
Non-malleable Codes from Additive Combinatorics

Divesh Aggarwal∗ Yevgeniy Dodis† Shachar Lovett‡

February 6, 2014

Abstract

Non-malleable codes provide a useful and meaningful security guarantee in situations where tra-
ditional error-correction (and even error-detection) is impossible; for example, when the attacker
can completely overwrite the encoded message. Informally, a code is non-malleable if the message
contained in a modified codeword is either the original message, or a completely unrelated value.
Although such codes do not exist if the family of “tampering functions” F is completely unre-
stricted, they are known to exist for many broad tampering families F . One such natural family
is the family of tampering functions in the so called split-state model. Here the message m is
encoded into two shares L and R , and the attacker is allowed to arbitrarily tamper with L and R
individually. The split-state tampering arises in many realistic applications, such as the design of
non-malleable secret sharing schemes, motivating the question of designing efficient non-malleable
codes in this model.

Prior to this work, non-malleable codes in the split-state model received considerable attention
in the literature, but were constructed either (1) in the random oracle model [16], or (2) relied on
advanced cryptographic assumptions (such as non-interactive zero-knowledge proofs and leakage-
resilient encryption) [26], or (3) could only encode 1-bit messages [14]. As our main result, we build
the first efficient, multi-bit, information-theoretically-secure non-malleable code in the split-state
model.

The heart of our construction uses the following new property of the inner-product function
〈L,R〉 over the vector space F

n

p
(for a prime p and large enough dimension n): if L and R

are uniformly random over F
n

p
, and f, g : F

n

p
→ F

n

p
are two arbitrary functions on L and R ,

then the joint distribution (〈L,R〉, 〈f(L), g(R)〉) is “close” to the convex combination of “affine
distributions” {(U, aU + b) | a, b ∈ Fp} , where U is uniformly random in Fp . In turn, the proof
of this surprising property of the inner product function critically relies on some results from
additive combinatorics, including the so called Quasi-polynomial Freiman-Ruzsa Theorem which
was recently established by Sanders [29] as a step towards resolving the Polynomial Freiman-Ruzsa
conjecture [21].

∗Department of Computer Science, New York University. Email: divesha@cs.nyu.edu.
†Department of Computer Science, New York University. Email: dodis@cs.nyu.edu. Research partially supported

by gifts from VMware Labs and Google, and NSF grants 1319051, 1314568, 1065288, 1017471, 0845003.
‡Department of Computer Science, University of California at San Diego. Email: slovett@cs.ucsd.edu.

1



1 Introduction

The problem of reliable storage/transmission of information is one of the oldest and fundamental
problems of information theory. The basic problem can be abstracted as the question of designing an
efficient way to encode/decode the message m , so that the resulted codeword c = Enc(m) is “resilient”
against some natural class of error or tampering functions F . In more detail, one can imagine the
attacker can choose an arbitrary (unknown) tampering function f ∈ F and modify the real codeword
c into a corrupted codeword c′ = f(c), and the goal of a good coding scheme (Enc, Dec) is to protect
against such tampering attacks. Depending on the richness of the tampering class F , one can demand
various security guarantees from such an encoding.

Error-Correcting Codes. The most desirable such guarantee would be error-correction, which
demands that m can be correctly recovered (possibly, with high probability) from c′ . This has led to
the rich theory of error-correcting codes, which provide such error-correction for the natural family of
functions F which flip some (small) subset of the bits (or symbols) of the encoding. Still, as useful
and natural error-correcting codes are, in some situations the tampering function f ∈ F might either
exceed the maximum number of errors for reliable error-correction, or might even touch the entire
codeword in some natural yet restricted way (see below). In such settings one must relax the notion
of error-correction to some meaningful weaker notion.

Error-Detecting Codes. One such notion is error-detection, which guarantees that the decoding
of the corrupted codeword c′ = f(c) will almost never output some message m′ 6= m , but is allowed
to output a special symbol ⊥ when it detects some tampering which cannot be corrected reliably. For
example, any (deterministic) code capable of correcting d Hamming errors much be able to reliably
detect at least 2d errors. More interestingly, error-detecting codes allow one to possibly handle
useful tampering classes F where there is no hope for meaningful error-correction. One such class of
tampering functions was considered by Cramer et al. [8] and consists of all functions f∆(c) = c + ∆
which add a fixed offset ∆ to the codeword c in some appropriate group (e.g., such a function can
flip every bit c when addition is ⊕). Notice, error-correction is indeed impossible here, since the
attacker can simply choose a random offset ∆ to completely erase any information about the original
message m . More interestingly, although this class might seem somewhat artificial at the first glance,
the authors showed that developing error-detecting codes — which they called algebraic-manipulation
detection (AMD) codes — for this class has useful applications to the design of so called robust secret
sharing schemes and robust fuzzy extractors [2, 11]. Finally, unlike error-correction codes, which can
be deterministic, AMD codes must be probabilistic, since otherwise the attacker can set ∆ = c2 − c1

for two valid codewords c1 and c2 .

Non-malleable Codes. Unfortunately, even error-detecting codes are rather limited in some sit-
uations, since they cannot protect a natural tampering function f(c) which simply overwrites the
codeword c by another fixed (and valid) codeword c∗ . This basic attack is quite natural both in
the message transmission scenario (where the channel might simply block the original encoded mes-
sage, and send a different message instead), and in the secure storage scenario (where the attacker
might be able to format the hard-drive, for example). Until recently, it was believed that handling
such “constant” tampering functions is impossible without having any secrets, and using tools from
cryptography (such as signatures or message authentication codes) is essential for preventing more
general tampering attacks. Fortunately, Dziembowski, Pietrzak and Wichs [16] recently showed that
this belief is overly pessimistic, and introduced a natural and beautiful relaxation of error-detecting
codes which they called non-malleable codes (with respect to a given family F ). Intuitively, such a
non-malleable code ensures that the decoded message m′ = Dec(f(Enc(m))) is either (a) equal to m
(tampering corrected); or (b) equal to ⊥ (tampering detected); or (c) completely “unrelated” to the

2



original message m .1 Moreover, one can figure out which of the scenarios (a)-(c) happens by just
looking at the function f (independent of the original message m , to ensure that the choice of the
tampering (a)-(c) is not correlated with the message m). In other words, non-malleable codes aim
to handle a much larger class of tampering functions F at the expense of potentially allowing the
attacker to replace a given message m by an unrelated message m′ (and also necessarily allowing for
a small “simulation error” ε).

The authors [16] also showed that non-malleable codes are still useful in many scenarios where the
tampering capabilities of the attacker might be too strong for error-detection. For example, imagine
a tamper-prone signature card storing a signing key sk and some “context information” α (e.g., the
timestamp or some legal disclosure), which will return a signature σ of (α, β) when given an input
message β . Imagine now the attacker would like to change α (that he knows) to some related value
α′ 6= α , in the hope of obtaining an “illegal” signature of (α′, β). If m = (sk, α) is encoded using
a non-malleable code, then we are guaranteed that the signature σ′ obtained by the attacker will
either contain the correct value of α , or will not verify anyway, since changing α to α′ will also force
the attacker to change the signing key sk to a completely unrelated value sk′ , making the resulting
signature σ′ (under sk′ ) “useless”.

Split-State Model. Given the elegance and utility of non-malleable codes, it is natural to un-
derstand the tampering families F for which such codes exist. As the first observation, we cannot
hope to include all possible tampering functions, since F should not include “re-encoding functions”
f(c) = Enc(f ′(Dec(c))) for any non-trivial function f ′ (as m′ = Dec(f(c)) = f ′(m) is obviously re-
lated to m). On the other hand, [16] showed the following positive results. First, they showed a very
promising (and surprising!) existence result for any family F which is only slightly smaller than the
family Fall of all functions. Second, they showed an efficient non-malleable code for the family Fbit of
“individual” bit-tampering functions f . Although pretty restricted, Fbit includes all constant func-
tions f(c) = c∗ (something which cannot be error-detected), and all algebraic manipulation functions
f(c) = c + ∆ mentioned earlier.

This raises the question of finding a much larger family F which is (1) general and realistic from
the application point of view; but (2) naturally does not include the re-encoding function to avoid the
impossibility. The authors [16] propose to solve this dilemma in the following very elegant way, by
defining the so called split-state model. The model was originally proposed in the context of leakage-
resilient cryptography [15, 9], but it also very natural from the perspective of tampering. Imagine
that the encoded memory/state of the system is partitioned in several disjoint parts P1, . . . , Pt , and
the family Ft of tampering functions consists of all functions f = (f1, . . . , ft) where fi is only applied
to the data stored in the partition Pi . To put it differently, the message m is split into t shares
s1, . . . , st , and the attacker can arbitrarily tamper with each share independently2 by changing it to
s′i = fi(si). Still, the decoded message m′ = Dec(s′1, . . . , s

′
t) is either equal to m , ⊥ or unrelated to

m (as explained above).

As we can see, split-state tampering is very natural from the application point of view, especially
when t is low and the shares s1, . . . , st are stored in different parts of memory, or by different parties.
Indeed, a non-malleable code w.r.t. Ft can be viewed as a type of non-malleable secret sharing scheme.
Recall, in traditional secret sharing schemes one primarily worries about the privacy of the secret m
against a certain bounded coalition of shares si (which clearly cannot include all the t shares). Robust
secret sharing schemes, considered by [8] (which used the AMD codes mentioned earlier), additionally
ensure than a bounded coalition of players cannot maliciously modify their shares and cause the

1The formal definition (see Definition 2) is also quite clean and elegant, following the standard “simulation paradigm”
for other such definitions.

2Of course, we allow f1 . . . ft to be correlated, but each fi can only look at si , and not at the other sj ’s.

3



reconstruction of some secret m′ 6= m . Once again, the coalition cannot include all t players. In
contrast, a non-malleable secret sharing scheme, induced by a non-malleable code in the split-state
model, provides the non-malleability of the secret m (as explained above) even if all t shares are
individually modified, something which was never previously considered possible/meaningful in the
secret sharing literature.

Coming back to the split-state model, it also overcomes the impossibility result mentioned earlier,
since the decoding function will depend on all the shares s1, . . . , st (something which is not allowed
by the tampering function f ). Moreover, since Ft is indeed noticeably smaller than Fall for t > 1, we
know that non-malleable codes exist in the split-state model. In fact, the bit-wise tampering family
Fbit mentioned above can be viewed as an extreme setting of the split-state model, where each share
si is only 1 bit (making it rather unrealistic for applications). In particular, it is clear that as t
decreases, the tampering family Ft becomes larger and larger (i.e., more realistic!), and the problem
of building non-malleable codes w.r.t. Ft correspondingly becomes harder and harder, becoming the
hardest when t = 2. Hence, from now on we will concentrate on the most useful/ambitious case of
only two partitions/shares (“left” and “right”), which we will denote by L and R in the sequel.

Summarizing the above discussion, this leads us to the main question of this work:

Main Question: Build an efficient non-malleable code in the (two-partition) split-state model.

Known Results. As we mentioned, this question is not new, and several partial results were known
prior to our work. First, we already mentioned the existential result of [16] showing the existence of
such non-malleable codes. Second, the work of [16] also gave an efficient construction in the random
oracle model. Third, the work of Liu and Lysyanskaya [26] built an efficient computationally-secure
non-malleable code in the split model (necessarily restricting the tampering functions f1 and f2

to be efficient as well). The construction assumes so called common reference string (CRS) which
cannot be tampered, and also uses quite heavy tools from public-key cryptography, such as robust
non-interactive zero-knowledge proofs [10] and leakage-resilient encryption [27]. Thus, given the clean
information-theoretic definition of non-malleable codes, we believe it is important to construct such
codes unconditionally.

Recently, an important step in this direction was taken by Dziembowski, Kazana and Obremski [14],
who constructed a very elegant non-malleable code for 1-bit messages in the split-state model. Their
construction is very simple. Both shares L and R lie in an n-dimensional vector space F

n (for a large
enough finite field F , and of exponential-size). To encode 0, one chooses a random pair of orthogonal
vectors L and R (〈L, R〉 = 0), and to encode 1 one chooses a random pair of non-orthogonal vectors
L and R (〈L, R〉 6= 0). Despite the simplicity of this construction, the security proof given by [14]
was quite involved, and introduced several novel techniques, such as characterizing a given tampering
function f1 or f2 as being “close” or “far” from a constant. Unfortunately, given the asymmetric
nature of their construction (i.e., encodings of 0 and 1 are very different) and several other “bit-
specific” proof techniques they use,3 it is unclear how to extend the proof (or even construction!) to
the much more useful case of encoding longer than 1 bit messages.

To summarize, despite lots of partial progress, the question of constructing efficient, information-
theoretically secure non-malleable codes for long messages was still open prior to our work.

Our Result. As our main result, we resolve this open problem:

Theorem 1 For any k and ε, there exists an efficient (in k and log(1
ε )) information-theoretically

secure ε-non-malleable code for encoding k -bit messages in the (two-partition) split-state model.

3I.e., a special characterization of non-malleable codes for 1-bit messages.

4



As we discuss below, our code is very simple and efficient relative to the length N of the shares L and
R (i.e., given N , our encoding and decoding are both very simple). On the other hand, the minimal
length N = poly(k, log(1/ε)) which is sufficient for our security proof is governed by the current
state-of-the-art in additive combinatorics. We discuss this in more detail below and in Section 7, here
only mentioning that the current provable bound is N = Õ((k + log(1/ε))7) (which is very likely
sub-optimal).

Our code is constructed in two steps. The first (and much simpler) step constructs a non-malleable
code (Enc′, Dec′) for an intermediate tampering family Faff consisting of all affine functions f(y) =
ay + b over some (sufficiently large) finite field Fp of prime order, where a, b ∈ Fp are arbitrary
constants. Notice, such Fp -affine family is rather natural and again includes all constant functions
(corresponding to a = 0), as well as all algebraic manipulation functions (corresponding to a = 1),
potentially making our intermediate non-mallable code interesting in its own right. The actual code
over the message space M is constructed by building what we call an affine-evasive function h : Fp →
M∪{⊥} . Informally, such functions not only send most field elements u to ⊥ , but also guarantee that
h(au+b) = ⊥ with high probability even conditioned on h(u) = m , for any message m and a, b where
(a, b) 6= (1, 0) and a 6= 0 (i,e., excluding the trivial identity and constant functions, respectively). As
a result, the non-malleable code for Faff easily follows by setting Dec = h . Moreover, we give a
construction of such affine-evasive functions h .

The second (and more involved) step can be seen as reducing the task of building a non-malleable
code for the split-state model to the non-malleable code for the Fp -affine function. In particular, we
simply use the inner product function over the n-dimensional vector space F

n
p (for a large enough

n , discussed below) as our reduction. A bit more formally, Enc(m) first computes the intermediate
encoding y ← Enc′(m) for the affine family above, and then picks random shares L and R whose
inner product is y : 〈L, R〉 = y . Thus, our construction is similar in spirit to the 1-bit construction
of [14], except we treat all messages in a symmetric manner, and ensure that a random pair (L, R)
decodes to ⊥ with high probability. We then show the soundness of our reduction from the split-state
model to the Fp -affine model, by showing the following key theorem about the “non-malleability” of
the inner product function:

Theorem 2 (Informal) Assume Fp is a finite field of prime order, n ≥ poly(log p)), L and R are
uniformly random over F

n
p , and f, g : F

n
p → F

n
p are two arbitrary functions on L and R . Then, the

joint distribution (〈L, R〉, 〈f(L), g(R)〉) is “close” to the convex combination of affine distributions
{(U, aU + b) | a, b ∈ Fp}, where U is uniformly random over Fp .

The formal statement appears in Theorem 3. Intuitively, though, the above result shows that the
inner product function effectively maps the (seemingly) very powerful split-state tampering (given by
arbitrary functions f and g ) to a convex combination of much more basic affine functions ay+b (which,
in turn, are protected by our “inner” non-malleble code). Not surprisingly, the proof of Theorem 2
(or, more accurately, Theorem 3) forms the main technical contribution of our work, and may be of
independent interest. It is detailed in Section 5, but crucially relies on Theorem 6, which in turn
relies on several results from additive combinatorics. Theorem 6 can be seen as an improvement of the
linearity test of [28] for functions f : F

n
p 7→ F

n
p . The key ingredient resulting in this improvement is the

so called the Quasi-polynomial Freiman-Ruzsa Theorem, which was recently established by Sanders
[29] as a step towards resolving the Polynomial Freiman-Ruzsa conjecture [21]. We refer to Section 5.3
and Section 6 for more details on specific parameters and how they are used to establish Theorem 3,
but mention that the (likely) sub-optimality of Sander’s result is the main reason for a relatively large
dimension n ≈ log6 p = Õ((k + log(1/ε))6) of the vector space F

n
p for our non-malleable encoding of

k -bit messages, which leads to an even larger encoding length N = n log p = Õ((k + log(1/ε))7). In

5



fact, under the standard PFR conjecture, our construction is secure for N = Õ((k + log(1/ε))2), and
we conjecture that it might even be secure when n = O(1), which would lead to almost constant-rate
N = Õ(k + log(1/ε)). We refer to the “Conclusions” Section 7 for more discussion of the parameters.

Other Related Work. In addition to the already-mentioned results of [16, 26, 14], several recent
works [3, 4, 7] either used or built various non-malleable codes, but none concentrated on the split-state
model considered here.

The notion of non-malleability was introduced by the seminal paper of Dolev, Dwork and Naor [13],
and has found many applications in cryptography. Traditionally, non-malleability is defined in the
computational setting, but recently non-malleability has been successfully defined and applied in the
information-theoretic setting (generally resulting in somewhat simpler and cleaner definitions than
their computational counter-parts). For example, in addition to non-malleable codes studied in this
work, the work of Dodis and Wichs [12] defined the notion of non-malleable extractors as a tool for
building round-efficient privacy amplification protocols.

Finally, the study of non-malleable codes falls into a much larger cryptographic framework of
providing counter-measures against various classes of tampering attacks. This work was pioneered
by the early works of [23, 19, 22], and has since led to many subsequent models. Listing all such
tampering models (which are not directly related to the study of non-malleable codes) is beyond the
scope of this work, but we refer to [24, 26] for an excellent discussion of various such models.

Subsequent Work. Also, following our work, there has been several works on non-malleable
codes [5, 6, 17, 18]. None of these works improved on the parameters achieved here in terms of explicit
non-malleable codes in the split-state model. However, Cheraghchi and Guruswami [6] defined a
notion of non-malleable two-source extractors, and showed that a construction of non-malleable two-
source extractors (which is still open) would imply non-malleable codes against split-state adversaries.
Additionally, Cheraghchi and Guruswami [5] showed that there exist (inefficient) non-malleable codes
in the N -bit split-state model where N = k(1 + o(1)).

2 Preliminaries

All logarithms are in base two. Unless stated otherwise, Fp is a finite field of prime order p .

Distributions. Let D be a discrete distribution. We denote by D[x] the probability it assigns to
x , and by X ∼ D a random variable distributed according to D . For two distributions D, D′ their
statistical distance is ∆(D; D′) = 1

2

∑

x |D[x]−D′[x]| . Let D be a family of distributions. We denote
by ∆(D;D) the infimum of ∆(D; D′) over all D′ ∈ D .

A convex combination of distributions D1, . . . , Dk is any distribution D for which

D[x] =
∑

αiDi[x],

for all x , where αi ≥ 0 and
∑

αi = 1.

The min-entropy of a distribution is H∞(D) = minx log(D[x]−1). For a finite set S we denote by
US the uniform distribution over S . By x ← S , we denote that x is chosen uniformly at random
from S . Note that H∞(US) = log |S| . Moreover, if D is a distribution with min-entropy k then D
is a convex combination of distributions uniform over sets of size 2k .

We denote random variables by X, L, R . Let E be an event. We denote by X|E the conditional
random variable, conditioned on E holding. For a set S we shorthand X|S = X|[X ∈ S] . When
there is no chance of confusion, we use interchangeably a random variable to denote also its underlying
distribution.

6



Inequalities on distributions far from uniform. We will need the following claims. Their proofs can
be found in the appendix.

Claim 1 Let X = (X1, X2) ∈ Fp × Fp be a random variable. Assume that for all a, b ∈ Fp not both
zero, ∆(aX1 + bX2 ; UFp) ≤ ε. Then ∆((X1, X2) ; UF2

p
) ≤ εp2 .

Claim 2 Let X ∈ Fp be a random variable. Assume that ∆(X ; UFp) ≥ ε. Then if X ′ is an
independent and i.i.d copy of X then

Pr[X = X ′] ≥ 1 + ε2

p
.

Claim 3 Let Z = (X, Y ) ∈ F
n
p × F

n
p be a random variable, and let Z ′ = (X ′, Y ′) be an i.i.d copy of

Z . Then
Pr[〈X, Y 〉 = 〈X ′, Y ′〉] ≤ Pr[〈X, Y 〉 = 〈X ′, Y 〉].

Claim 4 Let X1, X2, Y1, Y2 ∈ A be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤ ε. Then, for
any non-empty set A1 ⊆ A, we have

∆(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) ≤
2ε

Pr(X1 ∈ A1)
.

The Hadamard extractor. The Hadamard extractor is one of the most basic two-source extractors,
based on inner product. We would need the following folklore result. A proof can, for example, be
found in [25].

Lemma 1 Let L and R be independent random variables over F
n
p . If

H∞(L) + H∞(R) ≥ (n + 1) log p + 2 log

(

1

ε

)

,

then
∆((L, 〈L, R〉) ; (L, UFp)) ≤ ε and ∆((R, 〈L, R〉) ; (R, UFp)) ≤ ε.

3 The joint probability distribution of (〈L, R〉, 〈f(L), g(R)〉)

Let Fp be a finite field of prime order. Let L, R ∈ F
n
p be uniform and independent. Let f, g : F

n
p → F

n
p

be a pair of functions. We consider the following family of distributions

φf,g(L, R) := (〈L, R〉, 〈f(L), g(R)〉) ∈ F
2
p

We characterize in this section the possible joint distributions of φf,g(L, R) over F
2
p for arbitrary

functions f, g . In order to build intuition, let us first consider a few of possible distributions achievable
this way.

• f(L) = (a, 0, . . . , 0), g(R) = (1, 0, . . . , 0) for a ∈ Fp . Then φf,g(L, R) has a distribution that is
statistically very close to (U, a) where U ∈ Fp is uniform.

• f(L) = aAL, g(R) = (AT )−1R for some a ∈ Fp , and invertible matrix A ∈ F
n×n
p . Then

φf,g(L, R) has a distribution that is statistically very close to (U, aU) where X ∈ Fp is uniform.

7



In general, by choosing f, g as an arbitrary mix of the above, we can achieve nearly any convex
combination of {(U, a) : a ∈ Fp} and {(U, aU) : a ∈ Fp} , where U is uniform in Fp . For a large
number of choices of f, g , these are the only possible distributions of φf,g(L, R). The following,
however, shows an example of f, g for which φf,g(L, R) has statistical distance about 1/p from any
of these distributions.

• Fix v ∈ F
n
p with 〈v, v〉 = 1. Let f(L) = L+〈L, v〉v, g(R) = R−〈R, v〉v . Then φf,g(L, R) is very

close to being distributed as (U, U + XY ) where U, X, Y ∈ Fp are uniform and independent.
Note that the distribution of XY is not uniform, as it is equal to zero with probability 2/p−1/p2

instead of 1/p .

We do not have a complete characterization of all possible distributions φf,g(L, R). However,
our main technical result is that any such distribution is arbitrarily close to a convex combination of
(U, aU + b) where a, b ∈ Fp if n is large enough. Define D to be the family of convex combinations of
{(U, aU + b) : a, b ∈ Fp} where U ∈ Fp is uniform. This will be sufficient to analyze our construction
of non-malleable codes.

Theorem 3 There exists absolute constants c, c′ > 0 such that the following holds. For any finite field
Fp of prime order, and any n > c′ log6 p, let L, R ∈ F

n
p be uniform, and fix f, g : F

n
p → F

n
p . Then

∆(φf,g(L, R) ; D) ≤ 2−cn1/6

.

We give a proof of this theorem in Section 5.

4 Non-malleable Codes

Definitions. We first recall the definition of non-malleable codes from [16].

Definition 1 A coding scheme consists of two functions: a randomized encoding function Enc :M 7→
C , and a deterministic decoding function Dec : C 7→ M ∪ {⊥} such that, for each m ∈ M ,
Pr(Dec(Enc(m)) = m) = 1 (over the randomness of the encoding algorithm).

Definition 2 Let F be some family of tampering functions. For each f ∈ F , and m ∈ M , define the
tampering-experiment

Tamperfm :=

{

c← Enc(m), c̃← f(c), m̃ = Dec(c̃)
Output: m̃.

}

which is a random variable over the randomness of the encoding function Enc . We say that a coding
scheme (Enc, Dec) is ε-non-malleable w.r.t. F if for each f ∈ F , there exists a distribution (corre-
sponding to the simulator) Df over M∪ {⊥, same∗} , such that, for all m ∈ M , we have that the
statistical distance between Tamperfm and

Simf
m :=

{

m̃← Df

Output: m if m̃ = same∗, and m̃, otherwise.

}

is at most ε . Additionally, Df should be efficiently samplable given oracle access to f(·).

8



Our result. For any ε > 0, we give an encoding scheme from M = {1, . . . , K} to F
n
p × F

n
p (where

p = (K
ε )Θ(log log(K/ε)) , and n = Θ(log6 p)) that is ε-non-malleable with respect to the family of all

functions in the split state model, i.e., all functions (f, g) : F
n
p × F

n
p 7→ F

n
p × F

n
p , where f and g are

functions from F
n
p 7→ F

n
p , and (f, g)(x, y) = (f(x), g(y)), for all x, y ∈ F

n
p . Our construction proceeds

as follows.

• In Section 4.1, we construct an encoding scheme from M to Fp that is non-malleable with
respect to the class of all affine functions over Fp .

• In Section 4.2, we use Theorem 3 to argue that we can reduce the problem of constructing
an encoding scheme from M to F

n
p × F

n
p that is non-malleable in the split state model to the

problem of constructing an encoding scheme from M to Fp that is non-malleable with respect
to the class of all affine functions over Fp . We then use the result of Section 4.1 to conclude the
result.

For the subsequent sections, we denote by U a random variable distributed uniformly over Fp .

4.1 A non-malleable encoding scheme with respect to affine functions

In this section, we will construct an encoding scheme scheme from M = {1, . . . , K} to a finite field
Fp of prime order p , where p = (K

ε )Θ(log log(K/ε)) that is ε-non-malleable with respect to the family
of affine functions Faff over Fp , i.e.,

Faff := {f(y) = ay + b : a, b ∈ Fp}.

Construction. For our construction, we use affine-evasive functions, defined as follows: A surjective
function h : Fp 7→ M ∪ {⊥} is called (γ, δ)-affine-evasive if or any a, b ∈ Fp such that a 6= 0, and
(a, b) 6= (1, 0), and for any m ∈M ,

• Pr(h(aU + b) 6= ⊥) ≤ γ

• Pr(h(aU + b) 6= ⊥ | h(U) = m) ≤ δ

• A uniformly random X such that h(X) = m is efficiently samplable

Let h : Fp 7→ M ∪ {⊥} be a (γ, δ)-affine-evasive function. The scheme is defined using h as
follows: The decoding function Dec : Fp 7→ M ∪ {⊥} is defined as Dec(x) := h(x). The encoding
function is defined as Enc(m) = X where X is chosen at random from Fp conditioned on the fact
that Dec(X) = m .

Theorem 4 Let M = {1, . . . , K} and let Fp be a finite field. Let Faff , Enc : M 7→ Fp, Dec : Fp 7→
M∪ {⊥} be as defined above. The scheme (Enc, Dec) is (γ + δ + 1

p)-non malleable w.r.t. Faff .

We now give a proof of Theorem 4.

9



Simulator. For any function f ∈ Faff , we define the distribution Df over M∪ {⊥, same∗} as the
output of the following (efficient) sampling procedure:

1. Choose x← Fp .

2. If f(x) = x , then output same∗ , else output h(f(x)).

The distribution Df can thus be expressed as:

Df =

{

same∗ with prob. Prx←Fp(f(x) = x)

m′ with prob. Prx←Fp (h(f(x)) = m′, and f(x) 6= x) ,

where m′ ∈M∪ {⊥} .

Security Proof. Consider some m ∈ M , and some f ∈ Faff given by f(y) = ay + b for some

a, b ∈ Fp . The random variable Tamperfm (abbreviated as Tamper
(a,b)
m ) has the following distribution

for all m′ ∈M∪ {⊥} .

Pr(Tamper(a,b)
m = m′) = Pr

(

h(aU + b) = m′ | h(U) = m
)

(1)

The random variable corresponding to the simulator Simf
m (denoted as Sim

(a,b)
m ) has the following

distribution for all m′ ∈M∪ {⊥} .

Pr(Sim(a,b)
m = m′) =

{

Pr (h(aU + b) = m′ ∧ U 6= aU + b) if m′ 6= m

Pr
(

U = aU + b ∨ (h(aU + b) = m ∧ U 6= aU + b)
)

if m′ = m
. (2)

Lemma 2 For any m ∈M, any a, b ∈ Fp , and any (γ, δ)-affine evasive function h,

∆
(

Sim(a,b)
m ; Tamper(a,b)

m

)

≤ γ + δ +
1

p
.

Proof. If (a, b) = (1, 0), then Pr(Sim
(a,b)
m = m) = Pr(Tamper

(a,b)
m = m) = 1, and so

∆
(

Sim(a,b)
m ; Tamper(a,b)

m

)

= 0 .

Thus, we may assume (a, b) 6= (1, 0). This implies that Pr(U = aU + b) ≤ 1
p . Therefore,

∆
(

h(aU + b) ; Sim(a,b)
m

)

≤ 1

p
.

If a = 0, then we have ∆
(

h(aU + b) ; Tamper
(a,b)
m

)

= 0. So, we may also assume a 6= 0. We have by

the defintion of statistical distance that

∆
(

Tamper(a,b)
m ; h(aU + b)

)

=
1

2
·

∑

m′∈M

∣

∣

∣
Pr(Tamper(a,b)

m = m′)− Pr(h(aU + b) = m′)
∣

∣

∣

+
1

2
·
∣

∣

∣
Pr(Tamper(a,b)

m = ⊥)− Pr(h(aU + b) = ⊥)
∣

∣

∣
.

10



Using the fact that

∆
(

Tamper(a,b)
m ; h(aU + b)

)

≥
∣

∣ Pr(Tamper(a,b)
m = ⊥)− Pr(h(aU + b) = ⊥)

∣

∣ ,

we get

∆
(

Tamper(a,b)
m ; h(aU + b)

)

≤
∑

m′∈M

∣

∣

∣
Pr(Tamper(a,b)

m = m′)− Pr(h(aU + b) = m′)
∣

∣

∣

≤ Pr(h(aU + b) 6= ⊥ | h(U) = m) + Pr(h(aU + b) 6= ⊥) ≤ γ + δ ,

where the last inequality makes use of the fact that h is (γ, δ)-affine evasive. Therefore, using the
triangle inequality,

∆
(

Sim(a,b)
m ; Tamper(a,b)

m

)

≤ γ + δ +
1

p
.

⊓⊔
Remark: Note that the scheme (Enc, Dec) also achieves error-detection with respect to non-

constant affine functions {f(y) = ay + b : a, b ∈ Fp, a 6= 0}.

An affine-evasive function. For any set S ⊂ ZZ , let aS + b = {as + b|s ∈ S} . By S mod p ⊆ Fp , we
denote the set of values of S modulo p .

We first define an affine-evasive set S ⊆ Fp .

Definition 3 A non-empty set S ⊆ Fp is said to be (γ, ν)-affine-evasive if |S| ≤ γp , and for any
(a, b) ∈ F

2
p \ {(1, 0)} , we have

|S ∩ (aS + b (mod p))| ≤ ν|S| .

We claim that an affine-evasive function can be constructed from an affine-evasive set.

Claim 5 Let S ⊆ Fp be a (γ, ν)-affine-evasive set with ν ·K ≤ 1, and K divides |S|.4 Furthermore,
let S be ordered such that for any i, the i-th element is efficiently computable. Then there exists a
(γ, ν ·K)-affine-evasive function h : Fp 7→ M∪ {⊥}.

Proof. Consider any fixed partition of S into K subsets S1, . . . , SK each of cardinality |S|/K . Let
h : Fp 7→ M∪ {⊥} be defined as follows:

h(x) =

{

i if x ∈ Si

⊥ otherwise .

It is straightforward to see that h is a (γ, ν ·K)-affine-evasive function. The statement Pr(h(aU +b) 6=
⊥) ≤ γ is obvious by the definition of S , and the observation that aU + b is uniform in Fp .

Also, for any m ∈M , and for any (a, b) 6= (1, 0), and a 6= 0,

Pr(h(aU + b) 6= ⊥|h(U) = m) =
Pr(aU + b ∈ S ∧ U ∈ Sm)

Pr(U ∈ Sm)

≤ Pr(aU + b ∈ S ∧ U ∈ S)

|S|/K

=
K

|S| Pr(U ∈ S ∩ (a−1S − ba−1) (mod p))

≤ ν ·K .

⊓⊔
Next, we give a construction of an affine-evasive set.

4The assumption K divides |S| is just for simplicity.

11



An affine-evasive set We want to construct a large set S ⊂ ZZp so that for any a, b ∈ ZZp , |S∩(aS+b)|
is much smaller than |S| . We first argue that by choosing all elements of S small (as integers) it suffices
to consider non-modular operations. In the following let [p] = {0, 1, . . . , p − 1} and we will consider
S ⊂ [p] .

Lemma 3 Let S ⊂ [⌊p1/2/4⌋]. Assume that for any a, b, c ∈ ZZ (except for a = c, b = 0) we have
|cS ∩ (aS + b)| ≤ ℓ for some ℓ ≥ 1. Then also |S ∩ (a′S + b′ mod p)| ≤ ℓ for all a′, b′ ∈ ZZp (except
for (a′, b′) = (1, 0)).

Proof. Assume there are a′, b′ ∈ ZZp , (a′, b′) 6= (1, 0), such that |S ∩ (a′S + b′ mod p)| > ℓ . We
can find x1, x2, y1, y2 ∈ S such that x1 = a′y1 + b′ mod p , x2 = a′y2 + b′ mod p , and y1 6= y2 .
Subtracting these give x1−x2 = a′(y1− y2) mod p . This means we can write a′ = a/c mod p where
|a|, |c| ≤ p1/2/2. That is, we have (at least) ℓ + 1 solutions (xi, yi) with i = 1, . . . , ℓ + 1 to

cxi = ayi + b mod p

where b = b′c mod p . Note that |cxi| ≤ p/8 and |ayi| ≤ p/8. Hence also |b| ≤ p/4. So for
i = 1, . . . , ℓ + 1, |cxi − ayi − b| ≤ p/2. But since cxi − ayi − b = 0 mod p we must have that in fact
cxi − ayi − b = 0 over the integers. Hence

cxi = ayi − b.

That is, |cS ∩ (aS + b)| > ℓ . Contradiction to our assumption. ⊓⊔
We now show how to construct an S ⊆ [⌊p1/2/4⌋] with such that |cS ∩ (aS + b)| is much smaller

than |S| .
Let p1, . . . , pt be the first t primes. Let M =

∏t
i=1 pi . By the chinese remainder theorem, for all

i ∈ [t] , there exists a unique Mi ∈ [M ] be such that Mi = 1 mod pi and Mi = 0 mod pj for j 6= i .
Define a set S ⊂ ZZ as

S =
{

∑

aiMi : ai ∈ {0, 1}
}

.

Note that we can ensure that S ⊂ [⌊p1/2/4⌋] by choosing p > 4(Mt)2 . This is satisfied for p ≥ tO(t) .

Lemma 4 Let a, b, c ∈ ZZ be any values except for a = c, b = 0. Then |cS ∩ (aS + b)| ≤ |S|0.92 .

Proof. Let x, y ∈ S be an arbitrary solution of the equation ax + b = cy . Note that we can assume
w.l.o.g that a, c are co-prime. Let x =

∑

xiMi and y =
∑

yiMi where xi, yi ∈ {0, 1} . Let pi be a
prime, i ≤ t . We have that axi + b = cyi (mod pi). We consider several cases.

1. If pi divides a then yi = (b/c) mod pi is fixed in all solutions.

2. If pi divides c then yi = (−b/a) mod pi is fixed in all solutions.

3. If pi divides b but not a, c then xia = yic mod pi . Any possible solution (with xi, yi ∈ {0, 1})
must satisfy xi = yi .

4. If pi divides b + a − c but not a, c , then a(xi − 1) = c(yi − 1) mod pi . Any possible solution
(with xi, yi ∈ {0, 1}) must satisfy xi = yi .

5. If pi does not divide a, b, c, b+a− c then yi = xi(a/c)+ (b/c) mod pi . In any possible solution,
not both xi, yi can be 0 mod pi because this implies that b = 0 mod pi . Also, not both can
be 1 since that implies b + a− c = 0 mod pi . Thus, yi = 1− xi .

12



We next use these observations to bound the number of solutions to ax + b = cy with x, y ∈ S .
Let ε > 0 be a parameter to be determined later.

1. If a is divisible by {pi : i ∈ I} with |I| ≥ εt . Then the value of yi, i ∈ I is fixed in all solutions.
Hence there are at most 2(1−ε)t solutions.

2. If c is divisible by {pi : i ∈ I} with |I| ≥ εt . Then the value of xi, i ∈ I is fixed in all solutions.
Hence there are at most 2(1−ε)t solutions.

3. If one or both of b and b+a−c are divisible by {pi : i ∈ I} but a, c are not, with |I| ≥ (1/2−ε)t .
Then xi = yi, i ∈ I in all solutions (x, y). Hence we can write y = x + z with z =

∑

i∈[t]\I ziMi

where zi ∈ {−1, 0, 1} . Note that given the value of z , there is at most one rational solution for
ax + b = c(x + z). The number of possible values for z is 3(1/2+ε)t , which bounds the number
of solutions (x, y).

4. Otherwise, a, c are divisible by at most εt primes each from p1, . . . , pt , and b or b + a − c is
divisible by at most (1/2 − ε)t of the remaining set of primes. Let {pi : i ∈ I} be the set of
primes which do not divide any of a, b, c, a + b− c , with |I| ≥ (1/2− ε)t . For any i ∈ I we have
yi = 1 − xi . Let J =

∑

Mi . Then we can write y = J − x + z with z =
∑

i∈[t]\I ziMi where
zi ∈ {−1, 0, 1} . As before, given the value of z there are at most one solution, hence the total
number of solutions is bounded by 3(1/2+ε)t .

To optimize we need to choose ε so that 2(1−ε) = 3(1/2+ε) . Setting ε = (ln 2− (1/2) ln 3)/(ln(3) +
ln(2)) ≈ 0.08027 gives a tight bound. Hence the number of solutions is bounded by

|cS ∩ (aS + b)| ≤ |S|1−ε ≤ |S|0.92.

⊓⊔
Using the above construction of an affine-evasive set, and Claim 5, we get a (γ, δ)-affine evasive

function by choosing S such that |S| = (K
δ )1/0.08 , i.e., such that δ ≤ K·|S|0.92

|S| , and consequently

p ≥ |S|O(log |S|) . Also note that γ ≤ |S|/p≪ δ .

Corollary 1 Let M = {1, . . . , K}. There exists an absolute constant ρ such that for any prime
p ≥ (K

δ )ρ log log(K/δ) , there exists a (δ, δ)-affine-evasive function h : Fp 7→ M∪ {⊥}.

Using this affine-evasive function in the decoding scheme, we obtain the following corollary using
Lemma 2.

Corollary 2 For any ε > 0, M = {1, . . . , K} and let p ≥ (4K
ε )ρ log log(4K/ε) be a prime. Then the

scheme (Enc, Dec) is ε-non malleable w.r.t. Faff . In particular, for any m ∈M, any a, b ∈ Fp ,

∆
(

Sim(a,b)
m ; Tamper(a,b)

m

)

≤ ε .

4.2 Non-malleable codes in the split-state model

Now we are in place to give an information-theoretically secure construction of non-malleable codes
in the split-state model.

13



Construction. We construct an ε-non-malleable encoding scheme from M = {1, . . . , K} to F
n
p ×F

n
p ,

where Fp is a finite field of prime order p such that p ≥ (4K
ε )ρ log log(2K/ε) , and n chosen as

(⌈

2 log p
c

⌉)6

(i.e., such that 2cn1/6 ≥ p2 ), where c is the constant from Theorem 3.

The decoding function Dec∗ : F
n
p × F

n
p 7→ M ∪ {⊥} is defined using the Dec function (which was

chosen to be an affine-evasive function h) from Section 4.1 as:

Dec∗(L, R) := Dec(〈L, R〉) = h(〈L, R〉) .

The encoding function is defined as Enc∗(m) := (L, R) where L, R are chosen uniformly at random
from F

n
p × F

n
p conditioned on the fact that h(〈L, R〉) = m .

We will show that our scheme is ε-non-malleable with respect to the family of all functions (f, g) :
F

n
p × F

n
p 7→ F

n
p × F

n
p , where f and g are functions from F

n
p 7→ F

n
p , and (f, g)(x, y) = (f(x), g(y)), for

all x, y ∈ F
n
p . Let us call this family of functions G .

Theorem 5 Let M = {1, . . . , K} and let p ≥ (4K
ε )ρ log log(4K/ε) be a prime. Let n be

(⌈

2 log p
c

⌉)6
. Let

G, Enc∗ :M 7→ F
n
p ×F

n
p , Dec∗ : F

n
p ×F

n
p 7→ M∪{⊥} be as defined above. Then the scheme (Enc∗, Dec∗ )

is ε-non malleable w.r.t. G .

We now give a proof of Theorem 5.

Simulator. For any functions f, g : F
n
p 7→ F

n
p , we define the distribution Df,g over M∪ {⊥, same∗}

as the output of the following sampling procedure:

1. Choose L, R← F
n
p .

2. If 〈f(L), g(R)〉 = 〈L, R〉 , then output same∗ , else output h(〈f(L), g(R)〉).

Note that this distribution is efficiently samplable given oracle access to f and g . The distribution
Df,g can also be expressed as:

Df,g =

{

same∗ with prob. PrL,R←Fn
p
(〈f(L), g(R)〉 = 〈L, R〉)

m′ with prob. PrL,R←Fn
p
(h(〈f(L), g(R)〉) = m′, and 〈f(L), g(R)〉 6= 〈L, R〉) ,

where m′ ∈M∪ {⊥} .

Security Proof. The random variable corresponding to the tampering experiment Tamper
(f,g)
m has

the following distribution for all m′ ∈M∪ {⊥} .

Pr(Tamper(f,g)
m = m′) = Pr

(

h(〈f(L), g(R)〉) = m′ | h(〈L, R〉) = m
)

. (3)

The random variable corresponding to the simulator Sim
(f,g)
m has the following distribution for all

m′ ∈M∪ {⊥} .

Pr(Sim(f,g)
m = m′) =

{

Pr
(

h(〈f(L), g(R)〉) = m′ ∧ E
)

if m′ 6= m

Pr
(

E ∨
(

h(〈f(L), g(R)〉) = m ∧ E
))

if m′ = m
, (4)

where E is the event 〈f(L), g(R)〉 = 〈L, R〉

14



From Theorem 3, we get that there exists a random variable (X, Y ) taking values in Fp×Fp such
that

∆ (〈L, R〉, 〈f(L), g(R)〉 ; X, Y ) ≤ 1

p2

and X, Y is a convex combination of {(U, aU + b) : a, b ∈ Fp} , where U is uniformly distributed in
Fp . This implies that there exist {pa,b : a, b ∈ Fp} such that

∑

a,b∈Fp
pa,b = 1 and

Pr(X = x, Y = y) =
∑

a,b∈Fp

pa,b Pr(U = x, aU + b = y) ,

for all x, y ∈ Fp .

Using Claim 4 and that ∆ (〈L, R〉, 〈f(L), g(R)〉 ; X, Y ) ≤ 1
p2 , we get that

∆(Tamper(f,g)
m ; T ) ≤ 2

p
and ∆(Sim(f,g)

m ; S) ≤ 1

p2
,

where S and T are defined as follows for all m′ ∈M∪ {⊥} :

Pr(T = m′) = Pr
(

h(Y ) = m′ | h(X) = m
)

Pr(S = m′) =

{

Pr (h(Y ) = m′ ∧ Y 6= X) if m′ 6= m

Pr (Y = X ∨ (h(Y ) = m ∧ Y 6= X)) if m′ = m
.

The statistical distance between S and T is

∆(S ; T ) =
1

2

∑

m′∈M∪{⊥}

∣

∣

∣
Pr(S = m′)− Pr(T = m′)

∣

∣

∣

=
1

2

∑

m′∈M∪{⊥}

∣

∣

∣

∑

a,b∈Fp

pa,b Pr(Sim(a,b)
m = m′)−

∑

a,b∈Fp

pa,b Pr(Tamper(a,b)
m = m′)

∣

∣

∣

≤ 1

2

∑

m′∈M∪{⊥}

∑

a,b∈Fp

pa,b

∣

∣

∣
Pr(Sim(a,b)

m = m′)− Pr(Tamper(a,b)
m = m′)

∣

∣

∣

=
1

2

∑

a,b∈Fp

pa,b

∑

m′∈M∪{⊥}

∣

∣

∣
Pr(Sim(a,b)

m = m′)− Pr(Tamper(a,b)
m = m′)

∣

∣

∣

≤
∑

a,b∈Fp

pa,bε/2 = ε/2 ,

where the last inequality follows from Corollary 2. Therefore, using triangle inequality,

∆
(

Tamper(f,g)
m ; Sim(f,g)

m

)

≤ ∆
(

Tamper(f,g)
m ; T

)

+ ∆ (T ; S) + ∆
(

S ; Sim(f,g)
m

)

≤ ε

2
+

1

p2
+

2

p
≤ ε ,

thus completing the proof of Theorem 5.

5 Proof of Theorem 3

We recall Theorem 3 for the convenience of the reader, where D was defined to be the family of convex
combinations of {(U, aU + b) : a, b ∈ Fp} where U ∈ Fp is uniform..

15



Theorem 3 There exists absolute constants c, c′ > 0 such that the following holds. For any finite
field Fp of prime order, and any n > c′ log6 p, let L, R ∈ F

n
p be uniform, and fix f, g : F

n
p → F

n
p . Then

∆(φf,g(L, R) ; D) ≤ 2−cn1/6

.

We prove Theorem 3 in this section. Let us fix functions f, g : F
n
p → F

n
p and shorthand φ(L, R) =

φf,g(L, R). An important ingredient in the proof will be conditioning φ on various subsets of F
n
p ×

F
n
p . We will use the following notation: for set P ⊂ F

n
p × F

n
p let φ(L, R)|P denote the conditional

distribution of φ(L, R) conditioned on (L, R) ∈ P . Equivalently, it is the distribution of φ(L, R) for
uniformly chosen (L, R) ∈ P . We will typically be using this applied to product sets P = L ×R for
L,R ⊆ F

n
p .

We start with the following simple lemma, showing that it suffices to prove Theorem 3 for partitions
of the ambient space.

Lemma 5 Let P ⊆ F
n
p × F

n
p . Let P1, . . . ,Pk be a partition of P . Assume that for all 1 ≤ i ≤ k ,

∆
(

φ(L, R)|(L,R)∈Pi
; D

)

≤ εi.

Then

∆
(

φ(L, R)|(L,R)∈P ; D
)

≤
∑

εi
|Pi|
|P| .

Proof. The lemma follows immediately from the definitions. For all i let Di ∈ D be such that
∆

(

φ(L, R)|(L,R)∈Pi
; Di

)

≤ εi. Let pi = |Pi|/|P| denote the probability that (L, R) ∈ Pi conditioned
on (L, R) ∈ P . Then φ(L, R) is (

∑

piεi)-close in statistical distance to D ∈ D given by D[(a, b)] =
∑

piDi[(a, b)] . ⊓⊔
We next define a partition of F

n
p × F

n
p to which we will apply Lemma 5. Let s = ⌊ n

10⌋ , and

t = ⌊ s1/6

c1 log p⌋ , where c1 is some constant that will be chosen later. Note that s ≫ t . We choose the

constant c′ in the statement of Theorem 3 such that t ≥ 3.

We first define a partition L1, . . . ,La of F
n
p based on f . Intuitively, Li for 1 ≤ i < a will

correspond to inputs on which f agrees with a popular linear function; and La will be the remaining
elements.

We define L1, . . . ,La iteratively. For i ≥ 1, given L1, . . . ,Li−1 , if there exists a linear map
Ai : F

n
p → F

n
p for which

∣

∣{x ∈ F
n
p : f(x) = Aix} \ (L1 ∪ . . . ∪ Li−1)

∣

∣ ≥ pn−s ,

then set Li to be {x ∈ F
n
p : f(x) = Aix} \ (L1 ∪ . . . ∪ Li−1). If no such linear map exists, set a := i ,

La := F
n
p \ (L0 ∪ . . .∪La−1) and complete the process. Note we obtained a partition L1, . . . ,La of F

n
p

with a ≤ ps + 1.

We next define a parition based on g to elements whose output is too popular; and the rest. For
y ∈ F

n
p let g−1(y) = {x ∈ F

n
p : g(x) = y} be the set of pre-images of y . Define

R0 := {x ∈ F
n
p : |g−1(g(x))| ≥ pt}.

and set R1 := F
n
p \ R0 . We define the following partition of F

n
p × F

n
p :

{P0, . . . ,Pa} = {Fn
p ×R0,L1 ×R1, . . . ,La ×R1}.

We will argue that for any part, either its probability is small, or the joint distribution of φ(L, R)
conditioned on (L, R) belonging to it, is close to D . We then apply Lemma 5 to obtain a proof of
Theorem 3.

16



5.1 g is close to constant

We first analyze the distribution conditioned on (L, R) ∈ F
n
p ×R0 , that is on inputs x for which g(x)

has many preimages.

Lemma 6 ∆
(

φ(L, R)|Fn
p×R0

; D
)

≤ p−(t−1)/2 .

Proof. Let Y = {y ∈ F
n
p : |g−1(y)| ≥ pt} . We can decompose R0 as the disjoint union over y ∈ Y

of g−1(y). By Lemma 5 it suffices to prove the lemma conditioned on R ∈ g−1(y) for all y ∈ Y . Fix
such a y ∈ Y and let Ry = R|g(R)=y denote the conditional random variable. Since by assumption
|g−1(y)| ≥ pt and L ∈ F

n
p is uniform, using Lemma 1

∆((〈L, Ry〉, L) ; (U, L)) ≤ p−(t−1)/2,

where U ∈ Fp is uniform indepenent of L, Ry . In particular, noting that g(Ry) is always equal to y ,
we have that

∆ ((〈L, Ry〉, 〈f(L), g(Ry)〉) ; (U, 〈f(L), y〉)) ≤ p−(t−1)/2.

This concludes the proof since (U, 〈f(L), y〉) is in the convex combination of {(U, a) : a ∈ Fp} which
is contained in D . ⊓⊔

5.2 f is close to linear

Fix 1 ≤ i < a . We analyze in this subsection the joint distribution for (L, R)|Li×R1
. Let A : F

n
p → F

n
p

be a linear map so that for all x ∈ Li , f(x) = Ax .

Lemma 7 If |Li ×R1| ≥ p2n−2s then

∆(φ(L, R)|Li×R1
; D) ≤ 2p−s.

Proof. Let L′ ∈ Li, R
′ ∈ R1 be uniform and independent. Note that

〈f(L′), g(R′)〉 = 〈AL′, g(R′)〉 = 〈L′, AT g(R′)〉.

If (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−s -close to UF2
p

we are done since the uniform distribution is in D . If
not, then by Claim 1 there exist a, b ∈ Fp , not both zero, such that

∆(〈L′, aR′ + bAT g(R′)〉 ; UFp) ≥ p−2−s.

Now, by assumption, L′ is uniform over a set of size at least pn−s . Assume that H∞(aR′ +
bAT g(R′)) = k log p . Then, using Lemma 1 gives

∆(〈L′, aR′ + bAT g(R′)〉 ; UFp) ≤ p−(k−s−1)/2.

This means that k ≤ 3s+4 ≤ 4s . So, there exist y ∈ F
n
p and a subset R′1 ⊂ R1 of size |R′1| ≥ |R1|·p−4s

such that
ax + bAT g(x) = y ∀x ∈ R′1.

We clearly cannot have b = 0 since ax = y can hold only for one value of x . So, as b 6= 0 we can
rewrite (and rename the constants for convenience) as

AT g(x) = a1x + y1 ∀x ∈ R′1.

17



Let R2 = R1 \ R′1 . We repeat this process with R1 replaced by R2 to get a set R′2 ⊂ R2 of size
|R′2| ≥ |R2| · p−4s and y2 ∈ F

n
p such that

AT g(x) = a2x + y2 ∀x ∈ R′2.

We continue this process to get R3, . . . ,Rb until |Rb| < p−s|R1| or until (L, R)|Li×Rb
is p−s close to

UFp×Fp . Note that for j < b we have |R′j | ≥ |Rj | · p−4s ≥ |R1|p−5s .

Consider the partition of Li ×R1 as {Li ×R′1, . . . ,Li ×R′b−1,Li ×Rb} . We argue next that all
the partitions, except for perhaps the last one, induce distributions very close to D .

Claim 6 For 1 ≤ j < b,
∆(φ(L, R)|Li×R′

j
; D) ≤ p−s.

Proof. Let L∗ ∈ Li and R∗ ∈ R′j be independent and uniform. We know that 〈f(L∗), g(R∗)〉 =

〈L∗, AT g(R∗)〉 = aj〈L∗, R∗〉+ 〈L∗, yj〉 . Moreover, we know that |Li ×R′j | ≥ |Li ×R1|p−5s ≥ p2n−7s .
So by Lemma 1 we have that

∆(〈L∗, R∗〉, L∗ ; U, L∗) ≤ p(n−7s−1)/2 ≤ p−s

where the last inequality follows from our assumption that n ≥ 10s . So

∆(〈L∗, R∗〉, 〈f(L∗), g(R∗)〉 ; U, ajU + X) ≤ p−s

where U ∈ Fp is uniform and X ∈ Fp is independent from U and distributed like 〈L∗, yj〉 . As this
distribution is in D this conclude the proof. ⊓⊔

For all j < b we have that the joint distribution of φ(L, R)|Li×R′
j

is p−s close to D . Also,

we know that either |Li×Rb|
|Li×R1|

≤ p−s ; or that (L, R)|Li×Rb
is p−s close to UFp×Fp , which implies

∆(φ(L, R)|Li×Rb
; D) ≤ p−s . Hence, the lemma follows by Lemma 5. ⊓⊔

5.3 f is far from linear and g is far from constant

The last partition we need to analyze is La×R1 , corresponding to the case where f is far from linear
and g is far from constant. For this, we need the following result that can be seen as a generalization
of the linearity test from [28] and that is discussed and proved in Section 6.

Theorem 6 Let p be a prime, and n ∈ IN. For any ε = ε(n, p) > 0, γ1 = γ1(n, p) ≤ 1, γ2 = γ2(n, p) ≥
1, the following is true. For any function f : F

n
p 7→ F

n
p , let A ⊆ {(x, f(x)) : x ∈ F

n
p} ⊆ F

2n
p . If

|A| ≥ γ1 · |Fn
p | and there exists some set B such that |B| ≤ γ2 · pn , and

Pr
a,a′∈A

[a− a′ ∈ B] ≥ ε,

then there exists a linear map M : F
n
p → F

n
p such that

Pr
(x,f(x))∈A

[f(x) = Mx] ≥ p
−O(log6(

γ2
γ1ε

))
.

We will now show that, φ(L, R)|La×R1
is close to uniform over Fp × Fp .

18



Lemma 8 If |La ×R1| ≥ p2n−t , then

∆(φ(L, R)|La×R1
; UFp×Fp) ≤ p−t.

In particular,
∆(φ(L, R)|La×R1

; D) ≤ p−t.

Proof. Let L′ ∈ La, R
′ ∈ R1 be uniform and independent. We assume that φ(L′, R′) is not p−t -close

to UFp×Fp , as otherwise the result trivially holds. Then, by Claim 1 there exist a, b ∈ Fp , not both
zero, so that ∆(a〈L′, R′〉+b〈f(L′), g(R′)〉 ; UFp) ≥ p−t−2 . Define functions F, G : F

n
p → F

2n
p as follows

F (x) = (x, f(x)), G(y) = (ay, bg(y)).

We have that ∆(〈F (L′), G(R′)〉 ; UFp) ≥ p−t−2 . Applying Claim 2, we get that for (L′′, R′′) i.i.d to
(L′, R′) we have

Pr[〈F (L′), G(R′)〉 = 〈F (L′′), G(R′′)〉] ≥ 1

p
+

1

p2t+5
.

Applying Claim 3 with X = F (L′), Y = G(R′), X ′ = F (L′′), Y ′ = G(R′′) we get that

Pr[〈F (L′)− F (L′′), G(R′)〉 = 0] ≥ 1

p
+

1

p2t+5
.

Define

B :=

{

α ∈ F
2n
p : Pr[〈α, G(R′)〉 = 0] ≥ 1

p
+

1

p2t+6

}

.

Let B ∈ B be uniform. Then ∆(〈B, G(R′)〉, UFp) ≥ 1
p2t+6 . Also, since g(y) has at most pt preimages

for any y ∈ F
n
p , G(R′) has min-entropy at least log(|R1|p−t) ≥ (n− 2t) log p . Hence, by Lemma 1,

we have H∞(B) ≤ (n + 6t + 13) · log p , which implies |B| ≤ pn+6t+13 . Furthermore, we have that

Pr[〈F (L′)− F (L′′), G(R′)〉 = 0] ≤ Pr[F (L′)− F (L′′) ∈ B] +
1

p
+

1

p2t+6
.

So we must have that

Pr[F (L′)− F (L′′) ∈ B] ≥ 1

p2t+5
− 1

p2t+6
≥ 1

p2t+6
.

Thus, using Theorem 6, we get that there exists a linear map M : F
n
p → F

n
p for which

Pr
x∈Fn

p

[Mx = f(x)] ≥ p−O(t6 log6 p) .

This violates the definition of La whenever s ≥ C(t6 log6 p) for a big enough constant C .5 ⊓⊔

5.4 Putting things together

In this section, we combine the results of Lemmas 6, 7, and 8, and use Lemma 5 to conclude the proof
of Theorem 3.

5The constant C here determines the choice of the constant c1 used while defining the parameter t .

19



Proof. Consider the partition P0, . . . ,Pa of F
n
p ×F

n
p as defined earlier. In the following, let pi denote

|Pi|
p2n . Note that if for any α, β, i , we have a statement of the form: If pi ≥ α , then ∆(φ(L, R)|Pi ; D) ≤
β . Then this statement implies that

∆(φ(L, R)|Pi ; D) · pi ≤ α + β · pi .

Thus, using Lemma 5, and the results of Lemmas 6, 7, and 8, we get that

∆(φf,g(L, R) ; D) ≤ ∆(φ(L, R)|P0
; D) · p0 +

a−1
∑

i=1

∆(φ(L, R)|Pi ; D) · pi

+∆(φ(L, R)|Pa ; D) · pa

≤ 1

p(t−1)/2
· p0 +

a−1
∑

i=1

(

1

p2s
+

2

ps
· pi

)

+

(

1

pt
+

1

pt
· pa

)

≤ 1

p(t−1)/2

a
∑

i=0

pi +
ps

p2s
+

1

pt

≤ 2

p(t−1)/2
≤ 2−cn1/6

,

for some constant c . ⊓⊔

6 Generalized linearity testing

We now take a detour and prove Theorem 6 that generalizes the linearity test from [28] for large
fields of prime order. The linearity test in [28] for checking whether a function f : F

n
p 7→ F

n
p does the

following: It picks x, x′ ∈ F
n
p uniformly at random and accept if and only if f(x− x′) = f(x)− f(x′).

Clearly, this test always accepts if f is linear, and it was shown for p = 2 that the test rejects
with high probability if f is sufficiently far from linear. More precisely, it was shown that for any
ε , if Prx,x′∈Fn

p
(f(x) − f(x′) = f(x − x′)) ≥ ε , then there exists a matrix M ∈ F

n×n
p such that

Pr(f(x) = Mx) ≥ ε′ . The dependence of ε′ on ε in the proof of [28] was exponential.

We show here a more general and improved result that we stated in Section 5.3. The key difference
between this proof and the proof of [28] is the use of a recent result by Sanders [29].

Theorem 6 Let p be a prime, and n ∈ IN. For any ε = ε(n, p) > 0, γ1 = γ1(n, p) ≤ 1, γ2 =
γ2(n, p) ≥ 1, the following is true. For any function f : F

n
p 7→ F

n
p , let A ⊆ {(x, f(x)) : x ∈ F

n
p} ⊆ F

2n
p .

If |A| ≥ γ1 · |Fn
p | and there exists some set B such that |B| ≤ γ2 · pn , and

Pr
a,a′∈A

[a− a′ ∈ B] ≥ ε

, then there exists a linear map M : F
n
p → F

n
p such that

Pr
(x,f(x))∈A

[f(x) = Mx] ≥ p
−O(log6(

γ2
γ1ε

))
.

This result improves the linearity test from [28] in several ways (i) The dependence of ε′ on ε is
only quasi-polynomial instead of exponential. (ii) This result is proven for any finite field of prime

20



order. While the ideas of [28] generalize for larger fields, it results in an exponential dependence of ε′

on p in addition to that on ε (iii) The linearity test is a special case of our result since we can obtain
it by setting B = A = {(x, f(x)) : x ∈ F

n
p} (and hence, γ1 = γ2 = 1).

For giving a proof of this theorem, we need the following results from additive combinatorics. First
we introduce some notation. Let A′ ⊂ F

n
p be a set. We denote by A′ − A′ = {a − a′|a, a′ ∈ A′} the

difference set of A′ . We denote by span(A′) the linear subspace over Fp spanned by A′ .
The following result is due to Balog, Szemeredi, and Gowers [1, 20]. The current formulation is

from a survey of Viola [30], Theorem 3.1. The statement given in [30] is for the case when the field is
p = 2, and A = B , but the proof is essentially the same.

Lemma 9 Let A,B ⊆ F
n
p .If Pra,a′∈A[a−a′ ∈ B] ≥ ε then there exists A′ ⊆ A of size |A′| ≥ (ε/3) · |A|

such that |A′ −A′| ≤ 68|B|4

ε8|A|3
.

The following result is of Sanders [29].

Lemma 10 Let A′ ⊂ F
n
p be a set such that |A′ − A′| ≤ K|A′|. Then there exists A′′ ⊆ A′ such that

|A′′| ≥ p−O(log6 K)|A′| such that |span(A′′)| ≤ |A′|.

Finally, we need the following fact in linear algebra. Its proof can be found e.g. in [30], Lemma
5.1.

Lemma 11 Let f : F
n
p → F

n
p be a function. Let A′′ ⊂ F

n
p × F

n
p be a set such that

A′′ ⊆ {(x, f(x)) : x ∈ F
n
p}.

Assume furthermore that

εpn ≤ |A′′| ≤ |span(A′′)| ≤ pn

ε
.

Then there exists a linear map M : F
n
p → F

n
p such that

Pr
(x,f(x))∈A

[f(x) = Mx] ≥ ε3

2p
.

Now we have the tools to complete the proof of Theorem 6.

Proof. First, we apply Lemma 9. We get that there exists a set A′ ⊂ A of size |A′| ≥ Ω(εγ1p
n) for

which |A′−A′| = O
(

(γ4
2/γ3

1ε8)pn
)

. Applying Lemma 10 we get that there exists a subset A′′ ⊂ A′ of

size |A′′| ≤ p
−O(log6(

γ2
γ1ε

))|A′| = p
−O(log6(

γ2
γ1ε

)) ·pn for which |span(A′′)| ≤ |A′| . Applying Lemma 11 we

get that there exists a linear map M : F
n
p → F

n
p for which Pr(x,f(x))∈A′′ [Mx = f(x)] ≥ p

−O(log6(
γ2
γ1ε

))
,

which implies Pr(x,f(x))∈A[Mx = f(x)] ≥ p
−O(log6(

γ2
γ1ε

))
. ⊓⊔

7 Conclusions and Open Problems

We give an encoding scheme for k -bit messages to F
n
p × F

n
p that is ε-non-malleable in the split state

model. Hence, k -bit messages are encoded into N = O(n log p) bits. For our security proof, which is
based on Theorem 3, we need n to be Ω(log6 p), and p is 2Ω((k+log 1/ε) log(k+log 1/ε)) , and thus the size

21



of the encoding is N = O
(

(k + log 1/ε)7 log7(k + log 1/ε)
)

. We believe that there is a possibility of
reducing the size of both p and n , which will translate into lower N = O(n log p).

The choice of p is governed by the construction of an affine-evasive set in Section 4.1. It might very
well be possible that we can find an affine-evasive set S ⊂ Fp where p, |S| are polynomially related.
In particular, if we pick the set S as a random subset of size

√
p from Fp , then it is not difficult to

show that this set is affine-evasive with high probability for p = 2Θ(k+log 1/ε) . However, we cannot
choose the set randomly for our encoding scheme since the encoding and decoding algorithm have to
be efficient.

Conjecture 1 For some fixed ε > 0 and a large enough prime p, there exists an efficiently samplable
explicit construction of a set S ⊂ Fp of size |S| = pΘ(1) such that for any (a, b) ∈ F

2
p \ {(1, 0)}, we

have
|S ∩ (aS + b (mod p))| ≤ |S|1−ε .

Conjecture 1 implies that we can choose p = 2Θ(k+log 1/ε) in our construction in Section 4.1 giving us
a constant rate encoding scheme secure against affine tampering functions.

Also, Theorem 3 might hold for a smaller value of n . In particular, if we replace Lemma 10 by
the PFR conjecture, then we get that our coding scheme is secure for n being Θ(log p), which means
N = O(log2 p). It is even conceivable that the following stronger variant of Theorem 3 for a constant
n (independent of p) holds, meaning that N = O(log p).

Conjecture 2 There exists absolute constants c, c′ > 0 such that the following holds. For any finite
field Fp of prime order, and any n > c′ , let L, R ∈ F

n
p be uniform, and fix f, g : F

n
p → F

n
p . Then

∆(φf,g(L, R) ; D) ≤ p−cn .

We thus obtain the following corollary using our construction from Section 4.2.

Corollary 3 There exists an ε-non-malleable coding scheme against split-state adversaries from k -bit
messages to two N -bit parts, where

• N = Θ̃((k + log(1/ε))2) under the PFR conjecture.

• N = Θ((k + log(1/ε))2) under Conjecture 1 and the PFR conjecture.

• N = Θ̃(k + log(1/ε)) under Conjecture 2.

• N = Θ(k + log(1/ε)) under Conjecture 1 and 2.

Acknowledgments: We thank Oded Regev, Tom Sanders, and Terence Tao for useful discussions,
especially related to Section 5.3 of the paper. We would also like to thank Stefan Dziembowski,
Tomasz Kazana, and Maciej Obremski for sharing their recent work on non-malleable codes for 1-bit
messages [14].

References

[1] A. Balog and E. Szemeredi. A statistical theorem for set addition. Combinatorica, 14(3):263–268, 1994.

[2] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith. Secure remote authentication using biometric
data. In R. Cramer, editor, Advances in Cryptology—EUROCRYPT 2005, volume 3494 of LNCS, pages
147–163. Springer-Verlag, 2005.

22



[3] H. Chabanne, G. Cohen, J. Flori, and A. Patey. Non-malleable codes from the wire-tap channel. In
Information Theory Workshop (ITW), 2011 IEEE, pages 55–59. IEEE, 2011.

[4] H. Chabanne, G. Cohen, and A. Patey. Secure network coding and non-malleable codes: Protection
against linear tampering. In Information Theory Proceedings (ISIT), 2012 IEEE International Symposium
on, pages 2546–2550. IEEE, 2012.

[5] M. Cheraghchi and V. Guruswami. Capacity of non-malleable codes. In Innovations in Theoretical Com-
puter Science. ACM, 2014. To appear.

[6] M. Cheraghchi and V. Guruswami. Non-malleable coding against bit-wise and split-state tampering. In
Theory of Cryptography Conference - TCC. Springer, 2014. To appear.

[7] S. G. Choi, A. Kiayias, and T. Malkin. Bitr: built-in tamper resilience. In Advances in Cryptology–
ASIACRYPT 2011, pages 740–758. Springer, 2011.

[8] R. Cramer, Y. Dodis, S. Fehr, C. Padro, and D. Wichs. Detection of algebraic manipulation with applica-
tions to robust secret sharing and fuzzy extractors. In EUROCRYPT 2008, April 2008. To Appear.

[9] F. Dav̀ı, S. Dziembowski, and D. Venturi. Leakage-resilient storage. In J. A. Garay and R. D. Prisco,
editors, SCN, volume 6280 of Lecture Notes in Computer Science, pages 121–137. Springer, 2010.

[10] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero
knowledge. In Advances in Cryptology-Crypto 2001, pages 566–598. Springer, 2001.

[11] Y. Dodis, J. Katz, L. Reyzin, and A. Smith. Robust fuzzy extractors and authenticated key agreement
from close secrets. In C. Dwork, editor, Advances in Cryptology—CRYPTO 2006, volume 4117 of LNCS,
pages 232–250. Springer-Verlag, 20–24 Aug. 2006.

[12] Y. Dodis and D. Wichs. Non-malleable extractors and symmetric key cryptography from weak secrets. In
M. Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pages
601–610, Bethesda, MD, USA, 2009. ACM.

[13] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM, 30:391–437, 2000.

[14] S. Dziembowski, T. Kazana, and M. Obremski. Non-malleable codes from two-source extractors. In
Advances in Cryptology-CRYPTO 2013. Springer, 2013.

[15] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In 49th Symposium on Foundations of
Computer Science, pages 293–302, Philadelphia, PA, USA, Oct. 25–28 2008. IEEE Computer Society.

[16] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In A. C.-C. Yao, editor, ICS, pages
434–452. Tsinghua University Press, 2010.

[17] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous non-malleable codes. In Theory of Cryp-
tography Conference - TCC. Springer, 2014. To appear.

[18] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes and key-derivation for
poly-size tampering circuits. IACR Cryptology ePrint Archive, 2013.

[19] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic Tamper-Proof (ATP)
security: Theoretical foundations for security against hardware tampering. In M. Naor, editor, First
Theory of Cryptography Conference — TCC 2004, volume 2951 of LNCS, pages 258–277. Springer-Verlag,
Feb. 19–21 2003.

[20] T. Gowers. A new proof of szemeredi’s theorem for arithmetic progression of length four. Geom. Func.
Anal., 8(3):529–551, 1998.

[21] B. Green. Finite field models in additive number theory. Surveys in Combinatorics, pages 1–29, 2005.

[22] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits II: Keeping secrets in tamperable
circuits. In S. Vaudenay, editor, Advances in Cryptology—EUROCRYPT 2006, volume 4004 of LNCS,
pages 308–327. Springer-Verlag, 2006.

[23] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. In
D. Boneh, editor, Advances in Cryptology—CRYPTO 2003, volume 2729 of LNCS. Springer-Verlag, 2003.

23



[24] Y. T. Kalai, B. Kanukurthi, and A. Sahai. Cryptography with tamperable and leaky memory. In Advances
in Cryptology–CRYPTO 2011, pages 373–390. Springer, 2011.

[25] C.-J. Lee, C.-J. Lu, S.-C. Tsai, and W.-G. Tzeng. Extracting randomness from multiple independent
sources. Information Theory, IEEE Transactions on, 51(6):2224–2227, 2005.

[26] F.-H. Liu and A. Lysyanskaya. Tamper and leakage resilience in the split-state model. In Advances in
Cryptology–CRYPTO 2012, pages 517–532. Springer, 2012.

[27] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In S. Halevi, editor, Advances
in Cryptology - CRYPTO 2009, volume 5677 of LNCS, pages 18–35. Springer-Verlag, 2009.

[28] A. Samorodnitsky. Low-degree tests at large distances. In ACM symposium on Theory of computing, pages
506–515. ACM, 2007.

[29] T. Sanders. On the bogolyubov-ruzsa lemma, anal. PDE, 5:627–655, 2012.

[30] E. Viola. Selected results in additive combinatorics: An exposition. Theory of Computing Library, Graduate
Surveys series, 3:1–15, 2011.

8 Appendix

In this section, we prove the claims we stated in Section 2. The proofs use the following simple in-
equality: (

∑n
i=1 |xi|)2 ≤ n

∑n
i=1 |xi|2 .

Claim 1 Let X = (X1, X2) ∈ Fp × Fp be a random variable. Assume that for all a, b ∈ Fp not
both zero, ∆(aX1 + bX2 ; UFp) ≤ ε. Then ∆((X1, X2) ; UF2

p
) ≤ εp2 .

Proof. Let ω = e2πi/p . Then for any a, b ∈ Fp not both zero,

E[ωaX1+bX2 ] =
∑

c∈Fp

ωc Pr[aX1 + bX2 = c] =
∑

c∈Fp

ωc

(

Pr[aX1 + bX2 = c]− 1

p

)

.

Hence
∣

∣E[ωaX1+bX2 ]
∣

∣ ≤ ε . Let pc,d = Pr[X = (c, d)] . Then by Parseval’s identity

∑

c,d∈Fp

(

pc,d −
1

p

)2

=
∑

(a,b) 6=(0,0)

EX [ωaX1+bX2 ]2 ≤ ε2p2,

and




∑

c,d∈Fp

∣

∣

∣

∣

pc,d −
1

p

∣

∣

∣

∣





2

≤ p2
∑

c,d∈Fp

(

pc,d −
1

p

)2

≤ ε2p4.

⊓⊔
Claim 2 Let X ∈ Fp be a random variable. Assume that ∆(X ; UFp) ≥ ε. Then if X ′ is an

independent and i.i.d copy of X then

Pr[X = X ′] ≥ 1 + ε2

p
.

Proof. Let px = Pr[X = x] for x ∈ Fp . Then

Pr[X = X ′]− 1

p
=

∑

x∈Fp

(

px −
1

p

)2

≥ 1

p





∑

x∈Fp

∣

∣

∣

∣

px −
1

p

∣

∣

∣

∣





2

≥ ε2

p
.

24



⊓⊔
Claim 3 Let Z = (X, Y ) ∈ F

n
p × F

n
p be a random variable, and let Z ′ = (X ′, Y ′) be an i.i.d copy

of Z . Then
Pr[〈X, Y 〉 = 〈X ′, Y ′〉] ≤ Pr[〈X, Y 〉 = 〈X ′, Y 〉].

Proof. We would use the following identity: for a random variable R ≥ 0 we have E[R]2 ≤ E[R2] .
We would actually prove a stronger inequality. For any a ∈ Fp ,

Pr[〈X, Y 〉 = 〈X ′, Y ′〉 = a] ≤ Pr[〈X, Y 〉 = 〈X ′, Y 〉 = a].

Fix a ∈ Fp and define f(x, y) = 1〈x,y〉=a . Then

Pr[〈X, Y 〉 = 〈X ′, Y ′〉 = a] = Pr[〈X, Y 〉 = a]2 = (EX,Y f(X, Y ))2

≤ EY (EXf(X, Y ))2 = Pr[〈X, Y 〉 = 〈X ′, Y 〉 = a].

⊓⊔
Claim 4 Let X1, X2, Y1, Y2 ∈ A be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤ ε. Then,

for any non-empty set A1 ⊆ A, we have

∆(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) ≤
2ε

Pr(X1 ∈ A1)
.

Proof.

∆(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) =
1

2

∑

x∈A

∣

∣

∣
Pr(X2 = x | X1 ∈ A1)− Pr(Y2 = x | Y1 ∈ A1)

∣

∣

∣

≤ 1

2

∑

x∈A

(∣

∣

∣

Pr(X2 = x ∧ X1 ∈ A1)

Pr(X1 ∈ A1)
− Pr(Y2 = x ∧ Y1 ∈ A1)

Pr(X1 ∈ A1)

∣

∣

∣

+ Pr(Y2 = x ∧ Y1 ∈ A1)
∣

∣

∣

1

Pr(Y1 ∈ A1)
− 1

Pr(X1 ∈ A1)

∣

∣

∣

)

≤ ε

Pr(X1 ∈ A1)
+

ε ·
∑

x∈A

Pr(Y1 ∈ A1 ∧ Y2 = x)

Pr(Y1 ∈ A1) · Pr(X1 ∈ A1)

=
2ε

Pr(X1 ∈ A1)
.

⊓⊔

25


