correction and error-detection are impossible.

Bit-Wise Independent Tampering. As one very concrete example, we study non-malleability with respect to the
family of functions f which specify, for each bit of the codeword c, whether to keep it as is, flip it, set it to 0, set it
to 1. That is, each bit of the codeword is modified arbitrarily but independently of the value of the other bits of the
codeword. We call this the “bit-wise independent tampering” family FBIT. Note that this family contains constant
functions Fconst and constant-error functions Ferr as subsets. Therefore, as we have mentioned, error-correction
and error-detection cannot be achieved w.r.t. this family. Nevertheless, we show an efficient non-malleable code
for this powerful family. Our construction, described in Section 4, is based on AMD codes (described above) and
a type of linear secret-sharing scheme (over bits) with some additional properties.

All families of bounded size. Even non-malleability cannot be achieved with respect to the family of all tam-
pering functions. No matter what encoding/decoding procedure one chooses, there is always some function f ,
which, on input c, computes s = Dec(c), sets s′ to be the same as s but with e.g. the last bit flipped, and outputs
c̃ = Enc(s′). However, we notice that this “bad” function f depends on the encoding/decoding procedure. There-
fore, even though for any coding scheme, there exists some tampering function f that breaks non-malleability, we
show that for any “small enough” tampering family F , there exists some coding scheme which is non-malleable
w.r.t. F . Note that, when considering codewords of size n, the family Fall of all tampering functions on n-bit
codewords has size given by log(log(|Fall|)) = n + log(n). Our result shows that for any slightly smaller family
F whose size is given by log(log(|F|)) < n, there exist non-malleable codes w.r.t. F and, in particular, a random
code is likely to be non-malleable with overwhelming probability. This is in contrast to error-correction and error-
detection, for which there exist some small families F (of size log(log(|F|)) = log(n)) for which no code can be
error-correcting or error-detecting (e.g. the family Fconst).

Unfortunately, our existential result is derived via a probabilistic method argument, and therefore does not
directly lead to efficient constructions. However, as a corollary of the probabilistic method argument, we can
show that efficient codes in the “random oracle model” are non-malleable w.r.t. large function families F . For
example, we get such non-malleable code w.r.t. all functions which tamper the left and right half of the codeword
independently.2 More generally, we get such codes for the family of functions f , where the ith bit in f(c) is a
function of an arbitrary fraction (say, 99%) of the bits of c.

2i.e. The family F of functions f : {0, 1}n → {0, 1}n which can be written as f1, f2 for f1, f2 : {0, 1}n/2 → {0, 1}n/2, such that,
for any value c = (c1, c2), we have f(c1, c2) = (f1(c1), f2(c2)).
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1.2 Application to Tamper-Resilient Cryptography

Traditionally, cryptographic security notions assume that an adversary only has “black-box” access to an attacked
system. That is, she can only observe the inputs/output behavior to the system, but gets no further information.
Such models often fail to capture physical reality, where an adversary can attack an actual physical implementation
of the system. Attacks which go beyond black-box access are called “implementation attacks”, and we distinguish
between two classes of such attacks, namely “leakage” and “tampering” attacks.3 Leakage-attacks refer to all
attacks where the adversary can learn some information about the secret internal state of a system by measuring
some properties of its physical implementation (e.g. timing, radiation, heat, power consumption). Tampering
attacks, on the other hand, refer to attacks where the adversary actively modifies the computation (e.g. by cutting
wires in the circuit or heating it to introduce random errors in memory), and then learns some information from
the input/output behavior of the modified computation. As an example of how such attacks are used, the work of
Boneh, DeMillo and Lipton [5] shows that if random faults are introduced into the computation of a single RSA
signature, then the resulting output can be used to factor the modulus. Of course, a physical attacker can be a
combine both leakage and tampering attacks.

To get any non-trivial security for an implementation, some degree of security against both, leakage and tamper-
ing attacks, is necessary: no security can be achieved if the device just leaks the entire secret state, and no security
can be achieved if the adversary can tamper the computation to the extent that she can simply replace the original
computation with a computation that outputs the entire secret state. The cryptographic community has recently seen
a flurry of work on cryptographic systems with leakage-resilience properties [24, 20, 15, 1, 12, 26, 21, 2, 14, 13, 29].
On the other hand, we are aware of only two works which formally study security against tampering attacks: the
work of Genaro et al. [16] and Ishai et al. [19].4 Our model of tamper-resilience is similar to that of [16] and we
first describe this model and our results. We then we compare this to the results (and model) of [16, 19].

Model of Tamper-Resilient Security. Following Gennaro et al. [16], we consider the problem of constructing
a secure device by combining secret “leakage-proof” but not “tamper-proof” memory with a public “tamper-
proof” and “leakage-proof” circuit. Thus, only the parts of the device that are fixed and publicly known cannot
be tampered with. The advantage of this approach is that one only has to manufacture some fixed tamper proof
circuitry, but the memory – which must be read/written constantly and thus is harder to protect – need not be
tamper-proof. On the other hand, as discussed in [24, 15], the requirement that all components of the device are
completely “leakage-proof” is a very strong one and very hard, if not impossible, to satisfy in practice. Luckily,
we can use the above-mentioned recent results on leakage-resilient cryptography to weaken this requirement, and
allow some bounded amount of information to leak during computation. Therefore, we are left with the task of
securing the tamper-prone memory against tampering attacks.

Our Results. We consider an arbitrary system 〈G, s〉 consisting of a public functionality G assumed to be im-
plemented on a “tamper-proof” and “leakage-proof” circuit, and a secret state s stored in “leakage-proof” but
“tamper-prone” memory. The system may be stateful and interactive: a user can invoke it periodically with inputs
x by submitting an Execute(x) command, at which point the system computes (y, s′)← G(x, s), updates its state
to s := s′ and outputs y. We call this type of interaction with the system black-box access. We also assume
that an adversary can, in addition, interact with the system by issuing Tamper(f) commands, for some tampering
functions f ∈ F , at which point the system state is modified to s := f(s). We call this type of interaction (via
both Execute and Tamper commands) tampering access to the system. Our goal is to take any system 〈G, s〉 and
compile it into a new system 〈G′, s′〉, which acts exactly the same as the original in any black-box interaction (i.e.
preserves functionality), but is also tamper resilient. We formalize the latter, by requiring that, for any adversary
A with tampering access to the compiled system 〈G′, s′〉, there is a simulator S which only has black-box access

3Leakage-attacks are often called “passive attacks”, whereas tampering (or tampering combined with leakage) attacks are called “active
attacks”.

4Ad-hoc solutions for some particular systems were proposed by [17, 23]. Some of these were subsequently broken [7, 9], highlighting
the need for formal study.
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to the original system 〈G, s〉 and “learns” the same information as A. In other words, tampering-access in the
compiled system does not give A any advantage over black-box access to the original.

As our main result for tamper-proof security, we show that any coding scheme (Enc,Dec), which is non-
malleable w.r.t. some family F , can be used to compile any system 〈G, s〉 into a system 〈GEnc,Dec,Enc(s)〉 which
is tamper-resilient w.r.t. F . The compiled system 〈GEnc,Dec,Enc(s)〉 stores its state in encoded form. As the first
step in any computation, the compiled system decodes its state and then runs the original computation with the
decoded state and the input. Lastly, at the end of the computation, the compiled system re-encodes its updated
state and updates the memory contents with the new state. On a high-level, the compiled system is tamper-resilient
since tampering with the encoded state c via a f ∈ F produces a predictable result, which is independent of the
underlying state s. More precisely, the tampering interaction can be simulated by sampling from the distributionDf

used to define non-malleability: if the outcome is the same? symbol, tampering-access to the compiled system can
be simulated by black-box access to the original system, and, if the outcome is some specific value s̃, tampering-
access can be simulated by running 〈G, s̃〉 independently of the original system.

Comparison to “Algorithmic Tamper-Proof Security” of [16]. As we mentioned, our model of tamper-resilient
security, where we assume a “tamper-proof”/“leakage-proof” public circuit and a “leakage-proof” but not “tamper-
proof” memory was proposed and studied by Gennaro et al. [16]. The main solution of that work consists of using
a (strong) public-key signature scheme and storing the state s along with a signature σ = Signsk(s) on memory.
In our context, we can think of this solution as using a keyed encoding scheme (Encsk,Decpk) where Encsk(s) is
now a secret encoding algorithm which outputs s along with a signature σ = Signsk(s) under the secret-key sk.
The decoding function Decpk(s, σ) verifies the signature σ using pk, outputs ⊥ if the signature is invalid, and s
otherwise. We compare the above solution with our solution using non-malleable codes.

Limited Functionality: The security notion achieved by the signature-based coding scheme does not satisfy our
notion of non-malleability, even for simple/natural function families like bit-wise independent tampering
FBIT. The problem is that a tampering-attacker can learn some limited information about the state s by (for
example) setting the first bit of the encoded state (s, σ) to 0. Then the decoded-message is s if and only
if the first bit of s already was 0, and ⊥ otherwise (as w.h.p. σ will not be a valid signature). Therefore,
the adversary can learn some bits of s via tampering attacks.5 This issue was already recognized in the
work of [16], but it was noted that tamper-resilient security is still achieved for some functionalities such
as signatures and encryption schemes where leaking logarithmically many bits about the secret key can be
tolerated without breaking the security. Unfortunately, even in these special cases, some problems come
up: for example, security breaks down if an adversary has tampering-access to many signature/encryption
devices that use the same secret key, and encryption security breaks down if the adversary can adaptively
perform a tampering attack based on the challenge-ciphertext. More generally, the signature-based solution
does not provide a general method for making any functionality G tamper-resilient. In contrast, our solution
using non-malleable codes gives us strong guarantees for all functionalities G, ensuring that a tampering
attack can always be simulated.

Secret-keyed Encoding: Another big difference between our solution and that of [16] is that our encoding/decoding
procedures are public and un-keyed, while that of [16] requires a secret-keyed encoding procedure (and a
public-keyed decoding). This has several implications. Firstly, the use of a secret-keyed encoding means
that state of G has to be decided by an outside party (that knows the secret signing-key sk) and cannot be
done by the system itself. In particular, this solution will not work for stateful functionalities G which need
to update their own state. Secondly, the use of keys brings up some key-management problems where the
“software” designer (who decides on the state s) needs to coordinate with the hardware designer (who knows
the signing key sk). In contrast, our solution has public encoding/decoding and therefore is applicable to
stateful functionalities G without requiring key-management.

5In fact, using this type of an attack, one can learn up to logarithmically many bits of s with polynomial probability. A “self-destruct”
feature, which we will discuss below, will prevent the adversary from launching this attack many times on different bits of the state,
ultimately learning the entire secret.
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Assumptions: The signature-based solution requires computational assumptions (one-way functions), while our
main constructions of non-malleable codes are information theoretic.

Tampering family F: The main benefit of the signature-based solution is that it allows for the most general family
F of all efficient tampering functions. In contrast, all of our solutions (necessarily) only consider smaller
classes of tampering functions, namely those for which non-malleable codes exist. In this aspect, our result
is weaker but still well motivated since tampering-attacks are unlikely to be “too complicated”. To the best
of our knowledge, bit-wise independent tampering (considered in Section 4) already covers the majority of
real-world tampering attacks that have been demonstrated in practice.

Self-Destruct/Self-Update: The ATP model of [16] assumes a “self-destruct” feature, which means that when-
ever the memory content decodes to ⊥ (i.e. is not of the form (s, σ) where σ is a valid signature of s), the
device is “destroyed”. This can be done by overwriting the memory content with some dummy value, say
the all-zero string, or setting some (tamper-proof) flag that prevents future use of the device.
Our construction of a tamper-proof systems via non-malleable codes has a similar self-destruct feature im-
plicitly built into it: the system freshly re-encodes its state after each invocation, where, if the decoding gives
⊥, the re-encoded value is set to a dummy all-zero string. For functionalities G(., .) which do not update
their state, this requirement imposes some overhead as memory must be written to.
It would be desirable to have a transformation achieving tamper-proof security w.r.t. to some class F from
codes which are non-malleable w.r.t. F (or some similar notion), where also the transformed system is
stateless. We leave this problem for future work. Here, we would only like to mention that our construction
of non-malleable codes for bit-wise independent tampering (FBIT) has some particular properties6 which
allow us to prove that our transformation (applied to stateless functionalities) remains tamper-proof even if
we simply omitt updating the sate. (We then need an explicit self-destruct as described above.)

Comparison to [19]. Ishai et al. [19] build a general circuit compiler where an adversary, who can tamper
with the wires of a compiled circuit, does not learn any more information than an adversary that only has black-
box access to the original circuit. The transformation uses techniques from multi-party computation and is quite
delicate. The model considered in that work is stronger as ours as it allows tampering of the “circuit” and “memory”
(essentially, memory corresponds to a subset of the wires associated with the state), whereas we only consider
tampering of “memory” but assume the circuit is tamper-proof. However, in this very general setting, the work of
[19] only considers a very limited tampering-function family that modifies a bounded subset of the wires between
each invocation (to tolerate tampering of t wires per invocaton, the compiler will blow up the cirucit size by a
factor of at least t). When restricted to memory, this would be analogous to standard error-correcting codes which
provide security against a bounded number of individual bit modification. In contrast, we achieve security for
much richer families F of tampering functions. It is an interesting open problem to combine the two approaches
and achieve tamper-proof security for circuits as [19], but for larger families F , and, ideally for all families for
which there exist non-malleable codes.

2 Preliminaries & Notation

For a randomized function g, we write g(x; r) to denote the value of g on input x using randomness r. Sometimes
we don’t want to make the randomness explicit and only write g(x) to denote the random variable g(x;R) for a
uniformly random R. The Hamming weight of a binary string x ∈ {0, 1}n, denoted wH(x) is the number of 1’s
in x. The Hamming distance of two strings x, x′, denoted dH(x, x′) def= wH(x − x′) is the number of positions
in which they differ. The Statistical Distance of two random variables X0, X1 with support X is SD(X0, X1) def=

6Informally, given some history f1, . . . , fi−1 of tampering functios that were applied to some unknown codeword, we can compute
(assuming the codeword is still valid) the probabilities that applying a tampering function fi will (1) produce an invalid codeword (2) leave
the encoded message unchanged or (3) produce an encoding of a different message. In the lats case we can also output a codeword having
the right distribution.

6



1/2
∑

x∈X |PX0(x)−PX1(x)|. If the statistical distance between X0 and X1 is negligible, we say that X0 and X1

are statistically indistinguishable and write X0 ≈ X1. We write X0 ≡ X1 if they are identically distributed.

3 Non-Malleable Codes

Definition 3.1 (Coding Scheme). A coding scheme consists of two functions: a randomized encoding function
Enc : {0, 1}k → {0, 1}n, and deterministic decoding function Dec : {0, 1}n → {0, 1}k ∪ {⊥} such that, for each
s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1 (over the randomness of the encoding algorithm).

We can also talk about coding-scheme ensembles, parametrized by a message length k ∈ N and security-
parameter λ ∈ N, so that, for each choice of k, λ, the ensemble contains an efficient code with n = n(k, λ). We
will often assume such ensembles implicitly, but will try not to complicate the exposition with additional notation.

We now define non-malleability w.r.t. some family F of tampering functions. We want to say that a code is
non-malleable, if the result of tampering with a codeword is independent of the encoded message. To do so, we
require that for each f ∈ F there is a universal distribution Df which, for all s, indicates what the likely outcomes
are when applying a tampering function f to a (random) encoding of s. The distribution Df only gets (black-box)
access to f(.), but does not get s. We allow Df to output a special same? symbol, to indicate that tampering via f
does not change the initial encoded message (without needing to commit to what that message is).

Definition 3.2 (Non-Malleability). Let F be some family of tampering functions. For each f ∈ F and s ∈
{0, 1}k, define the tampering-experiment

Tamperfs
def=
{
c← Enc(s), c̃← f(c), s̃ = Dec(c̃)

Output: s̃.

}
which is a random-variable over the randomness of the encoding function Enc. We say that a coding scheme
(Enc,Dec) is non-malleable w.r.t. F if for each f ∈ F , there exists a distribution Df over {0, 1}k ∪ {⊥, same?},
such that, for all s ∈ {0, 1}k, we have:

Tamperfs ≈
{

s̃← Df

Output s if s̃ = same?, and s̃ otherwise.

}
(1)

and Df is efficiently samplable given oracle access to f(·). Here “≈” can refer to statistical or computational in-
distinguishability. In case of statistical indistinguishability, we say the scheme has exact-security ε, if the statistical
distance above is at most ε.

We also define a slightly stronger notion, called strong non-malleability, which essentially says that, whenever
the codeword is actually modified to c̃ 6= c, the decoded-message s̃ is independent of s. This is in contrast to
the plain notion of non-malleability where some modifications of the codeword c could preserve the value of the
contained message s̃ = s. The stronger notion of non-malleability is somewhat simple to define.

Definition 3.3 (Strong Non-Malleability). Let F be a family of functions. We say that an coding scheme
(Enc,Dec) is strongly non-malleable w.r.t. F if for any s0, s1 ∈ {0, 1}k and any f ∈ F , we have:

StrongNMf
s0 ≈ StrongNMf

s1 where StrongNMf
s

def=
{

c← Enc(s), c̃← f(c), s̃ = Dec(c̃)
Output same? if c̃ = c, and s̃ otherwise.

}
(2)

Here “≈” can refer to statistical, or computational indistinguishability. In case of statistical indistinguishability,
we say the scheme has exact-security ε, if the statistical distance is at most ε.

Theorem 3.1. If a coding scheme (Enc,Dec) is strongly non-malleable w.r.t. to some family F , then it is non-
malleable w.r.t. F with the same exact security.
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Proof. Set Df = StrongNMf
s0 for some constant s0 ∈ {0, 1}k. Then, for each s ∈ {0, 1}k, Df ≈ StrongNMf

s and
so {

s̃← Df

Output s if s̃ = same?, and s̃ otherwise.

}
≈

{
s̃← StrongNMf

s

Output s if s̃ = same?, and s̃ otherwise.

}
≡

{
c← Enc(s), c̃← f(c), s̃ = Dec(c̃)

Output: s̃.

}
.

2

4 Bit-Wise Independent Tampering

With FBIT we denote the family which contains all tampering functions that tamper every bit independently.
Formally, this family contains all functions f : {0, 1}n → {0, 1}n that are defined by n functions fi : {0, 1} →
{0, 1} (for i = 1, . . . , n) as f(c1, . . . , cn) = (f1(c1), . . . , fn(cn)). Note that there are only 4 possible choices for
each fi (i.e. how to modify a particular bit) and we name these “set to 0”, “set to 1”, “flip”, “keep” where the
meanings should be intuitive. We call the above family the bit-wise independent tampering family.

As discussed in the introduction, standard notions of “error correction” and “error detection” trivially cannot be
achieved against this class. Note that the family Ferr of constant-error functions which was studied in the context
of AMD codes is a subset of FBIT.7 Bitwise independent tampering is interesting in the context of tamper-proof
security, as most practical attacks tamper with each bit in the computing circuit and/or the memory individually. In
Section Section 6 we’ll show how non-malleable codes can be used to protect any functionality against tampering
of the memory.

4.1 Construction

Before proceeding with the construction, we first define two primitives which are interesting in their own right:
a type of secret sharing scheme over bits that also has a large distance, and AMD codes which we mentioned
previously in the introduction.

Definition 4.1 (LECSS Schemes). Let (E,D) be a coding scheme with source-messages s ∈ {0, 1}k and code-
words c ∈ {0, 1}n. We say that the scheme is a (d, t)-linear error-correcting secret-sharing (LECSS) scheme if the
following properties hold:

• Linearity: For all c ∈ {0, 1}n, such that D(c) 6= ⊥, all ∆ ∈ {0, 1}n, we have

D(c+ ∆) =
{
⊥ if D(∆) = ⊥
D(c) + D(∆) otherwise

• Distance d: For all non-zero c̃ ∈ {0, 1}n with hamming-weight wH(c̃) < d, we have D(c̃) = ⊥.
• Secrecy t: For any fixed s ∈ {0, 1}k, we define the random variables C = (C1, . . . , Cn) = E(s), where Ci

denotes the bit of C in position i (and where the randomness comes from the encoding procedure). Then the
random variables {Ci}1≤i≤n, are individually uniform over {0, 1} and t-wise independent.

Definition 4.2 (AMD Codes [11]). Let (A,V) be a coding scheme with A : {0, 1}k → {0, 1}n. We say that (A,V)
is a ρ-secure algebraic manipulation detection (AMD) code if for all s ∈ {0, 1}k and all non-zero ∆ ∈ {0, 1}n we
have Pr[V(A(m) + ∆) 6= ⊥] ≤ ρ, where the probability is over the randomness of the encoding.

Our main theorem of this section shows that, by composing an AMD code with a LECSS scheme, we get a
non-malleable code for the bit-wise independent tampering family FBIT.

7They are defined as the functions in FBIT, but where the fi can only be “keep” or “flip”, but not “set to 0” or “set to 1”.

8



Theorem 4.1. Let (E,D) be a (d, t)-LECSS with E : {0, 1}k → {0, 1}n′ and distance d > n/4. Let (A,V) be a
ρ-secure AMD code where A : {0, 1}k′ → {0, 1}n and k′ = n′. Define the composed code (Enc,Dec) by

Enc(s) def= E(A(s)) , Dec(c) def=
{
⊥ if D(c) = ⊥
V(D(c)) otherwise

Then (Enc,Dec) is non-malleable with respect to the family FBIT with exact security ε ≤ max
(
ρ , 2−Ω(t)

)
.

The proof of the theorem appears in Appendix A, and is fairly delicate. Below, we sketch only the high-level
idea. To prove the theorem, we must show that for each f ∈ FBIT, there is a distribution Df which satisfies
Definition 3.2. To do so, we look at how many of the component function fi that make up f , are of the form “set
to 0” or “set to 1”. If this number is too small (less than t) then tampering via f is really equivalent to adding some
offset ∆ to A(s), from a distribution which is independent of A(s). Therefore, there is some universal probability
with which ∆ = 0 (in which case Df should output same?) and ∆ 6= 0 (in which case Df should output ⊥ since
the security of the AMD codes ensure that such modifications are likely to be detected). On the other hand, if
the number of fi that are “set to 0”/“set to 1” is too high (more than n − t) then the values in the positions of
c̃ = f(Enc(s)) that are not “set” are uniformly random. Therefore Df can sample the value of c̃ independently
of s. Lastly, we show that when the number of fi that are “set to 0”/“set to 1” is in between t and n − t, then
the erroneous codeword decodes to ⊥ with overwhelming probability. This is where we need the distance of the
LECSS to be d > n/4.8 Essentially, we show that in this case there exists some codeword c∗ such that the tampered
value c̃ is neither likely to math c∗ exactly nor is it likely to be be far-away enough from it to be a valid codeword
under the LECSS scheme.

We note that the idea of composing AMD codes together with linear secret-sharing schemes also appeared
explicitly in [11] (and implicitly in [27, 6, 28]) in the context of “robust secret sharing”, but the application in this
work and the main ideas behind our proof are very different.

4.2 Instantiating the Construction

To actually instantiate a construction of the non-malleable code defined above, we need constructions of AMD
codes and of LECSS-schemes. For the former, very efficient constructions of AMD codes were given by [11]
where, to achieve security ρ ≤ 2−λ, the encoding has an additive overhead of roughly 2λ bits. On the other hand,
LECSS-schemes have not been explicitly defined or constructed in literature. We note that there is a clear con-
nection between LECSS-schemes, linear ramp secret-sharing schemes, and error-correcting codes. Ramp secret-
sharing schemes have mostly been considered for larger alphabet sizes (e.g. Shamir Secret Sharing [32]) and not
over bits, an exception is the work of Pueyo et al. [30]. However, no known constructions of ramp secret-sharing
schemes over bits achieve distance d > n/4 over bits, as required for our application. In Appendix B, we show
how to instantiate LECSS schemes with large d, t efficiently, based on random linear error-correcting codes (recall,
that our construction does not require efficient error-decoding). The main ideas for this construction are based on
the work of Chen et al. [8], which shows how to relate the secrecy t of a LECSS to the dual-distance of an underly-
ing error correcting code. In addition, it shows that a random linear error-correcting code will (with overwhelming
probability) achieve a large distance d and a large dual distance yielding a large t. Combining the analysis in
Appendix B with Theorem 4.1 we get the following parameters.

Theorem 4.2. For any constant δ > 0, any n ∈ N, there exist efficient non-malleable codes w.r.t. the family
FBIT, with codeword size n, message size k ≥ (1 − H(1/4) − δ)n and security ε = 2−Ω(n), where H(x) def=
−x log2(x)− (1− x) log2(1− x) is the Shannon entropy function. In particular, the rate of the code can be made
to approach k/n ≈ (1−H(1/4)) ≈ .1887. Moreover, there is an efficient procedure which, given k and n, outputs
a description of such a code with probability 1− 2−Ω(n).

8Interestingly, the requirement that d > n/4 is not an artifact of the proof-technique but an optimal bound at this level of generality. In
particular, there are examples of LECSS constructions with d < n/4 for which our construction would not be secure.
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4.3 Improving Efficiency

One issue with our construction is that the rate k/n of the scheme is less than 1/5 and therefore relatively poor.
We now address this issue by showing that any non-malleable code w.r.t FBIT, with any constant rate k/n, can
be converted into computationally secure non-malleable code w.r.t FBIT, where the new rate k′/n′ asymptotically
approaches 1. The main idea is to combine an encoding scheme (Enc,Dec) from the previous sections with an
authenticated encryption scheme (AuthEncrypt,AuthDecrypt) in the following way: to encode a message s we
take a random key key and store (Enc(key),AuthEncryptkey(s)). The decoding of (c0, c1) is straightforward: first
compute key′ = Dec(c0), and then output AuthDecryptkey′(c1). Security of this construction is shown in the proof
of the following theorem (which appears in Appendix C).

Theorem 4.3. Assuming the existence of one-way functions, there are efficient computational non-malleable codes
w.r.t the family FBIT, where the rate k/n asymptotically approaches 1.

5 A General Result for Tampering-Function Families of Bounded Size

5.1 A Probabilistic Method Approach

We now show that, for any “small enough” function family F , there exists a (possibly inefficient) coding scheme
which is non-malleable w.r.t. F . Moreover, we show that for a fixed “small enough” function family F , a random
coding scheme is likely to be non-malleable w.r.t. F with overwhelming probability. Unfortunately, random coding
schemes cannot be efficiently represented, nor is the encoding/decoding function likely to be efficient. Therefore,
this result should merely be thought of as showing “possibility” and providing a target that we should then strive
to match constructively. Moreover, this result also highlights the difference between “error-correction//detection”
and “non-malleability” since a result of this form could not be true for the former notions.

Let us now clarify what we mean by “small enough”. The family Fall of all functions f : {0, 1}n → {0, 1}n
has size log(log(|Fall|)) = n + log(n). Clearly, no code is non-malleable w.r.t. the family Fall, since this family
includes e.g. the function that decodes the codeword, flips the last bit of the source message, and re-encodes it.
However, we show that for any function family F of slightly smaller size log(log(|F|)) < n, there exist codes that
are non-malleable w.r.t. F .

Lastly, let us clarify what we mean by “random” coding scheme. We can define a coding scheme completely
by only specifying the decoding function Dec : {0, 1}n → {0, 1}k∪⊥, which then implicitly defines an encoding
function Enc that maps a source message s uniformly at random into the set {c ∈ {0, 1}n|Dec(c) = s}. For us, a
random coding scheme is a scheme of this type, where the decoding function is chosen uniformly at random from
all function Dec : {0, 1}n → {0, 1}k; that is, we specify the decoding function by taking each value c ∈ {0, 1}n
and letting it decode to a uniformly random source message s ∈ {0, 1}k. Note that there are no invalid values
c ∈ {0, 1}n that decode to ⊥. See Appendix D for a proof of the following theorem.

Theorem 5.1. Let F be any function family consisting of functions f : {0, 1}n → {0, 1}n. Let ε, ρ > 0 be
arbitrary values and k, n > 0 be integers such that

n > log(log(|F|)) + 3k + log(k) + 2 log (1/ε) + log (log (1/ρ)) + 9.

Then there exists a strongly non-malleable code w.r.t. F , with k-bit source-messages and n-bit codewords, and
exact security ε. Moreover, a uniformly random decoding function Dec : {0, 1}n → {0, 1}k gives rise to such a
code with probability ≥ 1− ρ.

5.2 Constructions in the Random Oracle Model

It is not clear what the bound from Theorem 5.1 actually implies. For example it does tell us that non-malleable
codes exist with respect to all efficient functions, but this is misleading as we know that efficient non-malleable
codes (and ultimately we are only interested in such) cannot be non-malleable w.r.t. this class.
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Nonetheless, as we’ll explain below, the result by the probabilistic method method does give us codes which
are non-malleable w.r.t. very general classes of functions in the random oracle model. By Theorem 5.1, a random
decoding Dec : {0, 1}n → {0, 1}k will be non-malleable, thus we could instantiate Dec with a random oracle, but
then it is ont obvious how to implement the corresponding encoding Enc efficiently.

Coron et al. [10] show how to construct a permutation (which can be queried from both sides) form a random
oracle which is indifferentiable from a uniformly random permutation. Thus, instead of a random oracle, we can
assume (cf. Proposition 2 in [22]) that we have a uniformly random permutation P over {0, 1}n. We then define
the encoding Enc(x; r) def= P(x, r) for messages x ∈ {0, 1}k and randomness r ∈ {0, 1}n−k. The decoding of
c ∈ {0, 1}n are simply the first k bits of P−1(c).9

Thus, we can get a non-malleable code w.r.t. any F as in Theorem 5.1 relative to a random oracle. It is
important to note that here the tampering functions f ∈ F cannot have access to the random permutation P .10 For
this reason, this should not be considered a result in the random oracle model, where one usually assumes that the
oracle is accessible by all parties.11 To get a result in the random oracle model, we must give all parties, including
the tampering functions, access to the random oracle.

Definition 5.1 (Closed Class of Tampering Functions.). Consider a class F of oracle tampering functions, that
is, a function f ∈ F can have special oracle gates. With fO we denote f where the oracle queries are answered
by an oracle O. For some (compatible) oracle O, FO denotes the class of functions fO where f ∈ F . We say F
is closed, if for every oracle O and every fO ∈ FO, there exists an f ′ ∈ FO (where f ′ has no oracle gates) such
that f ′ and fO are the same function.

Clearly, if F is closed, then the subset F̂ ⊂ F of functions with no oracle gates makes up the entire class,
i.e. F̂ = FO for any O. So when considering a code that is non-malleable w.r.t. to a closed class F relative to a
random oracle model, it doesn’t make a difference whether we give the tampering functions access to the random
oracle or not. Summarizing the above discussion, we get the following theorem.

Theorem 5.2. Let F , ε, δ, n, k be as in Theorem 5.1, but where f ∈ F can have oracle gates. If F is closed, then
there exists an efficient non-malleable code w.r.t. to F in the random oracle model with exact security ε + δ +
O(q16/2n). (where q is the number of oracle queries made by the adevrsary.)

The extra O(q16/2n) error term comes from the bound proven in [10], it can be avoided if we directly assume
access to a uniformly random permutation (this is called the ideal-cipher model). The distance in the distributions
as mentioned in footnote 9 is also captured by this term.

Examples of Closed Classes. An interesting and natural closed family consists of functions that tamper each
half of the codeword independently: that is f ∈ Fhalf if we can write f : {0, 1}n → {0, 1}n as f(c1, c2) def=
(f1(c1), f2(c2)) for f1, f2 : {0, 1}n/2 → {0, 1}n/2. This family has size log(log(|Fhalf |)) = n/2 + log(n) as
required by Theorem 5.1, and thus by Theorem 5.2, there exist non-malleable codes for Fhalf with rate k/n ≈ 1/6.

More generally, for any δ < 1 we can consider the class Fδ where f ∈ Fδ if every bit of f(c) depends only
on a subset of at most bδnc bits of c. (Fhalf just discussed is thus a subset of F0.5.) The size of this class is
log(log(|Fδ|) ≤ δ · n+ 2 log(n) as required by Theorem 5.1.

9The distribution on Dec is not exactly the distribution of a random decoding function as analyzed in Theorem 5.1, as now we are using
a random permutation instead of a random function. But when considering efficient adversaries that only make a polynomial (in n) number
of queries, this is irrelevant as the distance in the distributions will be exponentially small.

10Otherwise e.g. the class F containing the single function f , where fP(c) decodes c and then re-encodes the message with the last bit
flipped, is a counterexample.

11Security proofs in the random oracle model only exploit the fact that an exponential amount of uniform randomness is efficiently
accessible by all parties, not that some entities (like, in our case, tampering functions) cannot access this randomness.
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6 Tamper-Resilient Security

In this section, we formally define the notion of tamper-resilient security as outlined in the introduction. We
consider some interactive stateful system 〈G, s〉 consisting of a pubic (possibly randomized) functionality G :
{0, 1}u × {0, 1}n → {0, 1}v × {0, 1}n and secret initial state s ∈ {0, 1}n. We consider two ways of interacting
with the system:

Execute(x): A user can provide the system with Execute(x) queries, for x ∈ {0, 1}u, in which case the system
computes (y, s′)← G(x, s), updates the state of the system to s := s′ and outputs y.

Tamper(f): We also consider tampering attacks against the system, modeled by Tamper(f) commands, for func-
tions f : {0, 1}n → {0, 1}n. Upon receiving such command, the system state is set to s := f(s).

Honest users only interact with a system via Execute queries. As we discussed in the introduction, an attacker
that can also interact with the system via Tamper queries can potentially learn significantly more about the secret
state, even recover it entirely. Therefore, we would like to have a general method for securing systems against
tampering attacks, so that the ability to issue Tamper queries (at least for functions f in some large family F)
cannot provide the attacker with additional information. We show how to use non-malleable codes for this purpose.
First, we define what it means to harden a functionality G via a code (Enc,Dec).

Definition 6.1. Let (Enc,Dec) be any coding scheme with k-bit messages and n-bit codewords. LetG : {0, 1}u×
{0, 1}k → {0, 1}v × {0, 1}k be an arbitrary functionality with k-bit state. We define the hardened functionality
GEnc,Dec : {0, 1}u × {0, 1}n → {0, 1}v × {0, 1}n to be the functionality (with n-bit state) which, on input
(x, c) ∈ {0, 1}u × {0, 1}n, computes s ← Dec(c) and checks if s ?= ⊥. If so, it outputs a dummy-value (0u, 0n).
Otherwise it computes (y, s′)← G(x, s) and outputs (y,Enc(s′)).

It is easy to see that the original system 〈G, s〉 and the hardened system 〈GEnc,Dec,Enc(s)〉 always behave
exactly the same with respect to any series of Execute commands. Of course, they do not act the same with respect
to Tamper commands, and that’s the point; we wish to show that the hardened system 〈GEnc,Dec,Enc(s)〉 is tamper-
resilient and renders tampering attacks useless. We formally define this property next, as essentially saying that
for any adversary A that interacts with the hardened system 〈GEnc,Dec,Enc(s)〉 via Execute and Tamper queries,
there is a simulator S that interacts with the original system 〈G, s〉 only via Execute queries and learns the same
information as A. In particular we say that a coding scheme (Enc,Dec) is tamper simulatable if it can be used to
securely harden any system 〈G, s〉 into a tamper-resilient system 〈GEnc,Dec,Enc(s)〉.

Definition 6.2 (Tamper-Simulatability). A coding scheme (Enc,Dec) with k-bit messages and n-bit codewords
is tamper-simulatable w.r.t. a function family F , if there exists a simulator S such that, for any functionality G
with k bit state, any adversary A, and any initial state s ∈ {0, 1}k we have

TamperInteract(A,F , 〈GEnc,Dec,Enc(s)〉) ≈ BBInteract(S, 〈G, s〉)

where TamperInteract and BBInteract are defined as follows.

TamperInteract(A,F , 〈G, s〉): The adversary A interacts with the system 〈G, s〉 for arbitrarily many rounds of
interactions where, in each round:

1. The adversary can “tamper” by executing a Tamper(f) command against the system, for some f ∈ F .
2. The adversary runs an Execute(x) query for some x ∈ {0, 1}u, and receives the output y.

The output of the game consists of the output of the adversary A at the end of the interaction, along with all
of the execute queries x1, x2, . . .

BBInteract(S, 〈G, s〉): The simulator interacts with the system 〈G, s〉 for arbitrarily many rounds of interaction
where, in each round, it runs an Execute(x) query for some x ∈ {0, 1}u and receives the output y. The
output of the game consists of the output of the simulator S at the end of the interaction, along with all of
the execute-query inputs x.
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The simulator S gets black-box access to the adversary A, the functionality G(·, ·), and any tampering functions
f(·) produced by A (but does not get the state s). Here ≈ can refer to statistical, or computational indistinguisha-
bility.

Note that the TamperInteract and BBInteract games include all of the “execute” queries submitted by A and
S in their outputs. This prevents the simulator from submitting queries which A would not have asked: e.g. if
A performs tampering attacks but only queries the system on some three inputs x1, x2, x3 then S must simulate
this without tampering queries by only querying its system on the same inputs x1, x2, x3. Also, note that in the
definition of the TamperInteract game, we only allow the adversary to submit one tampering query Tamper(f) in
each round. For families F which are closed under composition (i.e. for any f1, f2 ∈ F , we have f1 ◦ f2 ∈ F) this
is without loss of generality, as submitting several tamper queries in a row can always be subsumed via a single
query. We now show that a code (Enc,Dec) is tamper-simulatable w.r.t. F if it is non-malleable w.r.t. F . See
Appendix D for a proof of the following theorem.

Theorem 6.1. Let (Enc,Dec) be any coding scheme which is non-malleable w.r.t. F . Then (Enc,Dec) is also
tamper-simulatable w.r.t. F .

7 Conclusions

In this work, we introduce and explore the notion of non-malleable codes and present several constructions. We
show the application of such codes to the problem of tamper-resilience. There are several interesting open problems
left by this work. Firstly, we would like to design efficient non-malleable codes for more function families F . For
example, we would like to build such codes for the families as discussed in Section 5.2 without relying on random
oracles. Another interesting open problem would be to figure out the optimal rates of such codes for various
families. For example, even our existential result only achieved a rate of at most 1/3 (for even small function
families F) and our efficient construction for bit-wise independent tampering only achieved a rate of at most
.1887. It would be interesting to see if these can be improved or if there are some inherent lower bounds.
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[6] Sergio Cabello, Carles Padró, and Germán Sáez. Secret sharing schemes with detection of cheaters for a
general access structure. Des. Codes Cryptography, 25(2):175–188, 2002.

[7] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 398–412. Springer-Verlag, Berlin, Germany, August 1999.

[8] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod Vaikuntanathan. Secure computa-
tion from random error correcting codes. In Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007,
volume 4515 of Lecture Notes in Computer Science, pages 291–310. Springer-Verlag, Berlin, Germany, May
2007.
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A Proof of Theorem 4.1

We prove the following exact security. For every even t > 6,

ε ≤ max

(
ρ ,

1
2t

+
(

t

n(d/n− 1/4)2

)t/2 )
.

Proof of Theorem 4.1. Fix any tampering function f = (f1, . . . , fn) ∈ F . We show that there exists a distribution
Df which satisfies the definition of non-malleability. To help with notation, for every s ∈ {0, 1}k, we define the
random variables:

Cs
def= Enc(s) , C̃s

def= f(Cs) , ∆s def= C̃s − Cs , S̃s
def= Dec(C̃s).

We use the notation Csi (resp. C̃si , ∆s
i ) to denote the bit of Cs (resp. C̃s, ∆s) in position i ∈ {1, . . . , n}. We

also define the distribution Patch(Df , s) which samples s̃← Df and outputs s if s̃ = same? and s̃ otherwise. To
prove the theorem, we must show that there exists a distribution Df such that SD(S̃s , Patch(Df , s)) ≤ ε for all
s ∈ {0, 1}k. Let q be the number of positions i ∈ {1, . . . , n} for which fi is one of the functions “set to 0”/“set to
1”. We split the rest of the proof into 4 cases based on the value of q.

Case 1, q ≤ t: In this case, the distribution of ∆s is the same for all s. In particular:

• For i such that fi =“keep”, ∆s
i = 0. For i such that fi=“flip”, ∆s

i = 1.

• Let A be the set of i for which fi =“set to 0” or fi =“set to 1”. For i ∈ A, ∆s
i are uniformly random over

{0, 1} and independent.
Since |A| = q ≤ t, we rely on the t-secrecy of the LECSS, which tells us that the random variables
{Csi }i∈A are independent and uniform over {0, 1}. Since {fi(Csi )}i∈A are constants, we see that {∆s

i =
Csi − fi(Csi )}i∈A are uniformly random and independent variables for all s.

Therefore, there is a universal distribution ∆ such that ∆ ≡ ∆s for all s and so:

S̃s ≡ Dec(C̃s) ≡ V(D(Cs + ∆s))
≡ V(D(Cs) + D(∆s)) ≡ V(A(s) + D(∆s)) (3)

≡ V(A(s) + D(∆))

where (3) follows by the linearity property of the LECSS. Therefore:

1. Conditioned on D(∆) 6= 0, Pr[S̃s = ⊥] ≥ (1− ρ).
This follows by the security of the AMD code, and the fact that D(∆) is independents of the randomness of
the AMD encoding.

2. Conditioned on D(∆) = 0, Pr[S̃s = s] = 1.

We define the distribution Df which samples δ ← ∆ and outputs same? if D(δ) = 0 and ⊥ otherwise. By
conditions 1,2 it is easy to see that, for all s ∈ {0, 1}k,

SD(S̃s,Patch(Df , s)) ≤ ρ

which concludes the proof of Case 1.
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Case 2, q ≥ n− t: In this case, the distribution of C̃s is the same for all s. In particular:

• For fi =“set to 0”, C̃si = 0. For fi=“set to 1”, C̃si = 1.

• Let B be the set of i for which fi =“keep” or fi =“flip”. For i ∈ B, C̃si are uniformly random over {0, 1}
and independent.
This is because |B| = n − q ≤ t. By the t-secrecy of the LECSS, the random variables {Csi }i∈B are
uniformly random and independent and hence so are the variables {C̃si = fi(Csi )}i∈B .

Therefore, there is a universal distribution C̃ such that C̃ ≡ C̃s for all s and so S̃s ≡ Dec(C̃s) ≡ Dec(C̃). We
define the distribution Df which samples C̃ as above, and computes Dec(C̃). It is clear that, for all s ∈ {0, 1}k,

SD(S̃s,Patch(Df , s)) ≤ SD(S̃s, Df ) = 0.

which concludes the proof of Case 2.

Case 3, t < q ≤ n/2: In this case, the distribution Df just outputs ⊥. Fix any s ∈ {0, 1}k. It is easy to see that

Pr[S̃s 6= ⊥] ≤ Pr[Dec(C̃s) 6= ⊥] ≤ Pr[D(∆s) 6= ⊥].

We are now only left to show that Pr[D(∆s) 6= ⊥] is small. Define A be the set of indices i for which fi is of the
form “set to 0”/“set to 1”, so that |A| = q. Note that {∆s

i}i 6∈A are completely fixed by f to some constants (∆s
i is

fixed to 0 if fi is “keep” and fixed to 1 if fi is “flip”). Let δ∗ ∈ {0, 1}n be any value which is consistent with the
fixed bits of ∆ so that {∆s

i = δ∗i }i 6∈A, and for which D(δ∗) 6= ⊥. If no such value exists then we are done since
D(∆s) = ⊥ with probability 1, so let’s assume that some such value exists.

It is easy to see that Pr[∆s = δ∗] ≤ 1
2t since the random variables {∆s

i}i∈A are uniform over {0, 1} and
t-wise independent. So ∆s is unlikely to match δ∗ exactly. On the other hand, we show that the Hamming distance
dH(∆s, δ∗) is unlikely to be too large. In particular the expected value of this distance is:

E[dH(∆s, δ∗)] = E

[
n∑
i=1

dH(∆s
i , δ
∗
i )

]
= E

[∑
i∈A

dH(∆s
i , δ
∗
i )

]
=
∑
i∈A

E [dH(∆s
i , δ
∗
i )] =

q

2
.

where the second equality follows by the fact that ∆s
i = δ∗i for i 6∈ A, the third equality follows by the linearity

of expectation and and the fourth equality follows since, each ∆s
i for i ∈ A is individually uniform. We now

wish to bound the probability that dH(∆s, δ∗) =
∑

i∈A dH(∆s
i , δ
∗
i ) is greater than the distance d of the LECSS

scheme. Since {dH(∆s
i , δ
∗
i )}i∈A are t-wise independent random variables, we can use (Chernoff-Hoeffding type)

tail inequalities for bounded independence (see [31, 4]) to bound the above probability. In particular:

Pr [dH(∆s, δ∗) ≥ d] ≤ Pr [ |dH(∆s, δ∗)− q/2| ≥ d− q/2 ]

≤
(

nt

(d− q/2)2

)t/2
≤
(

nt

(d− n/4)2

)t/2
(4)

≤
(

t

n(d/n− 1/4)2

)t/2
where (4) follows by the tail inequality of Bellare and Rompel [4], Lemma 2.2. Finally, we see that

Pr[D(∆s) 6= ⊥] ≤ Pr[∆s = δ∗ ∨ dH(∆s, δ∗) ≥ d] ≤ 1
2t

+
(

t

n(d/n− 1/4)2

)t/2
which concludes the analysis of Case 3.
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Case 4, n/2 < q < n− t: In this case, the distribution Df just outputs ⊥. Fix any s ∈ {0, 1}k. It is easy to see
that Pr[S̃s 6= ⊥] ≤ Pr[D(C̃s) 6= ⊥] and so we are left to show that this last probability is small. To show this, we
essentially re-use the analysis of Case 3 and note the symmetry between the distribution of C̃s in this case and ∆s

in Case 3. In particular, define B be the set of indices i for which fi =“keep”/“flip”, so |B| = n − q and hence
t ≤ |B| ≤ n/2. Note that {C̃si }i 6∈B are completely fixed by f . Let c̃∗ ∈ {0, 1}n be any value which is consistent
with the fixed portion of C̃s so that {C̃si = c̃∗i }i 6∈B . Again, if no such value exists then we are done. Otherwise,
we re-use the exact same analysis as in Case 3 to argue that

Pr[D(C̃s) 6= ⊥] ≤ Pr[C̃s = c̃∗ ∨ dH(C̃s, c̃∗) ≥ d] ≤ 1
2t

+
(

t

n(d/n− 1/4)2

)t/2
which concludes the analysis of Case 4. Since these are the only possible cases for q, this concludes the proof of
the theorem.

2

B Construction of Linear Error-Correcting Secret Sharing

Recently, Chen et al. [8] formalized the connection between secret-sharing schemes and error-correcting codes
with large dual distance. Since our terminology and exact construction differ slightly, we state and prove the
following lemma, which is essentially equivalent to the result of [8].

Lemma B.1 (Based on [8]). LetG be a (k+`)×n generator matrix over some field F, generating a code C ⊆ Fn
with distance d. Let Ĝ be the sub-matrix consisting of the last ` rows of G, let Ĉ ⊆ C be the sub-code generated by
Ĝ and let Ĉ⊥ be the dual-code to Ĉ. Let d̂⊥ be the distance of Ĉ⊥.

We define the coding scheme (E,D), with source messages s ∈ Fk. The encoding algorithm computes E(s) def=
(s, r)G for a uniformly random r ∈ F`. The decoding algorithm Dec(c) checks if c is a codeword in C: if so, it
decodes c to (s′, r′) ∈ Fk×F` and outputs s′; otherwise, it outputs⊥.Then (E,D) is a (d, t)-LECSS scheme where
t = d̂⊥ − 1.

Proof. The linearity and distance d of the LECSS follows directly from the linearity and distance of C. To analyze
privacy, note that for any s ∈ Fk, we have E(s) = (s, r)G = (s, 0)G + rĜ and so we just need show that the
components of ĉ = rĜ are individually uniform and t-wise independent for a random r. To show this, we use a
well-known fact from coding theory that, if the distance of Ĉ⊥ is d̂⊥ then any t = d̂⊥ − 1 columns of Ĝ must be
linearly independent. Therefore, for any fixed set of indices A ⊆ {1, . . . , n} of size |A| = t, multiplication by Ĝ
is a surjective linear function when restricted to the columns i ∈ A and so the components of ĉ = rĜ in positions
i ∈ A are uniformly random and independent. 2

Unfortunately, it is unclear how to construct an error-correcting code C which has a good distance d > n/4
and having a sub-code Ĉ with large dual-distance d̂⊥, over a binary alphabet. For example, we can explicitly get
codes with large distance (approaching 1

2 ) using concatenated codes (such as Forney or Justesen codes), but the
dual-distance of a concatenated code may only be equal to the dual-distance of the inner code, which is usually
small. Therefore, we do not know of any explicit constructions of such codes, and it remains as an interesting
open problem. However, it is relatively easy to show that a random linear error-correcting code is likely (with
overwhelming probability) to simultaneously achieve very high distance d for C and high dual-distance d̂⊥ for
Ĉ⊥ as defined in Lemma B.1. We note that, in our context, using random linear error-correcting codes is very
efficient, since the representation size of such code, the encoding procedure, checking if a value c is a codeword,
and decoding a codeword without errors are all very efficient. In particular, the construction in Lemma B.1 does
not require the ability to efficiently correct errors, which is believed to be hard for random linear codes. The
following result, explicitly shown by Chen et. al. [8] (see Theorem 4 and Corollary 1), follows from a Gilbert-
Varshamov type of argument showing that random linear error-correcting codes achieve good distance and also
good dual-distance.
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Lemma B.2 ([8]). Let G be a uniformly random generator matrix from the space of (k+ `)×n matrices over F2

with linearly-independent rows. Let C, Ĉ, Ĉ⊥, d and d̂⊥ be defined as in Lemma B.1. Then for any 0 < α, α̂ < 1
2 ,

Pr[ (d > αn) and (d̂⊥ > α̂n)] > 1− 2k+`−n(1−H(α)) − 2`−nH(α̂)

where the probability is taken (only) over the choice of G, and H(x) def= −x log2(x)− (1− x) log2(1− x).

B.1 Proof of Theorem 4.2

Using the above two lemmas, we are now ready to prove Theorem 4.2

Proof of Theorem 4.2. First, given δ > 0 there are constants δ0 > 0, δ1 > 0 such that

(1−H(1/4)− δ) = (1−H(1/4 + δ0)− δ1).

Let k′ = (1−H(1/4 + δ0)− δ1/4)n and ` = (δ1/4)n. Let α̂ be a constant such that H(α̂) ≤ δ1/8. If we choose
a random (k′ + `) × n matrix G over F2, and define C, Ĉ, Ĉ⊥, d, d̂⊥ as in Lemma B.1, then using the bounds of
Lemma B.2, we will get d ≥ (1/4 + δ0)n and d̂⊥ ≥ α̂n with probability

1− 2k
′+`−n(1−H(1/4+δ0)) − 2`−nH(α̂) = 1− 2−(δ1/2)n − 2−(δ1/8)n = 1− 2−Ω(n).

Assuming this is the case, we now show how to instantiate our non-malleable code using G, so that we achieve the
claimed parameters.

1. Using Lemma B.1, we see that G gives rise to an efficient (d, t)-LECSS scheme with message size k′ and
codeword size n, and with d ≥ (1/4 + δ0)n and t = d̂⊥ − 1 ≥ δ2n for some constant δ2 < δ2

0/2.

2. Using the result of [11], there exist AMD codes with message size k, codeword size k′ and security

ρ ≤ k

2(k′−k)/2
≤ n

2(δ1/4)n
= 2−Ω(n).

Now we use Theorem 4.1 to combine (1) and (2) above, yielding a non-malleable code with message size k,
codeword size n and security

ε ≤ max

(
ρ ,

1
2δ2n

+
(

δ2n

n(δ0)2

)(δ2n)/2
)
≤ 2−Ω(n)

2

C Proof of Theorem 4.3

As a tool we use a symmetric-key authenticated-encryption scheme that we construct using an encryption scheme
(Encrypt,Decrypt) with key-size k0, and a message authentication code (MAC) (Tag,Verify) with key-size k1.
The encryption scheme (Encrypt,Decrypt) has to always satisfy the following: Decrypt(key0,Encrypt(key0,m)) =
m. Security of (Encrypt,Decrypt) is defined as follows: for every two messages m and m′ of equal length, and a
random key0 we have that Encrypt(key0,m) and Encrypt(key0,m

′) are computationally indistinguishable.
The authentication scheme (Tag,Verify) has always to satisfy: Verify(key1,m,Tag(key1,m)) = yes. Security

of (Tag,Verify) is defined as follows: for every message m and for a random key1 no poly-time adversary A,
after seeing (m,Tag(key,m)), can output (t,m′) such that Verify(key1,m

′, t) = yes and m 6= m′, except with a
negligible probability.

An authenticated encryption scheme that we use has a key (k0, k1). On a message m it outputs Tag(k1,
Encrypt(k0,m)) (cf. [3] for a general discussion on how to combine authentication with encryption).
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Theorem C.1. Assume that (Enc,Dec) is a non-malleable code w.r.t. the family F of bit-wise independent
tampering functions with message-size k and codeword-size n. Let (Encrypt,Decrypt) and (Tag,Verify) be as
above. Define:

Enc′(s) def=


(key0, key1)← Uk0+k1 , x← Encrypt(key0, s), t← Tag(key1, x),

c← Enc(key0||key1)
Output: c = (c, x, t)


Dec′(c, x, t) def=


˜key0|| ˜key1 = Dec(c),

If ˜key0|| ˜key1 = ⊥ or Verify(key1, x, t) 6= yes output ⊥,
else output Decrypt(key0, x)


Then (Enc′,Dec′) is a computational non-malleable code w.r.t F .

Proof of C.1. Intuitively, the reason why the theorem holds is that the adversary has a choice to either (1) make the
key encoding (key0, key1) decode to⊥— in this case the whole encoding decodes to⊥ not matter what the encoded
message was; or (2) do not change the encoded key (key0, key1) — in this case the adversary cannot substitute the
encode message s with any other s′ without breaking the MAC, moreover the security of the encryption scheme
guarantees the probability that the decoding yields ⊥ has to be (almost) the same for every message s; finally he
can (3) change the encoded key to some random key ( ˜key0,

˜key1) (that has a distribution that is independent on
(key0, key1))— in this case it follows from the security of the encryption scheme that the decoded message cannot
depend on the encoded message s, as otherwise one could construct a distinguisher that breaks the encryption
scheme by sampling ( ˜key0,

˜key1) himself.
Let f ′ be a function that is tampering the output of (Enc′,Dec′). We will construct a distribution D′f ′ such

that for every s (1) is satisfied. Since the output of Enc′ has a form (c, x, t), and since f ′ only modifies the
individual bits, we can think of f ′ as of three functions f ′0, f

′
1, and f ′2, where f ′(c, x, t) = (f ′0(c), f ′1(x), f ′2(t)). The

distribution D′f ′ is constructed as follows. First, we take an arbitrary message s and a random pair (key0, key1).
Then, we let xs ← Encrypt(key0, s) and ts ← Tag(key1, x),. Form the assumption that (Enc,Dec) is a non-
malleable code there exists a distributionDf ′0

such that (1) holds. We sample c̃ from this distribution. If c̃ = same?

we let ( ˜key0,
˜key1) := (key0, key1), and otherwise we let ( ˜key0,

˜key1) := c̃. We then output

outs :=


⊥ if Verify( ˜key1, f

′
1(xs), f ′2(ts)) 6= yes or c̃ = ⊥,

same? if f ′1(xs) = xs and Verify( ˜key1, f
′
1(xs), f ′2(ts)) = yes and c̃ = same?,

Dec( ˜key0, f
′
1(xs)) otherwise.

To prove that this construction is correct we need to show that for every s0 and s1 the distributions outs
0

and outs
0

are computationally-indistinguishable. After showing this we will be done, since this will mean that the result of
our simulation (with an arbitrary value s) is computationally indistinguishable from a result of the simulation with
any other s, and outs with same? substituted with s is simply distributed identically to the output of the experiment
of the left hand side of (1). Obviously, the distribution of c̃ does not depend on s. Therefore we can consider
separately the following cases.

• c̃ = ⊥— in this case obviously outs is always equal to ⊥, no matter what s is,

• c̃ = same? — in this case first observe that

|P (outs
0

= ⊥)− P (outs
1

= ⊥)| is negligible.

This is because otherwise one could construct an adversary that breaks the security of the encryption scheme
(Encrypt,Decrypt) by distinguishing if x is an encryption of s0 and s1 in the following way: generate a
random key1 and output 1 if and only if Verify(key1, f

′
1(x), f ′2(Tag(key1, x))).

On the other hand if outs 6= ⊥ and f ′1(xs) 6= xs then we can break the security of the MAC in the following
way: after seeing a tag ts on xs an adversary can output a message f ′1(xs) with a tag f ′1(xs).
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• c̃ = ( ˜key0,
˜key1) — if in this case outs

0
can be distinguished from outs

1
by some poly-time machineA then

one easily distinguish if x is an encryption of s0 and s1 in the following way.

1. if Verify( ˜key1, f
′
1(x), f ′2(Tag( ˜key1, x))) = ⊥ then output ⊥,

2. otherwise output A(Dec( ˜key0, f
′
1(x)).

This is because for both i ∈ {0, 1} we have outs
i

= Dec( ˜key0, f
′
1(xs

i
)).

2

D Proof of Theorem 5.1

Proof of Theorem 5.1. Let K = 2k, N = 2n. It will be useful for us to think of a function f : {0, 1}n → {0, 1}n
as a directed graph Gf = (V,Ef ) with vertex set V = {0, 1}v and edges Ef = {(v, ṽ)|v ∈ V, f(v) = ṽ}. Notice
that the out-degree is 1 and that there may be some self-loops in G. Notice that a randomly chosen decoding
function, essentially labels each vertex v ∈ V with a uniformly random value s ∈ {0, 1}k. For any s, s̃ ∈ {0, 1}k,
we define the following random variables (over the choice of the decoding function Dec):

• Let V (s) be the set of vertices v ∈ V = {0, 1}n such that Dec(v) = s.

• Let Ef (s→ s̃) be the set of edges (v, ṽ) where v 6= ṽ and Dec(v) = s,Dec(ṽ) = s̃

• Let Ef (s→ same?) be the set of self-loop edges (v, v) for which Dec(v) = s.

• Let Ef (∗ → s̃) def=
⋃
s∈{0,1}k Ef (s→ s̃). (we will also use this notation for s̃ = same?).

• For A ⊆ V ∪ {same?}, define Ef (s→ A) def=
⋃
s̃∈AEf (s→ s̃), and Ef (∗ → A) def=

⋃
s̃∈AEf (∗ → s̃).

We use these variables to define a density-function Df : {0, 1}k ∪ {same?} → [0, 1] by Df (s) = |Ef (∗ →
s)|/N . Then, for any function f and any s ∈ {0, 1}k, we have

SD(StrongNMf
s , Df ) = max

A⊆{0,1}k∪{same?}

|Ef [s→ A]|
|V (s)|

−
|Ef (∗ → A)|

N
(5)

Therefore, taking probabilities (only) over the choice of the decoding function Dec, let E be the event that
(Enc,Dec) is not an ε-secure non-malleable code w.r.t. F . Then:

Pr[E ] ≤ Pr[∃f ∈ F , s ∈ {0, 1}k s.t. SD(StrongNMf
s , Df ) > ε]

= Pr
[
∃f ∈ F , s ∈ {0, 1}k, A ⊆ {0, 1}k ∪ {same?} s.t.

|Ef [s→ A]|
|V (s)|

−
|Ef (∗ → A)|

N
> ε

]
≤

∑
f∈F

∑
s∈{0,1}k

∑
A⊆{0,1}k∪{same?}

Pr
[
|Ef [s→ A]|
|V (s)|

−
|Ef (∗ → A)|

N
> ε

]
(6)

We now fix some f ∈ F , s ∈ {0, 1}k, A ⊆ {0, 1}k ∪ {same?} and our goal it to upper bound:

Pr
[
|Ef [s→ A]|
|V (s)|

−
|Ef (∗ → A)|

N
> ε

]
(7)

Let δ = ε/4, t = (ε/4)(N/K) and assume that:

|V (s)| ≥ (1− δ)N
K

, |Ef (s→ A)| −
|Ef (∗ → A)|

K
≤ t (8)
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then:

|Ef [s→ A]|
|V (s)|

−
|Ef (∗ → A)|

N
≤
|Ef [∗ → A]|/K + t

(1− δ)N/K
−
|Ef (∗ → A)|

N

≤
δ|Ef [∗ → A]|+ tK

N(1− δ)
≤ 2δ + 2tK/N ≤ ε

where the inequality on the last line follows since |Ef [∗ → A]| ≤ N . Therefore we show:

(7) ≤ Pr[(8) does not hold] ≤ Pr
[
|V (s)| < (1− δ)N

K

]
+ Pr

[
|Ef (s→ A)| −

|Ef (∗ → A)|
K

> t

]
≤ e−δ

2 N
2K + 2e−t

2/8N (9)

≤ e−
ε2N
32K + 2e−

ε2N
128K2 ≤ 3e−

ε2N
128K2

where we rely on the bounds from Lemma D.1 and Lemma D.2 (presented after this proof) for (9). Now, continuing
from (6), we have

Pr[E ] ≤
∑
f∈F

∑
s∈{0,1}k

∑
A⊆{0,1}k∪{same?}

3e−
ε2N

128K2

≤ 2log(|F|)+k+K+3− ε2N
128K2 (10)

We now bound (10) by ρ by setting

Pr[E ] ≤ ρ follows if log(|F|) + k +K + 3 + log(1/ρ) < ε2N/128K2

follows if 128K2/ε2(log(|F|)kK4 log(1/ρ)) < N

follows if n > log(log(|F|)) + 3k + log(k) + 2 log
(

1
ε

)
+ log

(
log
(

1
ρ

))
+ 9

where the last inequality is the assumption of our theorem. Therefore, with probability 1 − ρ, E does not occur
and the random function Dec gives rise to a non-malleable code w.r.t. F with security ε. In particular, some such
codes with the above bound exist for any ρ < 1. This concludes the proof, up to the bounds from Lemma D.1 and
Lemma D.2, which are shown next. 2

Lemma D.1. For any δ > 0, Pr
[
|V (s)| < (1− δ)NK

]
≤ e−δ2

N
2K .

Proof. Follows directly by the (multiplicative) Chernoff bound, since each vertex v ∈ V is labeled with a
uniformly random value from {0, 1}k. 2

Lemma D.2. Let W = |Ef (s→ A)| − |Ef (∗→A)|
K . Then for any t ≥ 0, Pr[W ≥ t] ≤ 2e−t

2/8N .

Proof. For each edge e = (v, ṽ), we define a random variable

Ce =


0 if e 6∈ Ef (∗ → A)

1− 1/K if e ∈ Ef (s→ A)
(−1/K) otherwise (if e ∈ Ef (∗ → A) \ Ef (s→ A))

(11)

Then W =
∑

e∈E Ce. We wish to prove that W is closely centered around 0. Unfortunately, the variables Ce
are not independent. Our analysis is broken up into three claims. First we show that in any subset U ⊆ E which
doesn’t contain non-trivial cycles (cycles with more than 1 edge), the sum of Ce over U forms a martingale.
Second, we show that E can be partitioned into two such subsets E = U1 ∪ U2. Lastly we show that these two
properties imply that W is closely centered at 0, using Azuma’s inequality on martingales.
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Claim D.1. For any subset U ⊆ E of edges which does not contain a non-trivial cycle (i.e. a cycle consisting
of more than 1 edge), there is an ordering e1, . . . , e|U | of the edges in U such that the random variables
Wi =

∑i
j=1Cej form a Martingale.

Proof. We can define a topological sort v1, . . . , v|V | on the vertices V so that, for all edges e = (vi, vj) ∈ U ,
i ≥ j. We can extend the ordering on vertices to one on edges by identifying each edge with its starting vertex
(this is unique since the out-degree is 1). Think of the function Dec as being chosen by assigning the values
Dec(v1),Dec(v2), . . . ,Dec(v|V |) in order, uniformly at random. Let ek = (vi, vj) be some edge in U . Then, the
choice of Dec(v1), . . . ,Dec(vi−1) completely determines the values Ce1 , . . . , Cek−1

and hence also the values
of W1, . . . ,Wk−1. We consider two cases.

vi = vj: In this case, if same? 6∈ A then Cek
is always 0. If same? ∈ A then ek is always in Ef (∗ → A),

and is also in Ef (s → A) iff Dec(vi) is labeled with s, which occurs with probability 1/K. Therefore,
E[Cek

| Ce1 , . . . , Cek−1
] = 0.

vi 6= vj: In this case, the value Dec(vj) is completely determined at this point since i > j. If Dec(vj) 6∈ A
then Cek

is always 0. Otherwise, it takes on the value 1− 1/K with probability 1/K (the probability the
Dec(vi) = s) and −1/K with probability (1− 1/K). Therefore E[Cek

| Ce1 , . . . , Cek−1
] = 0.

So, in both cases E[Cek
| Ce1 , . . . , Cek−1

] = 0 and E[Wk|W1, . . . ,Wk−1] = Wk−1 as we wanted to show. 2

Claim D.2. For any directed graph G = (V,E) where each vertex has out-degree one, there is a partition of
E into to components U1, U2 such that neither component contains a non-trivial cycle.

Proof. Since the out-degree is one, each edge participates in at most one non-trivial cycle. Therefore, we can
break up each non-trivial cycle separately, by placing half the edges into U1 and the other half into U2. 2

(continuing the proof of Lemma D.2) Let U1, U2 be a partition of E as in Claim D.2. Let W1 =
∑

e∈U1
Ce, W2 =∑

e∈U2
Ce so that W = W1 + W2. Then, by Claim D.1 we have the martingales W (1)

1 ,W
(2)
1 , . . . ,W

(|U1|)
1 = W1

and W (1)
2 ,W

(2)
2 . . . ,W

(|U2|)
2 = W2. So

Pr[W ≥ t] ≤ Pr[W1 ≥ t/2] + Pr[W2 ≥ t/2] ≤ e−t2/8|U1| + e−t
2/8|U2| ≤ 2e−t

2/8N

where we use Azuma’s inequality to bound the two probabilities (and note that |U1|, |U2| ≤ N ). 2

E Proof of Theorem 6.1

Proof of Theorem 6.1. By the definition of non-malleability, for each f ∈ F there exists a distribution Df such
that {

c← Enc(s), c̃← f(c), s̃ = Dec(c̃)
Output: s̃.

}
≈
{

s̃← Df

Output s if s̃ = same?, and s̃ otherwise.

}
We use these distributions to define the simulator S for the tamper simulatability definition. Recall that S has
black-box access to the adversary A, the functionality G(·, ·) and the tampering function f(·) queried by A. The
simulation proceeds by running A where, in each round:

1. When the adversary A issues a Tamper command with function f ∈ F the simulator samples s̃← Df (this
can be done efficiently give oracle access to f(·), by the definition to non-malleability).

2. When the adversary issues an Execute command with input x:
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• If s̃ = same?, then the simulator S forwards the Execute(x) query to its system 〈G, s〉 and forwards
the output y to A.

• If s̃ 6= same? the simulator S goes into “Overwritten Mode” (step 3).

3. “Overwritten Mode”: The simulator S uses the modified state s̃ to perfectly simulate the system 〈GEnc,Dec,Enc(s̃)〉
for all Tamper and Execute queries in all future rounds. Note that this is possible, using oracle access to
G(·, ·) and to the tampering functions f(·).

To show the indistinguishability of simulation, we notice that, in each round prior to and including the round
where the simulation enters “overwritten mode”, if the starting state in that round is s, the modification function is
f and the the input queried by the adversary is x then (by the definition of non-malleability):{

c← Enc(s), c̃← f(c), s̃ = Dec(c̃)
Output: G(x, s̃).

}
≈
{

s̃← Df

Output: G(x, s) if s̃ = same?, and G(x, s̃) otherwise.

}
where the distributions represent the output y seen by the adversary, and the updated “effective state” s of the
system in the TamperInteract game (on the left-hand side) and in the simulation within the BBInteract game (on
the right hand side). Also, in each round after the simulation enters “overwritten mode” it acts exactly the same as
the TamperInteract game. These two facts, together with a hybrid argument over the number of rounds, prove the
indistinguishability of the simulation. 2
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