
UC Davis
UC Davis Previously Published Works

Title
Non-Markovian momentum computing: Thermodynamically efficient and computation 
universal

Permalink
https://escholarship.org/uc/item/3gz8h21g

Journal
Physical Review Research, 3(2)

ISSN
2643-1564

Authors
Ray, KJ
Boyd, AB
Wimsatt, GW
et al.

Publication Date
2021-06-01

DOI
10.1103/PhysRevResearch.3.023164
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gz8h21g
https://escholarship.org/uc/item/3gz8h21g#author
https://escholarship.org
http://www.cdlib.org/


arXiv:2010.01152

Non-Markovian Momentum Computing:
Thermodynamically Efficient and Computation Universal

Kyle J. Ray,1, ∗ Alexander B. Boyd,2, † Gregory W. Wimsatt,1, ‡ and James P. Crutchfield1, §

1Complexity Sciences Center and Physics Department,
University of California at Davis, One Shields Avenue, Davis, CA 95616

2Complexity Institute, Nanyang Technological University, 3 Science Drive 2, Singapore 117543
(Dated: May 2, 2021)

Practical, useful computations are instantiated via physical processes. Information must be stored
and updated within a system’s configurations, whose energetics determine a computation’s cost. To
describe thermodynamic and biological information processing, a growing body of results embraces
rate equations as the underlying mechanics of computation. Strictly applying these continuous-time
stochastic Markov dynamics, however, precludes a universe of natural computing. Within this
framework, operations as simple as a NOT gate, flipping a bit, and swapping bits are inaccessible. We
show that expanding the toolset to continuous-time hidden Markov dynamics substantially removes
the constraints, by allowing information to be stored in a system’s latent states. We demonstrate this
by simulating computations that are impossible to implement without hidden states. We design and
analyze a thermodynamically-costless bit flip, providing a counterexample to rate-equation modeling.
We generalize this to a costless Fredkin gate—a key operation in reversible computing that is Turing
complete (computational universal). Going beyond rate-equation dynamics is not only possible, but
necessary if stochastic thermodynamics is to become part of the paradigm for physical information
processing.

Keywords: rate equations, stochastic process, hidden Markov model, information processing, logical circuits,
entropy production, reversibility

The burgeoning field of thermodynamic computing lever-
ages recent progress in nonequilibrium thermodynamics
and information and computation theories [1–5] to es-
tablish a new paradigm for physical information process-
ing. It promises to increase computational power and
efficiency and to reduce energy dissipation in a next gen-
eration of computers [6]. Thermodynamic computing is
distinguished from alternative paradigms by its focus on
an information-processing device’s physical embedding;
specifically, by constructively working with kBT -scale
fluctuations that a thermal environment generates. More
broadly, a general framework rooted in thermodynam-
ics, as thermodynamic computing is, will provide the
tools to understand the physics of computation in all its
many forms. The following illustrates its breadth by intro-
ducing non-Markovian, momentum-based computing—a
paradigm that is both computation universal and ther-
modynamically efficient.
We describe physically-embedded computation as a
stochastic mapping within a system’s setM of memory
states—Landauer’s information-bearing degrees of free-
dom (IDoF) [7]. Carried out over time interval t ∈ (0, τ),
the mapping is the conditional probability p of transi-
tioning from an initial memory state m(0) ∈M to a final
state m(τ) ∈ M: pm(0)→m(τ) = Pr [m(τ)|m(0)]. The
mapping p determines the probability of the final mem-
ory state given the initial memory state, and so updates
the state distribution ~p(τ) = p ~p(0).
This describes the physical dynamics underlying a com-
putation, but what of its thermodynamic consequences?

To address this, we must first identify the constraints on
dynamics that can implement computations.
Computing with Continuous-Time Markov Chains To
date, proposed frameworks for the required mappings
in thermodynamic computing assume that the memory
state m obeys stochastic Markovian dynamics [8, 9, and
references therein]. Taking time to be continuous, the
dynamics are continuous-time Markov chains (CTMCs),
where the state distribution changes continuously as a
function of itself ~̇p(t) = f(~p, t). The resulting dynamics
is necessarily represented by a master equation over the
memory-state distribution ~̇p(t) = A(t)~p(t) [8, 9]; that
is, by rate equations. This is a powerful framework for
stochastic thermodynamics [2, 10, 11] that yields insight
into physical realizations of computations such as bit
erasure and measurement [12].
The constraint that the computation p is generated by
integrating continuous-time master equations comes at
a substantial compromise, though—it limits the range
of possible computations. For example, only input-
output mappings whose determinants are positive are
allowed when memory-state dynamics are restricted to
obey CTMCs [9]. This eliminates many common and
useful computations, including flipping a single bit of
information. Reference [8] takes these restrictions as de-
lineating the possible physically realizable computations.
Given that any computation we can observe—a bit flip,
to take one example—is necessarily physical, one must
instead interpret the restrictions as a limitation of the
CTMC framework, rather than of the physical world.
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Understanding both the merits and limits of the CTMC
framework requires a look at the physical mechanisms that
underpin it. It might seem natural to say that the memory
statesM are microstates of a physical memory system
S, evolving under Hamiltonian dynamics. However, a
physical computation device is typically coupled to an
environment—which suggests treating S as a stochastic
subsystem of a deterministic universe. If the environment
is a large weakly-coupled heat bath, with degrees of free-
dom that relax sufficiently quickly, the effective dynamics
for S are also Markov, and therefore CTMC [2, 13–16]. In
essence, coarse-graining the thermal environment allows
for accurate, probabilistic predictions about the mem-
ory system, while avoiding the task of tracking the full
Hamiltonian dynamics of the joint system and bath.
This justification of the Markov evolution of a memory
system recognizes an important fact: S’s states are not
themselves full descriptions of physical degrees of freedom.
Instead, they are mesostates defined by a coarse-graining
over the thermal environment’s microstates. This coarse-
graining is appropriate since the environment does not
retain information about the past.
Computationally-useful memory statesM—Landauer’s
IDoF—are mesostates that also coarse-grain over S’s
CTMC-evolving states. It is possible, depending on
the variables and timescales of interest, that this coarse-
graining ignores only rapidly-relaxing subsystems of S
and, then, the IDoF inherit the Markov property of the
memory system [17]. The result is a powerful and widely-
used framework for thermodynamic computing in which
the IDoF also obey CTMC dynamics. This case is typified
by IDoF that are positional degrees of freedom and where
S is described by overdamped Langevin dynamics. It is
from this perspective that a bit flip is forbidden: in order
to cause realizations that fall in the region representing
m = 0(m = 1) at t = 0 to move to the region of state
space representing m = 1(m = 0) at t = τ , the two must
overlap at some intermediate time. If the dynamics of
M are restricted to be Markovian (memoryless), the two
disparate initial conditions cannot be distinguished from
each other once the overlap occurs—rendering it impossi-
ble to selectively control them to end in separate memory
states.
Computing with Continuous-Time Hidden Markov Chains
However, in the most general case, the IDoF coarse-grain
over subsets of S that carry information relevant for pre-
dicting a computation’s performance. That is, the states
thatM coarse-grains over are hidden in that they con-
tain dynamically relevant information not determined
from instantaneous realizations of the memory. The re-
sulting memory dynamics are non-Markovian, since in-
formation is transmitted from past to future without
ever appearing in the present memory state [18]. The
sobering fact is that a general analytical treatment of
partially-observed (and therefore non-Markovian) systems

is highly nontrivial [5, 16, 19–21]. No matter, hidden
states allow for more general forms of computation [9, 22],
since non-Markov dynamics relax the constraints imposed
by CTMCs. Following this argument to its conclusion,
the following demonstrates that the appropriate setting
for thermodynamic computing is continuous-time hidden
Markov chains (CTHMCs), in which hidden variables
store computationally-relevant information.
Moreover, when memory is stored in positional degrees of
freedom, the conjugate momentum variables are particu-
larly useful hidden variables for flexibly designing com-
putations. We demonstrate this first by implementing
a thermodynamically-costless bit flip—a simple compu-
tation that is explicitly forbidden by CTMCs. We then
generalize this to a costless Fredkin gate—a key compo-
nent in reversible computing that is also impossible to
implement with CTMCs. This operation is computation
universal (Turing complete), meaning that combinations
of the Fredkin gate can implement any logical operation
[23]. The implementation of this universal and reversible-
logic gate via CTHMCs demonstrates that non-Markovian
dynamics are essential to thermodynamic computing and
that a new class of momentum-based computation is
within reach.
Flipping a Physical Bit To execute a single bit flip over
a time interval t ∈ [0, τ ], the first step is to store a
bit of information. One candidate is a particle with
a single position dimension x ∈ R and corresponding
momentum p ∈ R in an even potential energy landscape
V store(x) containing two potential minima at x = ±x0
with an associated energy barrier between them equal to
max{V store(x), x ∈ (−x0, x0)}−V store(x0). The particle’s
environment is a thermal bath at temperature T . As
the height of the potential energy barrier rises relative
to the bath energy scale kBT , the probability that the
particle transitions between left (x < 0) and right (x ≥ 0)
decreases exponentially. In this way, if we assign the left
half of the position space to memory state 0 and the right
half to memory state 1, the energy landscape is capable
of metastably storing a bit m ∈ {0, 1}.
To execute a flip operation, we instantaneously reduce the
coupling to the thermal reservoir to zero such that the
memory system now follows dissipationless Hamiltonian
dynamics. Simultaneously, the potential energy landscape
changes to a positive quadratic well: V comp(x, t = 0+) =
kx2/2. The resulting particle motion is harmonic oscilla-
tion: x(t) = x∗ cos(t

√
k/µ + φ), where µ is the particle

mass, x∗ is the maximum distance from the cycle’s origin,
and φ is the phase difference from maximum distance at
the time t = 0+. Maintaining the decoupled system in the
quadratic potential energy landscape for half the oscilla-
tion period t ∈ (0, π

√
µ/k), the particle’s new position be-

comes: x(π
√
µ/k) = x∗ cos(π+φ) = −x∗ cos(φ) = −x(0).

Thus, over the computation interval τ = π
√
µ/k, the po-

sition flipped sign so that the memory state has flipped
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as well: m(τ) = 1 −m(0). Finally, we instantaneously
return the potential energy landscape to V store(x) and
recouple to the thermal bath.
The work W involved is the time-integrated rate of po-
tential energy change due to the change in the proto-
col parameter [24]: W =

∫
dt∂V (x, t′)/∂t′|x(t),t. The

work cost for a particular trajectory is the instanta-
neous change in potential energy at t = 0 and t = τ :
W = V (x(0), 0+)−V (x(0), 0)+V (x(τ), τ)−V (x(τ), τ−),
where 0+ and τ− are times immediately after and be-
fore t = 0 and t = τ , respectively. Recall that the
potential is time-symmetric (V (x, t) = V (x, τ − t))),
that x(τ) = −x(0), and that the potential is even in
x. These three qualities yield −V (x(0), 0) + V (x(τ), τ) =
V (x(0), 0+)− V (x(τ), τ−) = 0. No net work is generated
during the protocol.
Not only does this computation go beyond what is physi-
cally allowable according to rate-equation dynamics over
the memory states, but the states only change while the
Hamiltonian control is fixed. Thus, the computation
is passive, meaning that it fits the information-ratchet
framework introduced by Ref. [25].
A Physical Fredkin Gate The bit-flip implementation
may seem obvious in its simplicity. However, sophisticated
and functional computing can be built from a similar
passive processes. Below we outline an implementation of
the Fredkin gate, a reversible and computation universal
logical gate [23], using the same strategy. This establishes
that CTHMCs give straightforward access to complex and
universal Turing thermodynamic computing.
The Fredkin gate operates on three bits M = {0, 1}3.
That is, we encode the physical substrate as three particle-
position variables (x, y, z) that are each separated into
negative and positive memory-state regions, as above.
This splits the memory states into eight respective oc-
tants: (x < 0, y < 0, z < 0) corresponds memory state
m = 000, (x < 0, y ≥ 0, z < 0) to m = 010, and so on.
The information-storing Hamiltonian is a straightforward
sum of bistable, even, one-dimensional storage potentials:
V store(x, y, z) = V store(x) + V store(y) + V store(z). This
provides metastable regions corresponding to each mem-
ory state mxmymz ∈ {0, 1}3.
Given this construction, we design physical transforma-
tions that implement the Fredkin gate with zero cost in
finite time. The Fredkin gate is also known as the con-
trolled swap gate, as it exchanges inputs my and mz only
if the controlmx is set to 1. In other words, the gate maps
all inputs to themselves, excluding 101 and 110 that swap
with each other. The implementation uses the bit-flip
strategy of decoupling and adding a harmonic potential
over the time interval t ∈ (0, τ), then recoupling and re-
setting the original information-storing Hamiltonian. The
only difference is that the harmonic potential driving the
computation is now embedded in the higher-dimensional
space.

x
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FIG. 1. Particle ensemble undergoing the Fredkin gate protocol
with zero coupling to the thermal reservoir. Snapshots of the
state evolution are given at times 0, τ/4, τ/2, and τ , with the
black arrows indicating forward time. Color encodes in which
informational state each trial begins: gray: 000, 001, 010, 011;
orange: 100; red: 101; blue: 110; green: 111. Additional detail
available in the Appendix. Animations available online.

To execute the Fredkin gate, first note that the memory-
state x-index must always be fixed: mx(τ) = mx(0).
Moreover, behavior in the y− z plane should only depend
on x up to whether it is positive or negative. Thus, we
first split the potential into two pieces: V (x, y, z, t) =
V store(x) + V yz(y, z, t). If mx(0) = 0 then my and mz

must also not change. This suggests using the information-
storing potential for this region of state space: V (x <
0, y, z, t) = V store(x, y, z) during the entire computation.
For mx = 1, however, we must nontrivially compute on
my and mz: V yz(x ≥ 0, y, z, t ∈ (0, τ)) = V comp(y, z).
Here, V comp determines that part of the Hamiltonian
which implements the switch 101→ 110 and 110→ 101
and remains unchanging over t ∈ (0, τ). Due to decoupling
from the x-axis, particle behavior in either the positive
or negative x regions can be considered as being purely
the result of two-dimensional dynamics.
To swap 101 and 110, while keeping 111 and 100 fixed,
consider a new basis for the yz-space. Define new vari-
ables: y′ = (y−z)/

√
2 and z′ = (y+z)/

√
2, such that the

local equilibrium distributions for states 110 and 101 are
centered around z′ = 0 and those for states 111 and 100
are centered around y′ = 0. Thus, our goal is to swap the
distributions in the y′-coordinate while preserving their
z′-coordinate.
Given this, we split the computation Hamiltonian again

http://csc.ucdavis.edu/~cmg/compmech/pubs/cbdb.htm
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into independent components: V comp(y, z) = V (y′) +
V (z′). Flipping in the y′-coordinate employs the same
Hamiltonian as for the previous bit-flip protocol: V (y′) =
ky′2/2. As a result, when waiting half a period τ =
π

√
µ/k, the y′ coordinate changes sign y′(τ) = −y′(0), as

does its momentum. We choose the z′ coordinate’s poten-
tial to be quadratic as well, but with an induced period
of oscillation that is half as long: V (z′) = 2kz′2. z′ then
undergoes a full cycle after the duration τ , returning to its
original value z′(τ) = z(0), as does its momentum. Over
the control interval t ∈ (0, τ) the Hamiltonian operates
piecewise with V (x, y′, z′, t) = V store(x) +V yz(x, y′, z′, t),
where:

V (x, y′, z′, t) =
{
V store(x, y, z) if x < 0
V store(x) + ky′2

2 + 2kz′2 if x ≥ 0
.

In our original coordinates, this passive Hamiltonian trans-
forms the particle’s state by swapping y and z, but only
when when x > 0 (mx = 1); thus, it implements the
Fredkin gate.
For a particular trajectory (x, y, z)(t), the work invested
only comes from the initial and final instantaneous
changes in the energy landscape, as noted above. Re-
call that x(t) is exponentially unlikely to change sign,
since the energy barrier between states is much higher
than the vast majority of thermal fluctuations can access.
Thus, we assume that paths maintain a single sign for
x(t). If x(t) is negative, then there is no instantaneous
change, as the system is held in the same double-well
potential, so W = 0.
That said, if x(t) is positive, then the work invested
also vanishes. For these trajectories, note that the y − z
subspace potential is symmetric with respect to exchange
of the y and z coordinates and that the action of the map
is to swap y and z. Thus, using the same arguments as for
the bit flip, we see that the work production vanishes. The
only work-producing trajectories are the exponentially
suppressed barrier crossing events—so the average work
production is nearly zero.
Figure 1 demonstrates the evolution of the phase space on
an ensemble of initial conditions drawn from the equilib-
rium distribution of a quartic storage potential. As shown
by the particle coloring, those that start in 110 and 101
swap while all others are fixed. Moreover, none of the par-
ticles’ x-coordinates change informationally—confirming
the effectiveness of the overall transformation.
Langevin Simulation The preceding stipulated that the
logical system be isolated from its thermal environment
during the swap. It might not seem surprising then,
that we are able to accomplish a work-free bit flip, given
that other classical implementations of efficient reversible
computing—such as ballistic computing with billiards
[23]—necessarily operate in a dissipationless environment.
However, a key and somewhat surprising point is that the

Fredkin gate implemented above tolerates imperfect isola-
tion from its thermal environment. The gate’s robustness
to fluctuations separates it from other implementations
that are dynamically unstable, such as billiard computing.
To demonstrate this, we investigated how robust the
operation is to thermal agitation by using underdamped
Langevin dynamics. A simulation was carried out by
initializing particles in the equilibrium distribution with
a thermal reservoir under a quartic information-storing
potential V store(x, y, z). Next, as described above, we
exert work on the system by turning on the computational
potential V comp in the region x > 0. However, rather
than reducing the thermal coupling to λ = 0, we drop
the coupling coefficient to a nonzero value in the weak
coupling regime. This coupling value and potential are
held fixed for time τ = π

√
µ/k. (The Appendix provides

additional detail.)
Thermodynamically Robust Fredkin Gate The particles
experience thermal fluctuations as the weak coupling to
the bath perturbs their trajectories from the otherwise
expected harmonic motion. The work gained from shut-
ting off the potential will not generally be the same as the
work invested to turn it on (as in the idealized case of zero
thermal coupling). In fact, the Second Law guarantees
that, generally, positive work is invested for such cyclical
transformations, because the net change in equilibrium
free energy is zero. Nevertheless, one expects the behavior
to approximate the desired Fredkin-gate dynamics if the
coupling is sufficiently weak. Figure 2 shows that the
logical fidelity approaches unity. And, it does so with zero
slope, revealing that this Fredkin gate implementation is
robust even in the presence of thermal fluctuations.
This also gives evidence that the implementation should
have practical use for reversible universal computing in
a thermal environment. This regime is particularly well
suited, for example, to superconducting flux qubits work-
ing in the classical regime [26] in which a tunable resis-
tance can act as a control parameter for damping.
As expected and shown in Fig. 2, the work invested
approaches zero with decreasing coupling. However, as
the coupling to the thermal reservoir increases, the av-
erage work required to compute increases to multiples
of kBT . This cost scaling is evidence that the thermal
agitation has become significant enough to take the parti-
cles appreciably far from their ideal (costless) trajectories;
nevertheless the protocol maintains high fidelity, even in
this regime. Note that the work cost is exponentially
unlikely to come from trajectories that “jump” over the
x = 0 boundary, since the storage bits maintain perfect
fidelity.
As a final note, the thermodynamic cost is more than that
predicted by the microscopic detailed-balance dynamics
that underlie the Langevin simulation, which give a lower
bound of zero work throughout the coupling regime shown.
This suggests the existence of a tighter lower bound on
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FIG. 2. Logical fidelity (successful trials/total trials) in the
low-coupling Fredkin gate and the average net work required
to implement it for different values of the thermal coupling con-
stant λ, measured in units of πµ/τ . Computational bits refers
to states that fall in the region x > 0, where the computational
potential is in effect.

entropy production—one that accounts for the course-
graining, as Ref. [27] predicted.
Conclusion Rate-equation dynamics is certainly a vener-
able and powerful framework, central to reaction kinetics
in chemistry [28, 29] and key to the master equations
of applied statistical mechanics [2, 10, 11]. Due to the
remarkable successes of continuous-time Markov chain
predictions of many thermodynamic behaviors, it might
seem natural to claim that to be “physically realizable”,
thermodynamic computing and biological information
processing should only be described and analyzed as rate-
equation dynamics [8].
The results here demonstrated that this does not hold
generally. And so, it cannot form a complete basis for
thermodynamic computing. Moreover, it levies a heavy
penalty, precluding engineering and analyzing Maxwellian
information ratchets, which are the physical equivalent of
Turing machines [25, 30–32]. The limits are especially dra-
conian, since efficient time-symmetrically controlled gen-
eral computations consist of involutions [27]—operations
that are composed of bit swaps and identity maps in
positional memory.
As a constructive alternative, we proposed employing
continuous-time hidden Markov chains to realize non-
Markovian momentum computing. We demonstrated it
provides a more complete framework, using two explicit ex-
amples that are forbidden if one is restricted to rate equa-
tions to describe the evolution between memory states
[8]. Additionally, we introduced explicit mechanisms for
implementing both in finite time with zero work, proving
them “physically realizable”. However, we did fully ac-
knowledge the increased analytical complexity posed by
CTHMC dynamics. Fortunately, requisite tools have been
developed that render the behaviors analytically tractable
and in closed form [33, 34].

Given that convincing, physically-realizable implementa-
tions of the bit flip and Fredkin gate [23, 35, 36] have
been known for some time, one can only conclude that
computing devices already operate beyond the restric-
tions imposed by rate-equation dynamics. The examples
presented here were intentionally couched in the thermo-
dynamics of information to help bridge an apparent gap
in understanding general computing. Most specifically,
to fully realize the power and breadth of thermodynamic
computing, the conception of memory must be expanded
from being the realization of a microscopic physical state
to being a mesoscopic coarse-graining, as Landauer em-
phasized half a century ago. Thus, CTHMCs and the
momentum-based computing paradigm they inspire are
invaluable tools, required for even the most basic compu-
tational tasks.
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Appendices

Langevin Dynamics

To explore the performance of the proposed Fredkin gate protocol when there is nonzero coupling to a thermal bath,
we modeled the system as obeying the Langevin equations of motion:

dq = vqdt

µ dvq = −λvqdt− ∂qV (q, t)dt+
√

2kBTλ r(t)
√
dt ,

over three position coordinates q = x, y, or z. Here, vq is the corresponding velocity, m is the mass, λ is the damping
coefficient, and r(t) is a memoryless Gaussian random variable with zero mean and unit variance. We used a quartic
storage potential of the form V store(q) = αq4 − βq2 (see Fig. S1) with coefficients α and β.

(a) (b)

FIG. S1. Slice of the potential energy landscape V (x, y, z) in the y − z plane: (a) information-storing domain (x = −x0) and (b)
controlled-swap domain (x = x0).

To simulate the above system, we nondimensionalized the equations of motion. First, we defined nondimensional
quantities via the following equalities (̃· denotes a nondimensional quantity):

t = t̃

√
µ

k
q = q̃

√
kBT

k
vq = ṽq

q/q̃

t/t̃
= ṽq

√
kBT

µ

α = α̃
k2

kBT
β = β̃k V = Ṽ kBT.

Inserting these scales into the equation of motion, yields the nondimensional potentials:

Ṽ store(q̃) = α̃q̃4 − β̃q̃2

Ṽ comp(ỹ′, z̃′) = 1
2 ỹ
′2 + 2z̃′

2
,

and the following equation of motion for the nondimensional variables,

dq̃ = ṽqdt̃

dṽq = −γṽ dt̃+ ∂
q̃
Ṽ dt̃+

√
2η r(t̃)

√
dt̃ ,

where and γ and η are two additional nondimensional parameters implicitly defined as being equal to whatever is left
over after the substitution. The first of these two is γ = λ/

√
µk, suggesting that γ is a nondimensional version of the
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thermal coupling parameter λ =
√
µkγ. Plugging this definition of λ into the expression for η yields η = √γ. For all

simulations, the following nondimensional parameters were fixed: τ̃ = π, α̃ = 2, β̃ = 16, where τ̃ is the nondimensional
duration of the computation interval.

These choices are equivalent to relationships between the dimensional parameters. The following three equalities held
for all simulations: (i) τ = π

√
µ/k, (ii) w = 2

√
kBT/k, and (iii) h = 32kBT , where τ is the dimensional duration of

the computation interval, w =
√
β/2α is the positional distance from the central maximum to the minima in the

one-dimensional storage potential V store, and h = β2/4α is the energy difference between those points.
As a final note, we can use the expression for τ to write the relationship between λ and γ as λ = πµγ/τ . Thus, we see
that setting γ = 1, for example, corresponds to setting λ = πµ/τ . All simulations were carried out by simulating the
nondimensionalized equations above and then converting to dimensional relationships using the relevant scales. For
clarity, the next section discusses the simulation exclusively in terms of dimensional variables and parameters.

Simulation and Figure Generation

Figure 2 was generated from simulation using the following procedure. First, an ensemble of 20,000 initial values were
chosen from an approximate equilibrium distribution of V store(x, y, z) using the Monte Carlo algorithm. Second, this
ensemble was thermalized while coupled to a bath (λ = πµ/τ) until the ensemble energy changed by no more than
1 part in 1,000 over a time interval of

√
µ/k. This ensemble was then used as the start state for the Fredkin gate

operation. Third, for each value of thermal coupling tested, λ dropped down to a low coupling value λ ∈ (0, 3
10
πµ
τ ) and

exposed the particles to the computational potential:

V (x, y′, z′, t) = V store(x) + V yz(x, y′, z′, t)

=
{
V store(x, y, z) if x < 0
V store(x) + ky′2

2 + 2kz′2 if x ≥ 0
. (S1)

Fourth, we measured the work required to change the potential across our ensemble. Fifth, the potential was then held
fixed for the computation duration τ using an integration step dt ≈ 0.0005τ/π. Finally, immediately following the
computation interval, we measured the second work contribution—the work that would be harvested by dropping the
potential back to V store. The average net work is the ensemble average difference between the work invested when
raising the potential and the work harvested when lowering it. The plot displays 3σ error bars. The errors, though, are
sufficiently small that they do not show up appreciably. Statistical errors were estimated using standard procedures
for sample means and proportions.
Figure 1 was generated by starting the particles in the approximate equilibrium distribution described above and
running the simulation above with λ = 0, to simulate dissipation-less oscillatory dynamics. For clarity, the plot shows
a sample of 200 trials, rather than the full 20, 000. Figure S2 gives a more complete picture, with snapshots every τ/8.
All the simulations of the nondimensional equations of motion above employed a fourth-order Runge-Kutta method for
the deterministic portion and Euler’s method for the stochastic portion of the integration. (Python NumPy’s Gaussian
number generator was used to generate the memoryless Gaussian variable r(t).)
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FIG. S2. Particle ensemble initialized in equilibrium with V store(x, y, z) undergoing the Fredkin gate protocol with zero coupling
to the thermal reservoir. Each snapshot of the state evolution is separated by a time interval of τ/8, with the black arrows
indicating forward time. Color encodes in which informational state each trial begins. The 101 (red) and 110 (blue) states only
oscillate by a quarter period in the time (τ/2) it takes the 100 (yellow) and 111 (green) states to oscillate by a half cycle. As the
100 and 111 trials return to their initial positions, the 110 and 101 states approach their final positions: a half cycle from where
they started (right). The states have been swapped. Animations available online.

http://csc.ucdavis.edu/~cmg/compmech/pubs/cbdb.htm
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