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Abstract

Consider the following social choice problem. A group of individ-
uals seek to partition a finite set X into two subsets. The individuals
may disagree over the partition and so an aggregation rule is applied to
determine a compromise outcome. We require that the group partition
should not be imposed, nor should it be manipulable. We prove that
the only aggregation rules satisfying these properties are dictatorships.
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1 Introduction

The potential for social choice correspondences to be manipulated is by now
well understood in the literature.1 These correspondences select a nonempty

∗Financial support from the Irish Research Council for the Humanities and Social
Sciences, the Spanish Ministry of Science and Innovation through Feder grant SEJ2007-
67580-C02-02 and the NUI Galway Millennium Fund is gratefully acknowledged. We thank
Thierry Marchant for helpful references.

†Corresponding author. Government of Ireland Scholar, J.E. Cairnes School of Business
and Economics, National University of Ireland Galway, University Road, Galway, Ireland.
Email: conal.duddy@gmail.com

‡J.E. Cairnes School of Business and Economics, National University of Ireland Galway,
University Road, Galway, Ireland. Email: ashley.piggins@nuigalway.ie

1Barberà (2010) is the best survey to date.

1



subset of the set of social alternatives at each profile of individual preferences.
In this paper we focus on a social choice problem that has received less
attention in the literature.

Imagine that a group of individuals seek to partition a finite set X into
two subsets. The individuals may disagree over the partition and so an
aggregation rule is applied to determine a compromise outcome. The outcome
of the aggregation could itself be a partition of X into two subsets, but it
may be something more general than this. The only constraint we impose is
that neither of these two subsets can contain all of the elements in X.

An individual’s opinion of how X should be partitioned is described by
a non-constant function vi : X → {0, 1}. All individuals assign 1 to those
alternatives in X that correspond to the same part of the proposed group
partition. In what follows we call this part the set of alternatives that are
“collectively approved of”. The other part is the set of alternatives that are
“collectively disapproved of”.

Here are two examples that illustrate the importance of aggregating par-
titions.2 Our first example is taken from Kasher and Rubinstein (1997).

Example 1. Who is a J?
Consider the following “group identification problem”. Each member of a

group makes a judgment as to which members of that group have a certain
property. This property could be a religious affiliation, for instance. The
individuals agree that at least one member of the group has the property,
but not all. The group then seeks to aggregate these judgments on who has
the given property into a collective judgment. How should this collective
judgment be determined?

Our second example is taken from List (2008).
2A literature exists on this problem, inspired by issues of classification. Objects may

possess different attributes, and each attribute partitions the set of objects into equivalence
classes. How should these partitions be aggregated to determine which objects are, in fact,
equivalent? In this vein, impossibility theorems were discovered by Mirkin (1975), Leclerc
(1984) and Fishburn and Rubinstein (1986). See also Barthélemy et al. (1986), Dimitrov
et al. (2009) and Chambers and Miller (2010).
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Example 2. Which worlds are possible?
In logic propositions are sometimes modelled as sets of possible worlds

as opposed to sentences in a formal language. Let X denote a finite set
containing at least three worlds. A proposition is a tautology if every world is
possible. A proposition is a contradiction if every world is impossible. Non-
contradictory and non-tautological propositions are, therefore, represented
by non-empty, strict subsets of X. Imagine that each member of a group
accepts a single non-contradictory and non-tautological proposition. These
beliefs can be represented by a function vi : X → {0, 1}. To satisfy the
aforementioned constraints, this function cannot be constant. The group
then seeks to aggregate these individual beliefs to form a collective judgment.
How should this set of worlds be determined?

2 Aggregation rules

Imagine that X contains five alternatives and that there are five individuals.
We can create a 5 × 5 matrix where the rows represent the individuals and
the columns represent the alternatives. The elements of the matrix are either
0 or 1. The element 1 in the (i, j) position of the matrix indicates that vi

assigns 1 to the alternative represented by the jth column. Conversely, the
element 0 indicates that vi assigns 0 to the alternative represented by the jth

column. This framework goes back to Wilson (1975).3

Suppose that X = {v, w, x, y, z}. Consider the following profile.
3A recent application of this framework is Dokow and Holzman (2010).
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v w x y z
1 0 0 0 1
0 1 1 1 1
1 1 1 1 0
1 1 0 1 0
1 0 1 1 1

Table 1: A profile.

How should the group partition be determined? One possibility is that an
alternative is collectively approved if and only if the number of individuals
who approve of it (assign it the value 1) exceeds the number of individuals
who disapprove of it (assign it the value 0). However, in our example, this
implies that v, w, x, y and z are all collectively approved of. This contra-
dicts the requirement that not every alternative be collectively approved of.
Majority voting is, therefore, not a legitimate aggregation rule for this kind
of aggregation problem.

However, consider the following rule. First, assign each alternative a
number that is equal to the number of individuals who assign 1 to this al-
ternative. Second, add up these numbers and divide by the cardinality of
X. For obvious reasons, we call this number “the mean”. The rule then says
that an alternative is collectively approved if and only if its number is greater
than the mean, and it is collectively disapproved if and only if its number is
less than the mean. If its number equals the mean then it is neither approved
nor disapproved (one possible interpretation is that the group is indifferent
as to whether it should be approved or disapproved).

As we can see from the example, the mean is 17
5 . So v and y are approved

of and w, x and z are disapproved of.
Duddy and Piggins (2010) call this rule the “Mean Rule” and provide an

axiomatic characterisation of it. Unlike majority voting, the Mean Rule is a
legitimate aggregation rule. Under this rule it is impossible for all alternatives
to be in one part of the group partition (of course, both parts can be empty).
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Although this rule can be defended on normative grounds, it is manipu-
lable in the following sense. Consider the following profile.

v w x y z
0 0 1 1 1
0 1 0 1 1
1 0 1 1 1
1 0 1 1 0
0 1 0 1 1

Table 2: Another profile.

Under the Mean Rule, y and z are approved of and v, w and x are disap-
proved of. Note that the individual represented by the first row approves of
x. It is not, however, approved of by the group. Imagine that this individual
submits a new partition. This leads to the following profile.

v w x y z
0 0 1 0 0
0 1 0 1 1
1 0 1 1 1
1 0 1 1 0
0 1 0 1 1

Table 3: Manipulation.

Under the Mean Rule, y, z and x are approved of and v and w are disap-
proved of. As we can see, by changing her partition the first individual can
ensure that x is approved of, other things equal. If her sincere partition is
the one represented in Table 2 then we can interpret this change in the group
outcome as a profitable misrepresentation. The Mean Rule is manipulable.4

4Manipulability in this sense is similar to a concept developed by Dietrich and List
(2007) in the context of judgment aggregation.
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The question then arises as to which aggregation rules are non-manipulable
in this setting. The answer, in the spirit of the Gibbard-Satterthwaite theo-
rem5, is that only dictatorships are non-manipulable. This is what we prove
in this paper.

3 Model

X is a finite set containing at least three alternatives. N = {1, ..., n} with
n ≥ 2 is finite set of numbers that represent the individuals in society.

An evaluation is a function v : X → {0, 1} that is not constant. Each
individual’s proposed partition can be represented by an evaluation.

We allow the social outcome to be more general than a partition. A [0, 1]-
evaluation is a function w : X → [0, 1] such that, for all x, y ∈ X and each
c ∈ {0, 1}, if w(z) = c for all z ∈ X−{x, y} then w(x) = 1−c or w(y) = 1−c.
This means that if a [0, 1]-evaluation takes a value of one (zero) at all but
two of the alternatives then it takes a value of zero (one) at at least one of
those remaining two alternatives.6

V denotes the set of all evaluations and W denotes the set of all [0, 1]-
evaluations. Note that V ⊂ W .

A profile is an n-tuple of evaluations, with Vn being the set of all profiles.
An aggregation rule (more simply, a rule) is a function f : Vn → W .
Given profiles V, V � ∈ Vn we write V = (v1, . . . , vn), V � = (v�1, . . . , v

�
n) and

so on. And let f(V ) = w, f(V �) = w� and so on.
Define a binary relation � on [0, 1] as follows. The relation � is equal to

the union of {(1, 1), (0, 0)} and (0, 1] × [0, 1). Let � be the symmetric part
of �. Clearly � is a weak ordering on [0, 1], with 1 � α � β � 0 for all
α, β ∈ (0, 1).

5Gibbard (1973) and Satterthwaite (1975).
6The fact that the co-domain of w is [0, 1] allows for an interpretation of w(x) in terms

of fuzzy set theory. Then w(x) is the “degree” to which x is collectively approved of. This
interpretation is entirely optional, however.
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We now present several properties that aggregation rules may satisfy.

Non-manipulable (NM). For all x ∈ X, all i ∈ N and all V, V � ∈ Vn,
if V and V � differ at the ith component only then vi(x) = 1 implies
w(x) � w�(x), while vi(x) = 0 implies w�(x) � w(x).

The non-manipulation condition says the following. Imagine that individual
i unilaterally changes her partition. Then, at the new profile, the following
must be true. Consider those alternatives that this individual approved of
at the original profile. If any of them were collectively disapproved of at
this profile then their social value cannot now increase at the new profile.
Similarly, if any of them received a social value less than 1 at the original
profile, then they cannot now be collectively approved of at the new profile.

Next, consider those alternatives that this individual disapproved of at
the original profile. If any of them were collectively approved of at this profile
then their social value cannot now decrease at the new profile. Similarly, if
any of them received a social value greater than 0 at the original profile, then
they cannot now be collectively disapproved of at the new profile.

This is a natural condition of non-manipulation in this setting and it is
consistent with our earlier example.

The following two conditions are standard.

Non-imposition (NI). For every x ∈ X, there exists V ∈ Vn such that
w(x) = 0.

Dictatorial. There exists i ∈ N such that, for all V ∈ Vn, w = vi.

4 Theorem

Our theorem states the following.

Theorem. A non-manipulable rule satisfies non-imposition if and only if it
is dictatorial.
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We write vN(x) = a if vi(x) = a for all i ∈ N . Similarly, by vN(x) ≥ v�N(x)

we mean vi(x) ≥ v�i(x) for all i ∈ N , by vN(x) �= v�N(x) we mean vi(x) �= v�i(x)

for all i ∈ N and so forth. Given a subset S of X, we write v(S) = a if
v(x) = a for all x ∈ S.

The following condition features in Lemma 1.

Monotone independence (MI). For all x ∈ X and all V, V � ∈ Vn, if
vN(x) ≥ v�N(x) then w(x) � w�(x).

This condition says the following. Take any two profiles V, V � and any alter-
native x. If every individual who approves of x at V � still approves of x at V ,
and every individual who disapproves of x at V � either still disapproves of x
at V or now approves of x at V , then (i) if the social value of x was greater
than 0 at V � then it cannot now fall to 0 at V , and (ii) if x was collectively
approved of at V � then its social value cannot now fall below 1 at V .

Lemma 1. Every non-manipulable rule satisfies monotone independence.

Proof. Let f be a rule that is NM. Assume, by way of contradiction, that
f is not MI. Therefore, ∃x ∈ X and ∃V, V � ∈ Vn with vN(x) ≥ v�N(x) but
w(x) � w�(x). Consider the following sequence of profiles, beginning at
V (0) = V and ending at V (n) = V �.

V (0) = (v1, . . . , vn),

V (1) = (v�1, v2, . . . , vn),

V (2) = (v�1, v
�
2, v3, . . . , vn),

. . .

V (n) = (v�1, . . . , v
�
n).

Since � is transitive and f(V (0))(x) � f(V (n))(x), there must exist j ∈ N

such that f(V (j−1))(x) � f(V (j))(x). Let V (j−1) = (vα1 , . . . , v
α
n) and V (j) =

(vγ1 , . . . , v
γ
n).
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We have, by construction, vαN(x) ≥ vγN(x) and so vαj (x) ≥ vγj (x). There-
fore, we have vγj (x) = 0 or vαj (x) = 1. So we have two profiles (vα1 , . . . , v

α
n)

and (vγ1 , . . . , v
γ
n) that differ at the jth component only and we know that

either (i) vγj (x) = 0 and wα(x) � wγ(x) or (ii) vαj (x) = 1 and wα(x) � wγ(x).
NM is violated in either case. Loosely speaking, if (i) is true then NM is
violated in the move from (vγ1 , . . . , v

γ
n) to (vα1 , . . . , v

α
n) because individual j

has successfully lowered the social value assigned to x. If (ii) is true then NM
is violated in the move from (vα1 , . . . , v

α
n) to (vγ1 , . . . , v

γ
n) because individual j

has successfully raised the social value assigned to x.

The following condition features in Lemma 2.

Unanimity. For all x ∈ X and all V ∈ Vn, vN(x) = 0 implies w(x) = 0,
and vN(x) = 1 implies w(x) = 1.

Lemma 2. If a non-manipulable rule satisfies non-imposition then it satisfies
unanimity.

Proof. Let f be a rule that is NM and NI. Take any x ∈ X. NI implies
that there exists V ∈ Vn with w(x) = 0. Consider a profile V � ∈ Vn with
v�N(x) = 0. We know by Lemma 1 that since f is NM it is also MI. Since
vN(x) ≥ v�N(x), MI implies that w(x) � w�(x). Hence, w�(x) = 0.

Consider a profile V �� ∈ Vn with v��N(x) = 1. Let V ∗ ∈ Vn be the profile
with v∗N(x) = 1 and v∗N(X − {x}) = 0. We have seen that w∗(X − {x}) = 0.
Therefore, recalling the definition of a [0, 1]-evaluation, we have w∗(x) = 1.
Since v��N(x) ≥ v∗N(x), MI implies that w��(x) � w∗(x). Hence, w��(x) = 1.

The following condition features in Lemma 3.

Neutrality. For all x, y ∈ X and all V, V � ∈ Vn, (i) vN(x) = v�N(y) implies
w(x) � w�(y), and (ii) vN(x) �= v�N(y) implies w(x) = 0 ↔ w�(y) = 1.

This condition says the following. If everyone’s evaluation of x at V is the
same as their evaluation of y at V �, then the social value assigned to x at
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V is in the same equivalence class as the social value assigned to y at V �.
Furthermore, if everyone’s evaluation of x at V is different to their evaluation
of y at V �, then if x is collectively disapproved at V then y must be collectively
approved at V �. Moreover, in this situation, if y is collectively approved at
V � then x must be collectively disapproved at V .

Lemma 3. If a non-manipulable rule satisfies non-imposition then it satisfies
neutrality.

Proof. Let f be a rule that is NM and NI. Take any x, y ∈ X and any
V, V � ∈ Vn, such that either vN(x) �= v�N(y) or vN(x) = v�N(y). We consider
four cases.

Case 1: x �= y and vN(x) �= v�N(y). Construct a profile V ∗ with v∗N(x) =

vN(x), v∗N(y) = v�N(y) and v∗N(X − {x, y}) = 0. Unanimity implies that
w∗(X − {x, y}) = 0. So, recalling the definition of a [0, 1]-evaluation, if
w∗(x) = 0 then w∗(y) = 1.

MI implies that w(x) � w∗(x) and that w�(y) � w∗(y). This means that
w(x) = 0 ↔ w∗(x) = 0 and that w�(y) = 1 ↔ w∗(y) = 1. So, given that
w∗(x) = 0 → w∗(y) = 1, it must then be true that w(x) = 0 → w�(y) = 1.

To see that w(x) = 0 ← w�(y) = 1 simply interchange everywhere 0 and
1, x and y, and the profiles V and V �, in the above argument.

Case 2: x �= y and vN(x) = v�N(y). Take any z ∈ X − {x, y} and consider
a profile V �� where v��N(z) �= vN(x). It is also true then that v��N(z) �= v�N(y).
By the argument used in Case 1 we know that w��(z) = 0 ↔ w(x) = 1 and
w��(z) = 1 ↔ w(x) = 0 and that w��(z) = 0 ↔ w�(y) = 1 and w��(z) = 1 ↔
w�(y) = 0. It follows that w(x) = 0 ↔ w�(y) = 0 and w(x) = 1 ↔ w�(y) = 1.
In other words, w(x) � w�(y).

Case 3: x = y and vN(x) = v�N(y). MI implies immediately that w(x) �
w�(y).

Case 4: x = y and vN(x) �= v�N(y). Take any z ∈ X − {x} and any profile
V ∗∗ with v∗∗N (z) = vN(x). We know, by Case 2, that w(x) = 0 ↔ w∗∗(z) = 0.
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And, since v∗∗N (z) �= v�N(y), we know, by Case 1, that w∗∗(z) = 0 ↔ w�(y) = 1.
It follows that w(x) = 0 ↔ w�(y) = 1.

Proof of the main theorem. Take any x ∈ X, and profiles V and V ∗ with
vN(x) = 0 and v∗N(x) = 1. Consider the following sequence of profiles,
beginning at V (0) = V and ending at V (n) = V ∗.

V (0) = (v1, . . . , vn),

V (1) = (v∗1, v2, . . . , vn),

V (2) = (v∗1, v
∗
2, v3, . . . , vn),

. . .

V (n) = (v∗1, . . . , v
∗
n).

Unanimity implies that f(V (0))(x) = 0 and f(V (n))(x) = 1. So there
must exist d ∈ N such that f(V (d−1))(x) = 0 and f(V (d))(x) > 0. Let
V (d−1) = (vα1 , . . . , v

α
n) and V (d) = (vγ1 , . . . , v

γ
n).

Construct a profile V � with v�N(X − {x, y}) = vαN(x), v�N(y) + vγN(x) = 1

and v�d(x) = 1 while v�i(x) = 0 for all i ∈ N − {d}. Neutrality implies that,
since wα(x) = 0, we have w�(X − {x, y}) = 0. Neutrality also implies that,
since wγ(x) > 0, we have w�(y) < 1. Recalling the definition of a [0, 1]-
evaluation, we see that w�(x) = 1. This is despite the fact that v�i(x) = 0 for
all i ∈ N − {d}.

Take a profile V �� ∈ Vn with v��N(x) �= v�N(x). Neutrality implies that
w��(x) = 0. Take any profile V ∗∗ ∈ Vn. If v∗∗d (x) = 1 then, since this would
mean that v∗∗N (x) ≥ v�N(x), MI implies that w∗∗(x) = 1. If v∗∗d (x) = 0 then,
since this would mean that v∗∗N (x) ≤ v��N(x), MI implies that w��(x) = 0. So
we can see that the collective value assigned to x will always be equal to the
value that individual d assigns to x. Since the rule satisfies neutrality, this
must also be true of every other alternative in X.
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