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We present a novel scheme to extract a multiscale state space network (SSN) from single-molecule
time series. The multiscale SSN is a type of hidden Markov model that takes into account both mul-
tiple states buried in the measurement and memory effects in the process of the observable whenever
they exist. Most biological systems function in a nonstationary manner across multiple timescales.
Combined with a recently established nonlinear time series analysis based on information theory, a
simple scheme is proposed to deal with the properties of multiscale and nonstationarity for a discrete
time series. We derived an explicit analytical expression of the autocorrelation function in terms of
the SSN. To demonstrate the potential of our scheme, we investigated single-molecule time series
of dissociation and association kinetics between epidermal growth factor receptor (EGFR) on the
plasma membrane and its adaptor protein Ash/Grb2 (Grb2) in an in vitro reconstituted system. We
found that our formula successfully reproduces their autocorrelation function for a wide range of
timescales (up to 3 s), and the underlying SSNs change their topographical structure as a function
of the timescale; while the corresponding SSN is simple at the short timescale (0.033-0.1 s), the
SSN at the longer timescales (0.1 s to ~3 s) becomes rather complex in order to capture multiscale
nonstationary kinetics emerging at longer timescales. It is also found that visiting the unbound form
of the EGFR-Grb2 system approximately resets all information of history or memory of the process.

© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4848719]

Il. INTRODUCTION

Biological processes such as signal cascade in a cell
are comprised of a series of chemical reactions and struc-
tural transitions across multiple levels of molecular machin-
ery. Single-molecule (SM) spectroscopy provides a means
to uncover the complex mechanism of molecular machin-
ery at single molecule level that one cannot address in bulk
measurements.'~'® For example, it was found in an in vitro re-
constituted system that the recognition (i.e., dissociation and
association) kinetics between epidermal growth factor recep-
tor (EGFR) on the plasma membrane and its adaptor protein
Ash/Grb2 (Grb2) show non-exponential kinetics, and associ-
ation kinetics depends nonlinearly on the Grb2 concentration,
suggesting the existence of molecular memory in the signal-
ing process.'® Such innovative experimental developments of
synthetic approaches using intact plasma membrane fractions
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have offered new challenges in theoretical modeling of the
underlying mechanism of molecular machinery.

In the analyses of SM time series, hidden Markov mod-
els (HMM) are often used to provide insights on the com-
plex mechanism of molecular machinery.!”~2>27-3! However,
derivation of a HMM that incorporates non-exponential ki-
netics and assignment of the physical correspondence of the
constructed states are two of the most contemporary subjects
of research yet to be resolved. Moreover, most existing meth-
ods (for mathematical modeling) depend on a huge amount
of fitting parameters, e.g., algorithms using maximum like-
lihood estimator to obtain the parameters of the HMM.!%2
These methods, in general, require the initial assumption of
model parameters, such as network structure and number of
states.

Recently, a novel, data-driven model was developed
to naturally derive the underlying multiscale state space
network (SSN) from SM time series based on information
theory.?!=2%:323% The SSN is regarded as a certain class of

© 2013 AIP Publishing LLC
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HMM that represents the complex kinetics such as non-
exponential properties and molecular memory of the process,
and identifies the physical correspondence. However, conven-
tional methods (e.g., HMM) are state-labeled, i.e., producing
a symbol when a state is visited. On the other hand, our SSN
is edge-labeled, i.e., producing a symbol when a transition
made. The states of SSN depend not only on the present value
of the observable but also on the past information along the
course of time evolution so that the state-to-state transitions
are Markovian even though dynamical correlation may exist
in the time series. The original idea of the SSN was developed
in 1980s,373* aiming at discovering the pattern of dynamical
features buried in a stationary time series. It was recently gen-
eralized into nonstationary time series by using wavelet trans-
forms to decompose the time series into components at differ-
ent scales.?! 3 It was found®'~?? in a single molecule electron
transfer experiment of the NADH:flavin oxidoreductase (Fre)
complex? that the topographical features of the SSN change
as a function of timescale to capture the transition from abnor-
mal to normal diffusion observed in the protein fluctuation.

In this article we generalize the wavelet-based multiscale
SSN construction scheme to a discrete time series such as an
ON/OFF binary time series. We introduce a simple skipping
step method (SSM) to decompose the original time series into
a set of time series at different timescales. We then derive an-
alytic expressions of kinetic properties, such as the autocorre-
lation function of a given discrete time series, in terms of the
intrinsic properties of SSNs. By using the scheme, we scruti-
nize the SSN constructed for discrete time series of associa-
tion and dissociation kinetics between EGFR and Grb2.'® We
show that our analytic formula accurately reproduces the au-
tocorrelation function, and that the underlying SSNs change
their properties as a function of timescale. It is also found that
one of the states constituting the network serves to reset the
memory of the process.

The article is organized as follows: In Sec. II we briefly
describe the construction procedure of the SSN and present an
analytical expression of autocorrelation by using the general
property of the SSN. We introduce a simple scheme called
SSM to derive the underlying SSNs at different timescales.
In Sec. I, we apply our SSN analysis combined with the
SSM to analyze the fluorescence intensity time trace of the
binding and unbinding processes between EGFR and Grb2 in
an in vitro reconstituted system.'® The conclusion and future
perspectives will be given in Sec. IV. In the Appendix we
illustrate an example of a three-state toy model whose “ob-
servable” is binary as for the demonstration of SSN and SSM.

Il. THEORY
A. A brief description of how to construct SSN

Here we briefly explain the procedure for constructing
the SSN.33 If the underlying kinetics have some memories (or
information from the past events), the states in the SSN are
defined not only by the present value of the observable but
also by the past subsequence(s) of the values (with a specific
range). In short, the range of the past subsequence, denoted by
Lpase hereinafter, corresponds to the characteristic timescale
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of correlation of the event. One does not require the system in
question to be locally equilibrated or satisfy detailed balance.
This method starts from discretizing a continuous time series
into a symbolic time series, when the time series of interest
is continuous. The symbolization and the number of sym-
bols depend on the nature of time series, experimental setup,
signal-to-noise ratio, and so forth,?336-38

The second step is to evaluate the transition probabilities
from different subsequences (called past subsequences) to the
future symbols, e.g., the transition probability P(s;|s»s1) for
any symbol s; (i=1,..., the total number of symbols) to ap-
pear at a time, say ¢, following a particular subsequence 5,5,
in which one observes s; at time ¢t — 1 and s, at time ¢t — 2.
Similarly, the transition probabilities for all other past subse-
quences s;s; with past length two will be evaluated. The suit-
able value of L. depends on the nature of the underlying
dynamics of the time series: Lp,s corresponds to the charac-
teristic timescale of correlation and Lp,g is unity when the
process (the time series) is Markovian. The actual value of
Lpast was taken to be the minimal value at which the struc-
tural property of the constructed SSN does not change even at
increasing the value of L ,.”"

The third step is to derive states in the network by
using the transition probabilities for the past subsequences.
The transition probability for the past subsequence whose
length is optimal in capturing the memory in the process pro-
vides all information required to predict the future. The states
are defined as follows: for a given L, if the transition prob-
abilities of two past subsequences are regarded as the same,
we group the two past subsequences together into the same
set called a “state” (denoted by S; hereinafter). This is be-
cause all composite past subsequences in the “state” generate
the same future symbols with the same probabilities, indicat-
ing that, although grouping the subsequences simplifies the
description by reducing the number of states, there is no loss
in the model’s predictivity. In the context of SM time series, a
state in the constructed SSN is interpreted as a collection of a
series of conformational changes that have the same transition
properties.

The final step is to link the states with each other to form
a network. The transition probability from state S; to state S;
producing symbol s;, denoted by P(S;s;|S;), yields the weight
of the transition from S; to S, in the network with the gen-
erated s;. Here, we require that the next state Sy is uniquely
determined by the current state Sy and the next symbol s;. The
advantage of this property is that there is a one-to-one corre-
spondence between the symbolic sequences (i.e., the time se-
ries) and the state sequences that are generated by the SSN.
Since all memory effects are encoded in the definition of
states, the transition from §; to S; is Markovian even if the
transition from symbol to symbol is non-Markovian.

In practice, the convergence of the topographical nature
of the SSN is thoroughly examined using the information
amount, i.e., the Shannon entropy for the residential proba-
bilities of states in SSN, and the converged SSN is regarded
mathematically as the minimal but most predictive model to
capture all the statistical information of a given time series.
Readers who are interested in the mathematical details can
refer to the reviews.?* 33
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1+N-1 t+N

FIG. 1. A possible time series from the state Sy, to S1N+] . Here the state S;,
is represented by a circle with the incoming symbol denoted by s;, (t =1, 2,
.)attimer=1t — 1.

B. Derivation of time autocorrelation function

Using the properties of SSN, we can analytically solve
for the autocorrelation function of the time series. Auto-
correlation is the expectation value of two values at time
tand t+ N, s(f) and s(¢ + N). For the sake of brevity we denote
these values at time r and t + N as s;, and s;,,,, hereinafter. For
this derivation, we first need to derive an analytic expression
for a joint probability between s;, and s;,,,. The detailed pro-
cedure is as follows: Let us define the notations of symbols
to be generated and the associated states denoted as in Fig. 1.
By using a chain rule, the joint probability between the two
symbols s;, at time ¢ and s;, at time ¢ + 1 becomes

P(siy, 51,) = ZP(S['Z, St 8iy)
I

=Y P(si,|S1,8:,)P(Sy,|si,) P(si,)

I

= Z P(si, | S1,)P(Sp,15i,) P (si), 1

I

where the last equality of Eq. (1) follows from the Markovian
property of SSN. The conditional probability of s;,, given a
state S;, and a symbol s; , i.e., P(s;,|Sy,, s, ), does not depend
on the symbol s;, resulting in P(s;,|Sy,, 8i,) = P(si,1S1,). In
the same manner, the joint probability between s;, at time ¢
and s;, at time ¢ + 2 is given by

P(siy, 5i,) = Z P(siy, Sty Sins Sty» 8iy)

12[21]

= Y P(si,|SL)P(S1,s:,151) P(Sy, Is:,) P(si,)
Lir I

= Y P(si,|Sp)T}2 P(Sy, Isi,)P(si)
Ly 1,

= > P(si,|Sp)( Y T3 P(Sy Isi,) P(si,)
1211 iz

=Y P(si,|Sp)Tr1, P(S1, 151, P(si,). 2
121]

Here the transition probability P(Sy,s;,|S;,) is denoted by
TI(Z’ }]) and, for the sake of simplicity, we introduce a notation
(i2)
TIZII = Ziz T[zil'
Finally we get the expression for the joint probability
between s;, at time ¢ and s;,,,, at time (¢ 4+ N) as follows:
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P(siy,osi) = )

InIn—1,..., I

T1312T1211 P(Sh |Si| )P(Sil)

= P(Siy o [Si,)(TN )11, P(SL 151 P(si,).

Iy

P(siN+| |SIN)TININ—ITIN—IIN—2 ve

3)

We factorize this transition matrix T into T = QAQ™!
where Q means the square matrix (n x n) (n is number of
states in SSN) whose column is the eigenvector of the transi-
tion matrix, A is the diagonal matrix whose diagonal elements
are the corresponding eigenvalues of the transition matrix, and
Q! is the inverse matrix of Q, respectively. By using the fac-
torization, Eq. (3) can be written as

P(siNH ) si1)
=Y Plsiy, 1S5 [((QAQ )Y '], 1 P(Sylsi)) P(si,)
IvI
= Z P(5iy, |S1)QAYT'Q ™) 11, P(Sy I51,) P(siy)
1N11

=D D PivalSi)Quc | A8
c '

[Z Qc1, P(S), |s,~,>P<s,-l>}

I

=Y AcBcAl ' N =1, 4)
C

where Ac is the Cth diagonal element of A and
Ac =Y, P(siy,,1S5,)Quc and Be =Y, Qgp P(Sylsi,)
P(s;,). Since T is a probability matrix, it always has one
eigenvalue equal to unity.

The timescale(s) of correlation (called lifetime(s) 7¢) of
the process can be calculated straightforwardly by

1
loghc’

Ic = )

In the signal process, autocorrelation function is often
used without normalization, that is, without subtraction of the
mean and division by the variance.*’ Since our SSN behaves
as a stationary process at least for a timescale for which the
SSN is constructed, we can define the autocorrelation func-
tion as the expectation value of the product of s(t + t) and
s(#) without normalization, i.e.,

C(r) = Els(t + 7)s(1)]
= Z Sivp1Siy P(sir+l’ sil)

iri1ll

= Z Z Sir+1si1AcBC)“E‘_l

C iryriy

=D D siusuAcBcexp [—T n

A— C
C iy

1
]. (©6)
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C. Skipping step method

For the application of SSN to SM time series obtained
experimentally, there are two related obstacles: one is a prob-
lem of insufficient sampling in constructing the transition
probabilities in the SSN procedure, and the other is nonsta-
tionarity of the time series. The former problem may be inher-
ent to SM measurements such as fluorescence resonance en-
ergy transfer measurement especially when the fluorophores
(dye) used in the experiment suffer from photobleaching,
which shortens the lifetime of the fluorophores and, thus, the
length of the time series available.

The latter, nonstationarity problem occurs in two differ-
ent situations. One is that a given time series is intrinsically
nonstationary irrespective of the length of time series. The
other is as follows: if all finite characteristic timescales of the
system are sufficiently shorter than the length of the time se-
ries observed by a measurement, the time series in the exper-
iment should be stationary at equilibrium. However, the time
series is regarded as nonstationary even at equilibrium if there
exists characteristic timescales of the system comparable or
longer than the length of time series monitored. To analyze
nonstationary time series, the original algorithm presented in
Sec. IT A cannot be applied straightforwardly because it is
formulated for stationary time series.

To overcome these problems, a generalization of SSN
was developed by a multiscale decomposition scheme based
on discrete wavelet transforms.?!~>3 In the scheme, first, the
original nonstationary time series is decomposed into a set
of time series at different timescales in a hierarchical man-
ner. Time series that are much longer than their transition
timescales are expected to be stationary. It was found for sin-
gle molecule electron transfer experiment of the NADH:flavin
oxidoreductase (Fre) complex that the time series constructed
at each timescale shows stationary behavior for a time re-
gion shorter than the individual timescales.?!>* The orig-
inal SSN construction scheme is applied to the stationary
time series components, and the set of SSNs constructed for
the stationary time series components are combined to get
a single SSN covering a wide range of the original time
series.

Possible drawbacks for this scheme developed for con-
tinuous time series are: First, the result of the wavelet de-
composition depends on the choice of wavelet basis function.
For example, most wavelet basis functions result in the so-
called Gibbs phenomenon*' when applied to discrete time se-
ries. That is, a finite sum of the Fourier series has artificially
large oscillations near a discontinuous jump, and a huge num-
ber of Fourier components is required to approximate the dis-
continuous jumps. (A similar situation should meet for most
wavelet basis functions.) Second, in the wavelet decomposi-
tion, as timescales of wavelet components become longer, the
number of “independent” samples at the long timescales be-
comes fewer (known as down sampling problem). One may
obtain almost the same number of samples at all different
timescales by shifting the time origin along the original time
series. However, the more the timescale increases, the less the
generated time series become independent. This is because
the wavelet basis function operates on segments of time se-
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ries which are overlapping despite the shifting of the time
origin.

In turn, the SSM proposed in this article does not need to
specify any basis function and is free from the Gibbs phe-
nomenon. Every possible skipping step yields an indepen-
dent skipped step time series, and, therefore, it is free from
the downsampling problem. On the other hand, the prop-
erties of SSN (as a HMM) do not disappear even in non-
convergent SSN by using SSM. Regardless of the skipping
step used and the convergence of the SSN with respect to
the past subsequence length (Lpas), the SSN remains min-
imal in a sense of state complexity of network (i.e., Shan-
non entropy of residential probabilities of states) and maxi-
mal in predictivity at least up to Lpas. First, since different
past subsequences with the same transition probabilities to
the future are grouped to the same state, the state complex-
ity attains its minimum for a given Lp,g. In other words, all
other ways of grouping for the same L, necessarily result
in a higher state complexity. Second, this grouping of sub-
sequences to construct the SSN together with its Markovian
state-to-state transition probabilities preserves the joint proba-
bility of the observable sequences and, therefore, is as predic-
tive as the situation where all details of the original past sub-
sequences are kept up to the given Lpast.” Therefore, SSNs
constructed from the skipped step time series make it pos-
sible to capture kinetics with timescale corresponding to the
skipping step. As the size of the skipping step increases, the
resultant SSN is expected to describe slower kinetics. How-
ever, the skipped time series do not contain any data in be-
tween the skipping steps and this makes it difficult to relate
the results of the SSM to some of experimentally detectable
quantities such as dwell time distributions. (The mathemat-
ical derivation for dwell time distribution will be published
elsewhere.)

Here we explain the SSM in the case of skipping step
three (SK 3). For SK 3, the original time series is decom-
posed into three time series, each of which is constructed by
sampling from the original time series every three steps. Let
the original time series be s = {s(¢1), s(%2). .., s(ty)} and let
N =3m 4+ 1 (m is an integer), for simplicity. Then, the three
time series are §; = {s(#1), $(t4). .., s(ty) }, S5 = {s(t2), s(t5). . .,
s(ty —2)}, and s3 = {s(#3), s(%s). .., s(ty — 1)}, respectively. In
Fig. 2 we show the decomposition of the original symbolic
time series into three symbolic time series. Combining these
three time series Sy, S5, and s3, we can obtain the original time
series s.

The structure of SSN constructed from the skipped time
series reflects dynamics at the timescale that corresponds to
the skipping step. Time series of complex process can have
various correlation timescales. If the time series involves (a)
longer correlation timescale(s) than the skipped step, the tran-
sition probabilities along the skipped time series may de-
pend on the subsequences (resampled every skipped step),
reflecting their histories or memories. Contrastingly, if the
time series involves (a) shorter correlation timescale(s) than
the skipped step, the subsequences of the skipped time se-
ries are expected to have no memory and their future sym-
bol distributions do not depend on these subsequences. These
subsequences are grouped into one state in the SSN within
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FIG. 2. An original symbolic time series {i} colored with red, green,
and blue. By skipping every three steps, the time series is decomposed
into three distinct time series of a blue time series {a}, a red time se-
ries {b}, and a green time series {c}. The black solid and pink dashed
lines denote the original time series and the discrete ON/OFF time series,
respectively.

the skipped step resolution. Therefore, as the skipping step
increases, the SSN tends to have fewer states (unless the sys-
tem experiences a wider region on the underlying state space
than the region scanned by the shorter skipping step). If the
timescale of the skipping step becomes longer than the char-
acteristic timescale of correlation, all the subsequences of the
skipping step time series lose their memory and are merged
into a single state.

The SSM is useful to examine long time memory. Sup-
pose that we are restricted solely on the original time series
(i.e., the time series of the skipping step one). If the topo-
graphical feature of SSNs constructed for the time series does
not converge when L,y increases, it indicates that the time
series has longer memory than L., which requires us to ex-
amine long time memory existing in the time series. How-
ever, when L,y increases, the number of the samples (the
length of the time series) required to estimate the transition
probabilities increases exponentially (the number of possible

past

subsequences grows like Ny ™" where N; denotes the number
of symbols) and roughly L, cannot exceed the logarithm of
the length of the time series divided by the logarithm of the
number of symbols N,.*° Therefore, the examination of long
time memory by looking at the change in the topographical
property of SSN constructed for the original time series with
respect to Lp,g might become erroneous. Contrastingly, with
the idea of skipping step, as the skipping step m increases, the
number of samples to be required does not increase at all be-
cause, as an increase of SK m, the number of the decomposed
time series increases as well, which compensates the lack of
independent sampling moderately. Therefore, the SSM does
not suffer from the lack of sampling and the scrutiny of the
topographical properties of SSNs as a function of m makes
it possible to examine long time memory buried in the time
series.

J. Chem. Phys. 139, 245101 (2013)

lll. RESULTS AND DISCUSSION

A. Application to recognition kinetics between EGFR
and Grb2

1. A brief description of an in vitro reconstituted
receptor-adaptor recognition experiment

We apply our multiscale decomposition scheme based
on SSM to the association and dissociation kinetics between
EGFR and Grb2. This interaction serves as a crucial step in
signal processing in a live cell'® (see also Fig. 3). Here we
briefly describe the experimental setting. The plasma mem-
brane fraction from epithelial carcinoma A431cells was im-
mobilized to the coverslip, and Grb2 labeled with the fluo-
rophore Cy3 were added into the solution. Morimatsu et al.'®
observed “intermittent pulses” repeatedly at the same posi-
tions on the glass surface by Electron Bombardment (EB)
CCD camera equipped with a Micro Channel plate (MCP)
image intensifier. The pulse arises from binding and release
processes of the Cy3-Grb2 with EGFR localized at the cy-
toplasmic side of the membrane fragments. For the sake of
simplicity, we abbreviate Cy3-Grb2 simply Grb2 hereinafter.
The onset of EGFR-Grb2 association results in a fluorescent
spot at the corresponding location on the camera, and con-
versely, the termination of fluorescence corresponds to dis-
sociation. Movies of single molecule interactions between
EGFR and Cy3-Grb2 were recorded at the video rate of
1/30 s~! during 18 min within a given observation field. The
effects of bleaching and blinking of Cy3 on the ON- and
OFF-times were expected to be minimal because the decay
time for bleaching was found to be 15 s and blinking oc-
curred only once in 147 s under the same excitation condi-
tions. These time constants were much longer than those of
the ON-times.'® Simultaneous binding or release of multiple
spots at the same position on the glass surface was hardly
detected, suggesting that EGFR exists in the monomer form.
The SM time series are symbolized as a bound state by sym-
bol “1” (fluorescent) and an unbound state by “0” (nonflu-
orescent) by introducing an appropriate threshold.'® Single
instantaneous transitions in one frame such as 1 — 0 — 1
and 0 - 1 — 0 were excluded from the analysis, because
two frame averaging was applied to the raw images as a
pretreatment in order to reduce shot noise.'¢

Single exponential kinetics were not observed between
the bound and unbound forms, indicating that multiple states
exist within both forms. In addition, the association rate does

dissociation @

membrane

FIG. 3. A schematic picture of the in vitro reconstituted system of signal
processing. The time duration of the binding between EGFR and Grb2 can
be monitored from the duration of high fluorescence intensity from Cy3 at-
tached to Grb2 detected using total internal reflection fluorescence micro-
scope. These correspond to the interaction between Cy3-Grb2 and phos-
phorylated EGFR in the plasma membrane fragments attached to the glass
coverslip.
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not increase in proportion to the Grb2 concentration but in-
creases gradually slower than the linear dependence. It was
also shown that non-Markovianity exists in the ON/OFF time
series of the recognition kinetics between EGFR and Grb2.
The non-Markovianity could not be simply interpreted in
terms of a multistate Markovian model whose unseen states
were solely determined from the individual OFF-time and
ON-time distributions.*? It was thus conjectured that molecu-
lar memory exists in the conformational fluctuation of EGFR
such that the EGFR conformation may change upon bind-
ing with a Grb2, and after the Grb2 dissociates from the
EGFR, the EGFR conformation may need to relax to the
unbound form that is favored for another (or same) Grb2
binding.

Y1068F mutant. EGFR has five major tyrosine residues
that are actively phosphorylated after ligand binding. The
Y 1068F mutant of EGFR replaces tyrosine (Y) 1068 in EGFR
(whose phosphorylation has been reported to construct the
primary strong Grb2 binding site**) by phenylalanine (F) to
prevent phosphorylation.** Exponential properties and mem-
ory effects in association and dissociation kinetics were an-
alyzed for the Y1068F mutant.'®%> The Y1068F mutant of
EGFR showed non-exponential features in the dissociation ki-
netics (i.e., in the dwell time distribution of the bound form)
at all concentrations, which was the same as the wild type
EGFR.'® However, the association kinetics (i.e., the dwell
time distribution of the unbound form) at 1 nM Grb2 con-
centration showed that it is approximated by a single expo-
nential kinetics for a wide range of timescales with the loss of
correlation. 42

B. Correlations in recognition kinetics and the
underlying SSNs

To uncover the multiplicity of states and molecular mem-
ory in the process and its dependence on the mutation of the
Y 1068F mutant, we apply the SSN scheme combined with
our SSM to the symbolized, binary SM time series of associ-
ation and dissociation processes of the wide type EGFR and
the Y1068F mutant at 1 nM concentration of Grb2. The struc-
tural property of the SSNs quantified by Shannon entropy of
the states was found to show some locally convergent SSNs at
Lpase equal to 2 or 3 while the entropy continuously increases
for a further increase of Lp,s. This local convergence indi-
cates the existence of the timescale separation, i.e., the local
convergence of SSN means that the dynamics faster than the
timescale of L, = 2 — 3 can be regarded as randomized and
stationary such as being trapped in some energy basins. How-
ever, the longer timescale dynamics is considered to experi-
ence nonstationary basin-hopping processes among different
basins. Hence, in this report, we chose Lya = 3 for all SSNs
to be analyzed®® with the skipping steps 1, 3, 9, and 27 (cor-
responding to 0.0333...(=1/30), 0.1, 0.3, and 0.9 s) so that
Lpasi-times of a skipping step is equal to one increment of the
next skipping step timescale.

Fig. 4 exemplifies the autocorrelation function of the
symbolic time series at 1 nM concentration of Grb2 for the
wild type EGFR and the Y1068F mutant. The observed au-
tocorrelation function is satisfactorily reproduced by the ana-
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FIG. 4. Autocorrelation for the ON/OFF time series of the association and
dissociation processes between the wild type and the Y1068F mutant with
1 nM concentration of Grb2. The autocorrelation function derived numeri-
cally from the time series is indicated by black line in the wild type and gray
line in the mutant with the error bar denoted by vertical short lines. Those
derived analytically in terms of the constructed SSNs are denoted by open
circles.

Iytical formula based on the obtained SSNs covering different
time domains by different skipping steps. The corresponding
time intervals or ranges the SSN can capture the autocorrela-
tion, constructed at different skipping steps, are given at 1 nM
concentration for the wild type EGFR and the Y1068F mu-
tant in Table I. For example, at 1 nM concentration of Grb2
with the wild type EGFR, the constructed SSNs can repro-
duce the autocorrelation function at the timescale from 0 s to
0.133 s with the skipping step 1, abbreviated as SK 1 (in the
unit/increment of 1/30 s), from 0.1 s to 0.3 s with SK 3 (0.1 s),
0.3 st0 0.9 s with SK 9 (0.3 s), and 0.9 s to 3.6 s with SK 27
(0.9 s). Remind that the history lengths automatically built in
the SSN (i.e., the timescale of each skipping step multiplied
by a factor of three (Lpas = 3)) are 0.1 s, 0.3 s, 0.9 s, and
2.7satSK 1, SK 3, SK 9, and SK 27, respectively. This im-
plies that the SSNs at SK 1 and SK 27 capture the autocorre-
lation beyond the timescale of the history length in the SSN,
while those at SK 3 and SK 9 cannot.

In turn, as seen in Table I, compared to the SSNs of the
wild type, the SSN of the Y1068F mutant tends to reproduce
longer timescales’ autocorrelation at each skipping step: for
example, the SSNs with SK 27 can capture the correlation
from 0.9 s to 4.5 s compared to those for the wild type (ca.
0.9-3.65).

Let us now look into the structure of the SSNs, espe-
cially the compositions of the ON and OFF states and their
splitting as a function of the skipping step. Fig. 5 presents
the corresponding SSN at each skipping step for the wild
type EGFR and the Y1068F mutant at 1 nM concentration

TABLE I. The time intervals for which the autocorrelation is reproduced by
each SSN constructed for each different skipping step at 1 nM concentration
of Grb2 for the wild type and the Y1068F mutant EGFR. Note again that the
increment of the time intervals is different with each other dependent on the
SKm:0.0335,0.15,0.3s,and0.9sform=1, 3,9, and 27, respectively. The
unit of time is in seconds.

EGFR SK 1 SK 3 SK9 SK 27
Wild type 0.0-0.133 0.1-0.3 0.3-0.9 0.9-3.6
Mutant 0.0-0.20 0.1-0.4 0.3-1.2 0.9-4.5
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Mutant Wild type

FIG. 5. The SSNs of the wild type and the Y1068F mutant at 1 nM concen-
tration of Grb2 for different skipping steps. The horizontal axis reflects the
mutual proximity of the transition probability distributions associated with
the individual states in arbitrary unit (a.u.) (see the text in detail). The choice
of vertical axis is arbitrary. Open (gray colored) circles denote the ON (OFF)
states. The states enclosed by the dashed curve in SK 9 for mutant emphasize
that their transition probabilities are almost identical. The size of the circle
is proportional to the logarithm of the residential probability of the state: the
bigger the circle is, the longer the system resides in that particular state (for
visualization of the states whose area is less than 0.005 a.u.2, we introduced
the minimum size of 0.005 a.u.?). The red (black) colored links assign as pro-
ducing next symbol “0” (“1”") (whose destination is either of the OFF (ON)
states). The weight of the links reflects the extent of the state-to-state transi-
tion probabilities.

of Grb2. To visualize which states have mutually similar
transition probability distributions, we embed states of all
SSNs of both the wild type and the Y1068F mutant EGFR*
into the one-dimensional Euclidean space (the horizontal
axis): the more the states have mutually similar transition
probability distributions, the closer they are located. To quan-
tify the similarity between two transition probability distri-
butions, we used the Hellinger distance*® defined by D[/, J]

= \L@\/Zs,(\/P(Si [S)) — ~/P(s;18)))* where, e.g., P(s;|S)) is
the transition probability for producing a next symbol s; from
the state S;. The position of each state along the vertical axis is
chosen simply for visual clarity. The size of circle reflects the
residential probability of the state; the larger the size of circle,
the more the system resides in that state. Hereinafter, we call
all states where the EGFR and Grb2 are currently bound (i.e.,
the (rightmost) last symbol appearing in a subsequence con-
stituting the state is “1”’) ON state (indicated by white circles).
Likewise, we call all states where they are currently unbound
(i.e., the last symbol appearing in a subsequence constituting
the state is “0”) OFF state (gray circles). A state corresponds
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to a series of snapshots of conformations to end up either in
the bound and unbound forms of the EGFR and Grb2.

The numbers of ON and OFF states, wiring pattern,
residential and transition probabilities for the states are
dependent on which timescale each SSN represents. It should
be noted that this behavior is the same as observed in the
analysis of single-molecule electron transfer experiment of
the NADH:flavin oxidoreductase (Fre) complex35 in which
the topographical features of the SSN change as a function
of timescale in order to recover the hierarchical diffusion
property in the protein fluctuation.?!~23

In both the wild type and the mutant, for SK 1 and SK 3,
we have only one OFF state whose composite subsequences
of length three are terminated by symbol “0.” Note that since
time series is binary with L, being three, the maximum
numbers of ON states and OFF states are four (2> = 4), re-
spectively, i.e., eight in total. At SK 1, one can find that one
OFF state and two ON states (the wild type) and one ON state
(the Y1068F mutant) are sufficient to capture the correlation
in this timescale. The existence of only one OFF state implies
that irrespective of the paths to reach at the symbol “0,” i.e.,
either] > 1 — 0,1 —- 0— 0,0r 0 - 0 — 0, transition prob-
abilities are the same (within a certain significance level). In
the other terms, the transition probabilities only depend on the
latest symbol “0.” On the contrary, while only one ON state
exists in the Y1068F mutant, the existence of two ON states
in the wild type implies that the next symbol to be generated
is dependent on the paths to arrive at the bound form “1” [i.e.,
either(1 - 1 —-1,0—>1— 1) or 0 — 0 — 1]. Note that
any consecutive paths or links that will end up with each state
produce a series of the symbols “0” and “1” along the path
(remind that each link has not only the transition probability
but also the symbol to be generated), which coincides with the
symbolic sequences consisting of the state. Namely, heteroge-
neous memory effects are encoded in the internal structure of
the states, and equivalently in the topology of the SSN.

As an increase of skipping step to three, i.e., for a time
series resampled every three steps over the original time se-
ries, the OFF state still persists as a single state but the ON
state splits further. The number of the ON states reaches at the
maximum number of four at the longer skipping timescales
SK 9 and SK 27 in the wild type while it changes from four to
three as an increase of the skipping timescales from SK 9 to
SK 27 in the Y1068F mutant. In turn, the number of the OFF
states does not reach the maximum number as the skipping
steps increase from 1 to 27. It should be noted in Fig. 5 that,
for the Y1068F mutant, the center of the two OFF states at SK
9 is almost identical although the two OFF states at SK 9 for
the wild type are located at distinctively different positions
(shown with a dashed closed curve in the figure). Namely,
the SSN constructed for the Y1068F mutant is interpreted as
effectively having a single OFF state up to the timescale of
1730 s x 9 x 3 (=0.9 s), while it splits to two OFF states
when the skipping step increases from 9 to 27.

Compared to the three-state model presented in the
Appendix, for which the SSN tends to be simpler as the length
of the skipping step increases (i.e., the longer the timescale,
the smaller the number of the states), the state splittings in the
OFF and ON states at longer timescales (at least, from SK 9
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to SK 27) suggest that the multiple states are required to cap-
ture the kinetic complexity inherent to those timescales in the
EGFR-Grb2 systems. This results from the multiscale, non-
stationary nature of the ON/OFF time series of the recognition
kinetics. This is interpreted as follows: for short timescale, the
SSN (SK 1) structures in both the wild type and the mutant
are simple since the conformation fluctuation of the EGFR is
more likely to be confined within a single (super) basin on the
energy landscape, making the system behave rather station-
ary and random. However, for the longer timescales (i.e., SK
9 and SK 27) the EGFRs can perform large conformational
changes and, therefore, move between larger (super) basins
on the energy landscape,*® implying the emergence of more
complex structure of the SSN in order to capture the complex
kinetics.

However, it should also be noted worthy that, from the
overall tendency of relative positions of the states at 1 nM
concentration of Grb2, the locations of the states (i.e., the cen-
ter of the circles) tend to merge all together as an increase
of the skipping step from 1 to 27 in both the wild type and
the Y1068F mutant. That is, the longer the skipping step the
closer the states’ transition probability distributions become,
implying that the state transitions become less sensitive on the
past (remind the three-state model in the Appendix). More-
over, as for the overall tendency, the network topology is also
found to be simpler in the mutant than that in the wild type
(i.e., the total number of states in each SSN is equal to or
less than that of the wild type at each skipping step and the
number of the OFF states does not reach at the maximum of
22 =4).

We also analyzed the lifetime constants of correlation
(Eq. (5)) at different skipping steps SK 1, 3, 9, and 27 for
the wild type and the Y1068F mutant of EGFR.>° As for the
overall tendency, as the skipping step increases (with longer
timescale), the number of (largely) weighted components of
lifetime constants increases more. However, the appearance
of lifetime constants with comparable weights is different be-
tween the wild type and the Y1068F mutant. For example, at
1 nM concentration there exists only one major component
(92%—-100%) up to SK 27 in the mutant. On the contrary,
while only one major component persists to exist up to SK
9 (86%—-98%), it turns out to be diversified at SK 27 in the
wild type. The diversification of the lifetime constants as the
skipping step increases looks more apparent in the wild type
than in the mutant.

C. Heterogeneity of non-Markovian property buried
in SSNs

The most striking consequence of our method is that our
method can capture heterogeneity of memory that depends
on the states and, equivalently, on the topological nature of
the complex network. Fig. 6 presents the corresponding SSN's
of Grb2 for the wild type and the Y1068F mutant of EGFR
with Ly =1, 2, 3, 4, and 5 for SK 1 at 1 nM concentration
(the visualization scheme is the same as in Fig. 5). In this
article, the memory refers to the degree of non-Markovianity
of the time series, i.e., memory of the process, if it exists, is
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Wild type

Mutant

FIG. 6. The state splitting as increasing Lpast at 1 nM for the recognition
reaction between the wild type and the Y 1068F mutant EGFR, and Grb2. (a)
Lpast = 1, (b) Lpast = 2, (¢) Lpast = 3, (d) Lpast =4, and (€) Lpast = 5. The
meaning of state, links and their colors are the same as in Fig. 5.

manifest in the length of the optimal past sequences L, used
in defining the states of SSN.

Let us look into the change pattern of SSNs as an in-
crease Of Lpag. At Ly = 2, the state composed of “10” and
“00” subsequences is regarded as the OFF state (denoted by
gray color) and the system currently visits the unbound form
“0” (i.e., the rightmost symbol is 0). “10” implies that the
system visited the bound form “1” at the previous step and
makes a transition to the unbound form, while “00” implies
that the system maintains to reside in the unbound form. Like-
wise, both the state composed of “11” and that composed of
“01” are regarded as the ON state (i.e., the rightmost sym-
bol is 1) while they are rather differentiated as distinct states
in the wild type EGFR. However, in the Y1068F mutant of
EGFR, “11” and “01” are regarded as the same ON state up
t0 Lpage = 3.

The topographical nature of the SSN with Ly, =3
is preserved with the SSN constructed with Ly, = 2 (the
SSN converges approximately in such a short timescale from
0.067 s to 0.1 s). However, as the value of L, gets larger,
i.e., 4 and 5, the SSN of the wild type and the mutant EGFR
changes gradually in order to capture different kinetics emerg-
ing at longer timescales: while the OFF state persists as a sin-
gle state for a timescale from 0 s to 0.167 s (=1/30 s x 5),
some ON states split with increasing L, While the others do
not. For example, in the wild type the ON state (111,011) ob-
served at Lp,q = 3 splits into three distinct states of (1111),
(0111), (0011) at Lp,se = 4 but the ON state (001) at Lyas = 3
does not split with longer L, corresponding to (0001) and
(10001,00001) at Lpas =4 and 5, respectively. This split-
ting arises from the non-Markovian nature of the process.
Hence, scrutiny of the splitting pattern can provide compre-
hensive understanding of molecular memory in the time do-
main where the SSNs are constructed. A simple inspection



245101-9 Sultana et al.

tells us that, whenever the system once visits the unbound
form “0” (the latest timings in the subsequences belonging
to the individual states are indicated by red in Fig. 6), all the
path information of how the system reaches at the unbound
form is “reset” (i.e., the transition probability distributions be-
come independent of the history once the system arrives at the
unbound form “0”). When the EGFR-Grb2 system visits the
unbound form, the history, or memory, is approximately reset
in the original time series for a length of 0.167 s.

It should be noted, however, that the number of possi-
ble subsequences grows very rapidly (~ 2L»), which make
the sampling statistics worse at larger Lp,y. For example, at
Lpas = 27, 2% = 134, 217, 728, the length of the the binary
time series observed experimentally is 18 min, recorded every
1/30 s, yielding 32 727 data points. It is apparent that SSN
analysis cannot be straightforwardly extended to large values
of Lpag. This is the main reason why we introduce the skip-
ping step algorithm combined with the original SSN scheme.
In principle, if we could increase Lp. large enough, we
should end up with a Markovian network when the timescale
of correlation of the process is finite. However the state of
SSN may not be the underlying actual conformational state
on the (3n — 6) dimensional coordinate space (n is the num-
ber of all atoms). It is because (1) conformational dynamics
on the (3n — 6) dimensional coordinate space can, in gen-
eral, associate memory or correlation, and (2) even if the con-
formational dynamics has no memory effect in high dimen-
sion and a Markovian network is yielded, states constructed
from the projected one-dimensional time series cannot be re-
flected in full by all hidden (3n — 6) dimensional coordinate
space, but are expected to correspond to some effective con-
formational states that can be deduced from the projected time
series.

Finally let us articulate the summary of the results of
SSNs combined with SSM in relation to the previous experi-
mental observation.'®

1. It was found in Ref. 16 that the analyses of dwell time
distributions (i.e., distributions of the time period for
which the system dwells continuously at either 1 or 0)
clarified that the ON and OFF states must contain multi-
ple states, though the non-Markovian properties of the
EGFR-Grb2 recognition kinetics of ON/OFF time se-
ries could not be simply described by the multiple states
whose number was evaluated from the non-single expo-
nential features of the dwell time distributions. In our
current SSN scheme combined with the SSM, the extrac-
tion of the states is based not on the dwell time distribu-
tion but on the pattern buried in the time series, multiple
states are naturally detected for the EGFR-Grb2 system,
with encoding memory effects.

2. Our formula reproduces their autocorrelation function
for a wide range of timescales up to about 3 s, and the to-
pographical structure of the SSNs changes as an increase
of the timescale: while the corresponding SSN is rather
simple at the short timescale (0.033-0.1 s), the SSN at
the longer timescales (0.1 s to ~ 3 s) becomes complex
for the elucidation of hierarchically organized kinetics
appearing at the longer timescale in the wild type and the
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Y1068F mutant of EGFR. This is interpreted as being
captured in some super basin to attain stationary behav-
ior in the short timescale. One possible scenario to make
the SSN more complex as an increase of the timescale
is that partial interactions between the wild type EGFR
and the Grb2 occurring faster than the experimental time
resolution.'® Such partial interactions possibly change
the conformation of proteins, and conformational mem-
ory produced after dissociation can affect the reduction
of the ON-rates, which leads to the structural change of
SSNE.

3. It is found that, when the system once visits the un-
bound form of EGFR- - -Grb2, the system approximately
loses history or memory. This manifests the existence of
heterogeneity of molecular memory, i.e., dependent on
paths or states, the degree to what extent the system pos-
sesses the memory can be different. The interpretation is
that the conformational dynamics of the unbound EGFR
relax fast enough before the binding of the next Grb2. On
the contrary, the bound states of the EGFR-Grb2 system
keep splitting as Ly, increases, suggesting slower re-
laxation dynamics for the bound EGFR-Grb2 complex.
In the Y1068F mutant, the bound state does not split up
to 0.133 s (i.e., Lpase = 3) in Fig. 6, indicating the dy-
namics of the bound state relax faster than those of the
wild type.

4. In the experiments, the Y1068F mutant showed non-
exponential features in the dissociation kinetics at all
concentration as similarly as the wild type.'® However,
the association kinetics (=the dwell time distribution at
the unbound form) at 1 nM concentration showed that
it is approximated by a single exponential kinetics for a
wide range of timescales.!®*? The SSNs for the Y1068F
mutant are interpreted to reflect such complexity of ki-
netics: the SSNs for the Y1068F mutant have effectively
a single OFF state up to the timescale of ~1.2 s at 1 nM
(see Fig. 5).

IV. CONCLUSION AND PERSPECTIVES

In this article we have presented a novel scheme to ex-
tract the multiscale state space network that takes into ac-
count multiple nature of the states unseen in measurements
and non-Markovianity of the process solely from SM time
series. The crux is the combination of a nonlinear time se-
ries analysis recently developed on the basis of information
theory?!=2%32.3447 with the skipping step algorithm. We also
derived the exact formula for the autocorrelation function of
the symbolic time series. In this article, we demonstrated the
potential of our theory by applying to the ON/OFF SM time
series of the recognition kinetics between the wild type and
the Y1068F mutant of EGFR and Grb2 for an in vitro recon-
stituted system at 1 nM concentration of Grb2.'®4> Mathe-
matically there is no difficulty to generalize our theory into
non-binary time series having more than two symbols. Ap-
propriate symbolization of time series depends on the exper-
imental setting. In general, the observed time traces are con-
taminated by several sources of extrinsic and intrinsic noise.



245101-10  Sultana et al.

It is of crucial importance to extract the actual time trace of a
physical quantity (e.g., interdye distance) desired for the fur-
ther analysis from a raw data (e.g., photon arrival times at
the donor and acceptor channels).?” Recently, it was shown
that the existence of dynamic disorder of single enzymatic
turnover reactions depends on how one assigns the ON/OFF
levels and the most widely used binning and thresholding
approach may yield a misleading interpretation.’® Because
some subsequences involving one step transitions in the
ON/OFF time series were removed from the analyses,16 it
is desired to confirm how such removals would affect in the
analyses based on change point detection method.3% 38

It should also be noted that the SSN scheme groups a
set of past subsequences (into a single state) whose transi-
tion probability distributions are regarded as identical within
an error tolerance determined by the significance level. The
grouping and resultant states depend on this significance level
and even if two past subsequences are grouped into a certain
state for a specific significance level, it might not be the case
for another significance level. Therefore, a SSN constructed
for a certain significance level might mislead the precise in-
terpretation concerning the underlying SSN. Therefore, the
visualization of the SSN projected onto the metric space that
reflects the proximity of transition probability distribution is
very crucial to capture the essence of the network structure.

In the literature, a state is often regarded as a conforma-
tion or, more generally, a set of conformations. However, di-
rect connections between the high-dimensional protein con-
formations and states obtained from the SSN analysis may
not be established solely based on the information of a one-
dimensional time series. This limitation is inherent to most of
all measurements, but we expect that a systematic survey of
the dependence on several amino acid residue mutations pro-
vides more concrete identification of the state in relation to
the identity of the role of amino acid residues.

The nonstationary features and the timescale dependence
of the constructed networks are the natural consequence aris-
ing from the property of the system in question, whenever
states are defined along the time series. One of the alterna-
tive data-driven approaches to construct a network is to utilize
dwell-time time series, which is the series of the consecutive
dwell times at the individual levels such as ON and OFF.* It
is interesting to compare the results of these complimentary
approaches as one of the forthcoming subjects. The analysis
of higher concentration of Grb2 and the mathematical deriva-
tion of exact dwell time distribution for binary (or non-binary)
time series will be published elsewhere.

ACKNOWLEDGMENTS

We thank Dr. J. Nick Taylor for his critical reading
of this manuscript and his valuable comments. This work
has been partially supported by Grant-in-Aid for Scientific
Research(B), JSPS (to T.K.), Grant-in-Aid for Exploratory
Research, JSPS (to T.K.), a Grant-in-Aid for Scientific
Research on Innovative Areas “Spying minority in biological
phenomena (No. 3306),” MEXT (to T.K.). The computations
were partially performed using the Research Center for
Computational Science, Okazaki, Japan.

J. Chem. Phys. 139, 245101 (2013)

FIG. 7. A Markovian network model composed of three states in which two
states belonging to “ON” are not visually distinguishable in the time series.
The transition probabilities per unit time among these three states are denoted
by the numbers associated with links.

APPENDIX: AN ILLUSTRATION OF OUR
CONSTRUCTION SCHEME OF MULTISCALE SSNS
FOR A THREE-STATE MARKOVIAN NETWORK

In this subsection we illustrate our method by using a
simple model system that consists of a receptor protein A and
a substrate B (see Fig. 7). Suppose that the protein A has two
conformations A; and A,, and when the protein A binds to
the substrate B there exists two distinct bound forms denoted
by A; B and A, B. The other state corresponds to the un-
bound form denoted by A+B. The former two bound states
are assigned as ON states whereas the latter as an OFF state
(indicated by gray circle in Fig. 7). For this model, with gen-
erating a binary time series of length 100 000 using Monte
Carlo method (ON and OFF levels are represented by “1”” and
“0”), let us construct the underlying SSNs by using the pro-
cedure presented in Sec. II A. The SSNs converged at each
skipping step with L, < 2 are shown in Fig. &, and the res-
idential probabilities of the states of the SSN of skipping step
one are given, with those of the three-state model, in Table II.
One can see that the SSN at the skipping step one has the
same number of states as the three-state model does: one cor-
responds to the OFF state whereas the other two correspond
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FIG. 8. The SSNs constructed at SK 1, SK 3, SK 9, and SK 27 shown from
the left top to the right bottom for the three-state model. The autocorrelation
function derived numerically from the time series is indicated by black line
with the error bar denoted by vertical short lines. Those derived analytically
in terms of the constructed SSNs are denoted by empty circles (the time range
each SSN can reproduce is summarized in Table III). The shaded and empty
circles denote the OFF and ON states, respectively.
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TABLEII. The residential probabilities of the three-state model and the cor-
responding SSN. The SSN is constructed with the significance level @ = 0.01,
Lpast = 2, and the skipping step one. The state S contains subsequences 11,
the state Sy 01, and the state S> 10 and 00, respectively.

Three-state model SSN
ON P(A1B) =0.20 P(Sp) = 0.69
P(A;B) =0.57 P(S1) =0.08
OFF P(A+B)=0.23 P(S;)=0.23

to the ON state although the residential probabilities in the
ON states Sy and S; are different from those of A;B and
A;B. The reason for this discrepancy between the network
structure of the model and that of the SSN is as follows:
In general, depending on the topological features of the
underlying network, e.g., some networks may have some re-
dundancy, the underlying network may not be the simplest
model to generate the time series, and therefore the converged
SSN constructed is not necessarily the same to the underly-
ing network. This is because the SSN scheme deals with only
a time series, and is designed to construct the simplest but
most predictive network by capturing all statistical and ki-
netic information buried in the one-dimensional time series.
It is noted that the statistical complexity (which quantifies
how complex the network model is) of the underlying network
is larger than that of the constructed SSN for the three-state
model, implying that the constructed SSN is indeed a sim-
pler representation of the process (i.e., statistical complexity
is 0.796 for the constructed SSN but 0.980 for the original
three-state model).

Fig. 8 shows the SSNs constructed at skipping steps
1 (SK 1), 3 (SK 3), 9 (SK 9), and 27 (SK 27) with
the autocorrelation computed numerically by the formula
C(t) = ﬁ ZZNZT s;iSitr (where s; and N are the value at
time i and the total length of time series), and the compari-
son to the autocorrelation computed analytically in terms of
the obtained SSNs. These different SSNs can reproduce auto-
correlation function at different timescales corresponding to
their skipping step. At SK 1, we have three states whereas at
SK 3 there are two states. At nine steps, the autocorrelation
almost converges to the asymptotic value (% ZlN: | Si)%, im-
plying that, with the increment of more than nine steps, the
next outcome does not “remember” or “refer to” the current
outcome. Hence, the SSN becomes the same as that from a
simple coin toss at SK 9. The network constructed at SK 27
turns out to be the same as at SK 9, which means that the
SSNs up to SK 9 are enough to capture all autocorrelation of
the system.

TABLE III. The time region for which each SSN constructed for different
skipping steps 1, 3, 9, and 27 reproduces the autocorrelation. Note that the
increment of the intervals is different with each other dependent on the SK
m, and the total step length is 100 000.

SK'1 SK 3 SK9 SK 27

0-100, 000 3-99, 999 9-99, 999 27-99, 981
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For comparison, we superimpose an autocorrelation
function calculated directly from the ON/OFF time series
on the autocorrelation function evaluated analytically by the
SSNs at different skipping steps in Fig. 8. These two autocor-
relation functions coincide within the error bar of the auto-
correlation function. Table III presents the time intervals for
which the autocorrelation is reproduced by each SSN con-
structed for each different skipping step. Note that for this
three-state model the generated time series is perfectly sta-
tionary and the SSN at SK 1 can reproduce correlations at all
time ranges. As for the further demonstration of the repro-
ducibility of the SSNs on, e.g., higher order correlation, we
showed the third-order correlation and the mutual informa-
tion of the time series evaluated by the three-state toy model
and the SSN.**
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