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Abstract – We present a numerical method to compute non-equilibrium memory kernels based
on experimental data or molecular dynamics simulations. The procedure uses a recasting of the
non-stationary generalized Langevin equation, in which we expand the memory kernel in a series
that can be reconstructed iteratively. Each term in the series can be computed based solely on
knowledge of the two-time auto-correlation function of the observable of interest. We discuss how
to optimize this method in order to be the most numerically convenient. As a proof of principle,
we test the method on the problem of crystallization from a super-cooled Lennard-Jones melt. We
analyze the nucleation and growth dynamics of crystallites and observe that the memory kernel
has a time extent that is about one order of magnitude larger than the typical timescale needed
for a particle to be attached to the crystallite in the growth regime.

Copyright c© EPLA, 2020

Introduction. – Complex, dynamical many-body pro-
cesses are often modelled in terms of the effective dynamics
of a small set of relevant observables. Depending on
the context, these observables are called “reaction coor-
dinates” or “order parameters” [1–3]. For instance in bio-
physics one might be interested in the evolution of the
shape of a protein during a folding experiment, but not
in the motion of every single water molecule. Then a
set of geometrical parameters that characterize this shape
would be suitable reaction coordinates. Or in materials
science, one might model the dynamics of a phase tran-
sition in terms of a suitable mesoscopic density with-
out resolving the details of the microscopic motion of
the atoms. In the 1960’s Mori and Zwanzig developed
a projection operator formalism to derive the equation
of motion of such averaged observables, the Generalized
Langevin equation (GLE) [4,5]. The GLE is valid only
if the density of microstates is stationary. Based on the
same formalism, but for non-stationary densities of mi-
crostates [6], we have recently derived a general structure
for the equation of motion of reaction coordinates [7,8].
The structure applies to any dynamical process for which

the microscopic equations of motion are deterministic and
for any phase-space observable, even if it contains an ex-
plicit dependence on time. The resulting non-stationary
Generalized Langevin equation (nsGLE) is thus the equa-
tion that needs to be solved, if one wishes to derive reac-
tion coordinate dynamics outside of thermal equilibrium.

The GLE and the nsGLE contain an effective fric-
tion term that is non-local in time and integrates over
the history of the process. The function that controls
these history effects is called “the memory kernel” and
is nowadays subject to extensive research in various con-
texts [9–11]. However the non-locality in time makes the
analysis of the GLE and the nsGLE mathematically in-
convenient. In applications the memory kernel is there-
fore often approximated by a Dirac delta distribution such
that a time local Langevin equation is recovered [12–16].
This assumption, that we refer to as the “Markovian ap-
proximation”, is however in practice often not verified be-
fore it is used, which potentially leads to inaccurate or
wrong results. To go beyond this approximation, there
are two possible routes. The first one consists in search-
ing (or constructing) a set of new reaction coordinates for
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which a Markovian description is correct [17–21]. This
method is often useful, but the reaction coordinates con-
structed may either be abstract quantities, which are not
guaranteed to be accessible in experiment, or a large
set of them might be required, which implies that the
Markovian Langevin equation needs to be solved in a high-
dimensional space [22–24]. The second route consists in
keeping the original reaction coordinate despite its non-
Markovian dynamics, and finding a way to evaluate the
corresponding memory kernel. Various methods in this
spirit do already exist, but they are restricted to processes
with stationary microstate distributions, i.e., they assume
that the memory kernel is invariant under translations
in time. We present here a general method to compute
memory kernels for arbitrary processes and for arbitrary
observables from MD simulations or experimental data,
i.e., a procedure to analyze the out-of-equilibrium dynam-
ics of reaction coordinates and to construct their equation
of motion.

The main idea of the procedure is to recast the nsGLE
in a form in which the memory kernel is expressed as a sum
of convolution products. Each term is determined recur-
sively from the previous ones, and it probes the behaviour
of memory at successively longer times. The discrepancies
from the Markovian limit can be assessed by analyzing
the functional shape of the computed terms and their rel-
ative timescales. The method neither requires modeling
nor approximation and uses as a single input the two-time
auto-correlation function of the observable under study,
which is easily accessible in simulations or experiments.
We also note that the computational time of the proce-
dure scales linearly with the number of terms computed
in the expansion.

As a realistic example of reaction coordinate analysis,
we apply the method to the process of crystallization of
a super-cooled Lennard-Jones melt. Crystallization pro-
cesses are usually described in the framework of Transition
State Theory, which is based on a Markovian approxima-
tion. We test this assumption here and reconstruct the
memory kernel of the nsGLE which governs the evolution
of nucleation and growth of crystalline clusters. We ob-
serve significant memory effects.

How to measure memory kernels. –

Numerical method. Consider a system of N ≫ 1
degrees of freedom {Γi}i≤N that evolve according
to deterministic microscopic equations of motion
(e.g., Hamilton’s equations of motion), and a phase-space
observable A(Γ) that is fully determined by the location
Γ in phase-space. Next, take an ensemble, i.e., a large
number of copies of the system, and allow these copies to
be initialized according to any phase-space distribution,
in particular a non-stationary one. The microscopic
equations of motion as well as the observable A can also
be explicitly time-dependent. These formal definitions
are general enough to encompass a very broad spec-
trum of processes (even including quantum mechanical

microscopic processes [25]). We showed in ref. [7] that
for any such observable and for any dynamical process,
regardless of how far from equilibrium it evolves, one can
always define functions ω(t), K(t′, t) and ηt such that the
equations of motion for At and for its auto-correlation
function C(t′, t) = 〈A∗(t′)A(t)〉 are

dAt

dt
= ω(t)At +

∫ t

0

dτK(τ, t)Aτ + ηt, (1)

∂C(t′, t)

∂t
= ω(t)C(t′, t) +

∫ t

t′

dτC(t′, τ)K(τ, t), (2)

where K(τ, t) is the memory kernel and the average is
taken over the ensemble of non-equilibrium trajectories.
The time dependence as a subscript denotes the depen-
dence on a single trajectory, whereas the time dependence
between parentheses indicates a fixed function of time
independent of the trajectory. In particular we showed
ω(t) = d(ln

√

C(t, t))/dt. If the timescale on which
At evolves is much longer than the typical microscopic
timescale, ηt can be interpreted as a noise. Finally, we
recall the identity

〈η∗(t′)η(t)〉 = −K(t′, t)〈|A(t′)|2〉, (3)

which is valid for any times t, t′. This has the structure
of an out-of-equilibrium fluctuation-dissipation relation,
although its meaning can be broader than this. Note
that other non-equilibrium fluctuation-dissipation theo-
rems were recently published in different contexts and with
different structures [26,27].

We emphasize that eqs. (1) and (2) are the result of an
exact derivation based on projection operator techniques,
but they are different in structure from other classes of
GLE due to a different choice of projection operator. In
modern statistical physics the GLE is often interpreted
as the evolution equation of an observable within a “free-
energy landscape” the drift term being in this context the
thermodynamic force associated to this landscape [28,29].
Our approach is different. We intend to study processes
far from thermal equilibrium, and we therefore do not re-
fer to any equilibrium quantities such as the free energy,
as averages over stationary distributions of microstates do
not make sense in this framework. ω, K and η are here
“kinetic” quantities that reproduce the dynamics of an ob-
servable, and their physical interpretation can, in general,
not be motivated by thermodynamic arguments.

Several methods are already available to infer mem-
ory kernels from simulation data, e.g., Fourier-Laplace
analysis [30–33], projection operator analysis [34–36],
parametrization techniques [37,38], and iterative numer-
ical inference schemes [39]. However, these methods are
applicable only to stationary processes where the mem-
ory kernel K(t′, t) effectively depends only on the dif-
ference t′ − t. We propose here a method to solve the
non-stationary case. (The method can, of course, also be
applied to the stationary case.) The basic idea is to use
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a measured auto-correlation function C(t′, t) to construct
the memory kernel by means of an iterative procedure:

We formally integrate eq. (2) into

C(t′, t) = C(t′, t′) +

∫ t

t′

dτC(t′, τ)J (τ, t), (4)

where we have defined

J (t′, t) = ω(t′) +

∫ t

t′

dτK(t′, τ), (5)

such that K(t′, t) = ∂tJ (t′, t). Taking the derivative of
eq. (4) with respect to t′ and rearranging terms allows to
write

J (t′, t) = j0(t
′, t) +

∫ t

t′

dτS0(t
′, τ)J (τ, t), (6)

where we have defined

S0(t
′, t) = C(t′, t′)−1∂t′C(t′, t), (7)

j0(t
′, t) = C(t′, t′)−1∂t′ [C(t′, t′) − C(t′, t)]. (8)

(Note that the first time-derivative of the auto-correlation
function ∂t′C(t′, t) is all that is required for the following
steps. We do not need to take any further time-derivatives
of the input data.) By iteratively substituting J (t, τ) on
the right-hand side of eq. (6) by eq. (6) itself, we obtain

J (t′, t) = j0(t
′, t) +

∞
∑

n=0

∫ t

t′

dτSn(t′, τ)j0(τ, t), (9)

where the functions Sn are defined recursively via the
identity

∫ t

t′

dτSn(t′, τ)Sm(τ, t) = Sn+m+1(t
′, t), (10)

which is valid for any (n, m) ∈ N
2. In the limit ω = 0, it

is easy to show that J (t′, t)
ω=0→ −S(t′, t). Higher orders

in the expansion have impact on longer times, and the
number of terms needed for the sum S =

∑∞

n=0 Sn to
converge at a certain time yields information about the
strength and the time extent of the memory effects.

As all terms on the right-hand side of eq. (9) are ex-
pressed in terms of the auto-correlation function C(t′, t),
we propose the following numerical scheme to compute
K(t′, t):

1. Carry out a set of simulations (or experiments) and
measure the observable At for each trajectory1.

2. Compute the two-time auto-correlation function

C(t′, t) = N−1
traj

∑

i∈traj A
∗(i)
t′ A

(i)
t .

3. Compute S0 and j0 using eqs. (7) and (8).

1The number of trajectories must be chosen such that the initial
phase-space distribution ρ0(Γ) is probed with sufficient precision.

4. Compute Sn+1 recursively using eq. (10) with
m = 0. Stop if for any times t′ and t, Sn(t′, t) ≪
∑n

j=0 Sj(t
′, t).

5. Compute J using eq. (9) and finally K(t′, t) =
∂tJ (t′, t).

This method is general enough to be applied to any dy-
namical process and any observable, even far from equi-
librium, because it relies only on the structure of eqs. (1)
and (2). Note that once the memory kernel has been con-
structed, the corresponding nsGLE can be solved to pre-
dict the dynamics of the process. One has thus obtained
an effective coarse-grained description in terms of one co-
ordinate rather than N .

Markovian limit. The Markovian approximation is
frequently used to model coarse-grained processes, because
its mathematical structure is rather convenient. However,
users of multi-scale modelling tools often do not check the
validity of this approximation systematically. In this sub-
section, we derive four relations which can help to assess
or disprove the Markovian assumption in practical studies.

A) We define the Markovian limit as K(t′, t) =
γ(t′)δ(t′ − t) (with γ(t) < 0 in most practical cases). This
straightforwardly yields

C(t′, t) = C(t′, t′) exp

(
∫ t

t′

dτ γ̄(τ)

)

, (11)

for t′ < t, with γ̄(t) = γ(t)/2 + ω(t). Therefore, for any
time s ∈ [t′, t] a Markovian process fulfills the decomposi-
tion C(t′, t) = C(t′, s)C(s, t). To test the validity of this
decomposition, we define a dimensionless quantity ǫ(s) as

ǫ(s) :=
1

s(T − s)

∫ s

0

dt′
∫ T

s

dt

∣

∣

∣

∣

1 − C(t′s)C(s, t)

C(t′, t)

∣

∣

∣

∣

, (12)

where T is the total duration of the process. For a given
value of s, ǫ(s) measures the deviation from the expo-
nential decomposition at any point in the 2D domain
[0, s] × [s, T ] and averages over it. By definition, ǫ(s)
vanishes in the Markovian case. The dependence on s
allows to quantify how non-Markovian behaviour evolves
throughout the process.

B) Next, we derive semi-analyitcal results regarding the
functions Sn presented in the previous paragraph. In the
Markovian limit S0(t

′, t) = −γ̄(t′)e
∫

t

t′ dτ γ̄(τ). The recur-
sive relation (10) allows to infer that each order Sn(t′, t)
is proportional to the n-th–order term in the Taylor ex-
pansion of the exponential function exp(−

∫ t

t′
dτ γ̄(τ)), the

global prefactor being −γ̄(t′) exp(
∫ t

t′
dτ γ̄(τ)) for all. Their

sum becomes then

S(t′, t) =

∞
∑

n=0

Sn(t′, t) = −γ̄(t′), (13)

which is valid for t′ < t. In the case t′ > t, the same
calculation would yield S(t′, t) = γ(t′) = γ(t′)/2 − ω(t′).
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In other words, for any t and t′, we would have

S(t′, t) = ω(t′) + γ(t′)[Θ(t′ − t) − 1/2], (14)

where Θ is the Heaviside function. This condition can be
tested on experimental or simulation data.

C) Another interesting property of the functions
Sn(t′, t) in the Markovian limit can be obtained if one
considers that their derivatives with respect to t can be
written as

∂tSn(t′, t) = γ(t)(Sn(t′, t) − Sn−1(t
′, t)). (15)

In other words, we have ∂tSn(t′, t) = 0 ⇔ Sn(t′, t) =
Sn−1(t

′, t): the extremum of the function Sn(t′, t) as a
function of t is located where Sn(t′, t) crosses the previous
order Sn−1(t

′, t). This is a graphical check that can easily
be performed to test the Markovian assumption.

D) Finally, in the stationary limit where γ(t) becomes
a constant, we have for t′ < t

Sn(t′, t) = (−γ)n+1(t − t′)neγ(t−t′)/n!. (16)

At constant t′, Sn(t′, t) presents an extremum at t∗n =

t′ − n/γ, and Sn(t′, t∗n) = −γnnen/n!
n→∞∝ n−1/2. In

a stationary process, one can hence test the Markovian
assumption by checking if the extrema of the functions
Sn(t′, t) are located with an equal spacing and if their
amplitude decay as 1/

√
n.

Complementary formulations. Reconsidering the nu-
merical method described previously, we note that the
case where the drift term ω(t) vanishes is particularly
convenient to deal with. The limit J = −S is reached
in this case, which implies less numerical computation.
Also, we see from eq. (3) that the symmetry property
K(t′, t) = K∗(t, t′) is obtained if 〈|At|2〉 is constant, which
holds for vanishing ω(t). We therefore now show how to
reversibly remove the drift term in order to derive a more
efficient implementation of the numerical procedure.

Recall that ω(t) = d[ln(
√

〈|A(t)|2〉)]/dt and let us divide

eq. (1) by the function f(t) =
√

〈|A(t)|2〉. The resulting
term involving ω(t) can be written as f(t)ω(t)At =
−ḟ(t)At, such that the equation of motion, eq. (1),
becomes

dÃt

dt
=

∫ t

0

dτÃτ K̃(τ, t) + η̃t, (17)

where we have defined a modified time-dependent phase-
space observable

Ã(Γ, t) = A(Γ)/
√

〈|A(t)|2〉 (18)

and its related functions

K̃(t′, t) = K(t′, t)
√

〈|A(t′)|2〉/〈|A(t)|2〉, (19)

η̃t = ηt/
√

〈|A(t)|2〉. (20)

Since the structure of eq. (17) is similar to eq. (1), we can
apply the numerical method presented above directly to

the modified variable Ã, in order to compute K̃(t′, t) and
finally obtain K(t′, t) using eq. (19).

If one intends to study the fluctuations of At indepen-
dently of the evolution of the average trajectory, one can
go one step further: We introduce another modified, ex-
plicitly time-dependent phase-space observable ∆A(Γ, t)

∆A(Γ, t) ≡ A(Γ) − 〈A(t)〉 . (21)

This observable measure deviations from the average tra-
jectory, thus its auto-correlation function measures actual
fluctuations. Since eqs. (1) and (2) are also valid for time-
dependent observables, the numerical procedure to com-
pute the corresponding memory kernel can still be applied,
however one would still have to deal with the drift term
∆ω(t) = d ln

(

√

〈|∆A(t)|2〉
)

/dt which measures how fast

the variance of the time-dependent probability distribu-
tion of A evolves. In order to remove this term, we use
again the transformations introduced above and finally de-
fine the modified observable

∆Ã(Γ, t) ≡ ∆A(Γ)/
√

〈|∆A(t)|2〉, (22)

that measures deviations from the average trajectory nor-
malized by the variance of the process. It is thus a
unitless number indicating whether a particular trajec-
tory is delayed or advanced compared to the average one.
The corresponding auto-correlation function ∆C̃(t′, t) =
〈∆Ã∗(t′)∆Ã(t)〉 can be used to obtain a memory kernel
∆K̃, to which is associated a fluctuating term ∆η̃t. This
is then used to rewrite the equation of motion for At as

dAt

dt
=〈Ȧ(t)〉 + ∆ω(t)∆At +

∫ t

t′

dτ∆Aτ ∆K(τ, t) + ∆ηt,

(23)

with ∆K(t′, t) = ∆K̃(t′, t)
√

〈|∆A(t)|2〉/〈|∆A(t′)|2〉 and
∆ηt = 〈|∆A(t)|2〉∆η̃t. When studying memory effects
and deriving an equation of motion for an observable A,
one can hence chose between three equivalent descriptions,
eq.(1), eq. (17) and eq. (23), which involve slighlty differ-
ent drifts, memory kernels and fluctuating forces. The
numerical method that we have introduced can be imple-
mented in all three cases.

Example —Lennard-Jones crystallization. – The
crystallization process in simple systems was recently
shown to exhibit non-trivial non-equilibrium features, po-
tentially due to memory effects [40,41], hence we decided
to investigate it using our method.

We carried out molecular dynamics simulations of N =
32000 particles interacting via a 6–12 Lennard-Jones po-
tential. We used a cubic box with periodic boundary
conditions and we ran the dynamics in the NVT ensemble,
using a Nosé-Hoover thermostat to control the tempera-
ture. We first equilibrated the liquid phase at density
ρ = 1 and temperature T = 2 (in Lennard-Jones reduced
units), and then instantaneously quenched the tempera-
ture to T = 0.75, for which the equilibrium phase is known
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Fig. 1: Evolution of the size of the largest cluster Nc (top), and
its associated modified observable ∆Ñc, for several simulation
trajectories. We also show an example snapshot of a crystallite
surrounded by the liquid phase.

to be a crystal. The time of the sudden temperature drop
is considered as our intial time t = 0. Each trajectory
starts from a different liquid-like configuration drawn from
the high-temperature Boltzmann distribution. We then
let the system evolve freely (i.e., we did not use any bias-
ing scheme to speed up sampling). In order to monitor the
formation and growth of crystallites, we used the method
introduced by ten Wolde et al. [42] based on orientational
bond order parameters [43]. A crystalline cluster is defined
as a set of neighbouring crystal-like particles. The observ-
able that we used as a reaction coordinate is the number
Nc of particles in the largest crystalline cluster. We ob-
served the evolution of Nc(t), see fig. 1, upper panel, where
we also show a typical snapshot of a crystallite. A total
of 4019 trajectories were used for the analysis.

We computed for each trajectory the modified variable
∆Ñc as defined in eq. (21) (see fig. 1, lower panel), and
its auto-correlation function ∆C̃(t′, t) (all the associated
quantities are then written with the notation ∆·̃ in order
to be consistent). We then applied the numerical method
presented above. As we used ∆C̃(t′, t), the drift term ∆ω̃
vanishes, which implies j0 = −∆S̃0 and ∆J̃ = −∆S̃.
We computed ∆S̃0(t

′, t) = ∂t′∆C̃(t′, t), and we then iter-
atively applied the recursion relation equation (10) with

m = 0, i.e.,
∫ t

t′
dτ∆S̃0(t

′, τ)∆S̃n(τ, t) = ∆S̃n+1(t
′, t). We

show in fig. 2 the functions ∆S̃n, as well as the function
∆J̃ = −

∑

n ∆S̃n. If the nucleation process were Marko-

vian, ∆J̃ would be a step function of t, constant for t < t′

and t > t′ and discontinuous at t = t′. Although we
observe this discontinuity, the behaviour around t �= t′

is far from being constant. In addition, we note that

Fig. 2: Top: ∆S̃n(t′, t) for 0 ≤ n ≤ 4 as well of their sum
∆S̃(t′, t) =

∑
n

∆S̃n(t′, t) = −J(t′, t), as a function of t for

a fixed t′ = 150. ∆J̃ would be a step function of t in the
Markovian case. Center: memory kernel ∆K̃(t′, t) as a func-
tion of t′. We also show the values of the mean first passage
times for different values of Nc as vertical lines. According
to committor analysis the critical nucleus has Nc ≈ 40, thus
t = 100 is in the induction time regime and t = 200 in the
growth regime. Bottom: negative of the memory kernel as a
function of t − t′.

∆Ñc(t) vanishes for each trajectory in the limit t → 0,
which implies that ∆S̃0(t

′, t) ∼ 0 for t → 0, and thus
J(t′, t) = −∆S̃(t′, t) ∼ 0 for t → 0. This is observed
numerically, and suggests a non-trivial behaviour for the
memory kernel ∆K̃ at short times. The algorithm needed
15 iterations in ∆S̃ to properly converge. The functions
∆S̃n(t′, t) probe the behaviour of memory effects for dif-
ferent times. Each new order n presents extrema at in-
creasing values of |t′ − t|. The summation of all the orders
results in the smooth function ∆S̃ = −∆J̃ (see fig. 2).

We checked the validity of the function ∆J̃ obtained in
this way by using it as an input to compute the right-hand
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Fig. 3: Modified auto-correlation function ∆C̃(t′, t) for various
values of t′ as a function of t. The solid lines are directly com-
puted from the MD simulations, the dotted lines are the right-
hand side of eq. (4), where ∆J̃ is computed via the method
presented. The overlap is nearly perfect.

side of eq. (4), and we compared the result to the left-hand
side, i.e., ∆C̃(t′, t) itself. As is shown in fig. 3, the overlap
is very good2. This test confirms that the method pre-
sented is able to reconstruct the dynamics of a reaction
coordinate, and that it can be used to develop numeri-
cal coarse-graining schemes for dynamics out of thermal
equilibrium.

Once this check on ∆J̃ (t′, t) was performed, we com-
puted its derivative with respect to t, yielding ∆K̃(t′, t)
which is also shown in fig. 2. The singularities at t′ = t
correspond to Markovian contributions to the dynamics,
whereas the tails for t′ < t quantify memory effects. In
addition we show vertical lines indicating the mean first
passage times for various values of Nc. A committor anal-
ysis of the trajectories showed that the critical crystallite
contains ca. 40 particles. Hence we observe memory both
in the nucleation and in the growth regime. The average
time needed for a particle to be attached to a cluster sur-
face area of σ2

LJ was τatt ≃ 5 (in LJ units), which is about
one order of magnitude smaller that the time extent of the
memory kernel.

As mentioned above, these results cannot be completely
understood in terms of equilibrium physics. In particular,
the memory kernel should not be interepreted as a fric-
tion coefficient acting on a variable that evolves in a free-
energy landscape. We have proven this approach to be
inappropriate in the context of nucleation in a recent arti-
cle [44] (see also [40,45] for other studies arguing the same
point). The memory kernel that we find should rather
be interpreted as a dynamical coefficient, whose extended

2The discrepancies at very short times are due to numerical er-
rors in the computation of the derivative of ∆C̃(t′, t). Due to the
initial vanishing width of the crystllite size distribution, the number
of trajectories needed to eliminate statistical fluctuations at short
times is very large. Here our aim is to demonstrate the validity of
our method and not capture the details of the nucleation process,
therefore we did not run additional simulations to resolve the early
stage dynamics.

support in time shows that the evolution of the size of
crystalline clusters effectively depends on the history of
the process. A possible reason for this could be, e.g., tran-
sitions between different crystalline structures. However a
detailed study of these effects is not the purpose of this
paper. We simply conclude that memory effects are not
negligible in the Lennard-Jones crystallization process.

Conclusion. – We have introduced a numerical
method to construct memory kernels for any process for
which the non-stationary Generalized Langevin Equation
is relevant, regardless of how far from equilibrium the sys-
tem is. This procedure requires little computational effort
and no modeling assumption since its only input is the
two-time auto-correlation function of the observable un-
der study. The method can also be applied to a modified
version of the nsGLE, where the memory kernel and the
fluctuating force contribute only to the fluctuations about
the average of the observable of interest. We investigated
the crystallization process as a proof of principle, and we
have shown that the procedure allows to reconstruct the
dynamics of the problem. In this particular example, we
demonstrate that memory effects play a significant role for
nucleation and growth dynamics.
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[19] Pérez-Hernández G., Paul F., Giorgino T.,
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[21] Chodera J. D. and Noé F., Curr. Opin. Struct. Biol.,

25 (2014) 135.
[22] Hegger R. and Stock G., J. Chem. Phys., 130 (2009)

034106.
[23] Schaudinnus N., Bastian B., Hegger R. and

Stock G., Phys. Rev. Lett., 115 (2015) 050602.
[24] Schaudinnus N., Lickert B., Biswas M. and

Stock G., J. Chem. Phys., 145 (2016) 184114.
[25] te Vrugt M. and Wittkowski R., Phys. Rev. E, 99

(2019) 062118.
[26] Altaner B., Polettini M. and Esposito M., Phys.

Rev. Lett., 117 (2016) 180601.
[27] Netz R. R., J. Chem. Phys., 148 (2018) 185101.
[28] Grote R. F. and Hynes J. T., J. Chem. Phys., 73

(1980) 2715.
[29] Bussi G., Laio A. and Parrinello M., Phys. Rev. Lett.,

96 (2006) 090601.

[30] Schnurr B., Gittes F., MacKintosh F. and
Schmidt C., Macromolecules, 30 (1997) 7781.

[31] Mokshin A. V., Yulmetyev R. M. and Hänggi P.,
Phys. Rev. Lett., 95 (2005) 200601.

[32] Shin H. K., Kim C., Talkner P. and Lee E. K., Chem.

Phys., 375 (2010) 316.
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