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Currently, there is no systematic way to describe a quantum process with memory solely in terms of exper-

imentally accessible quantities. However, recent technological advances mean we have control over systems

at scales where memory effects are non-negligible. The lack of such an operational description has hindered

advances in understanding physical, chemical and biological processes, where often unjustified theoretical as-

sumptions are made to render a dynamical description tractable. This has led to theories plagued with un-

physical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a

universal framework to characterise arbitrary non-Markovian quantum processes. We show how a multi-time

non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many

body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to

have an efficient matrix product operator form in many cases. Our framework constitutes a systematic tool for

the effective description of memory-bearing open-system evolutions.

I. MOTIVATION

No system is isolated. Within its broadest definition, the

open systems paradigm embraces this reality and makes use

of statistical methods and approximations to account for un-

known and uncontrollable variables. It has had tremendous

success in translating fundamental theories into real-world

predictions and has led to a multitude of technological ad-

vances. In quantum mechanics, the conventional description

of open dynamics constitutes a mapping from one state of a

system to another. However, this approach has serious short-

comings when it comes to describing many realistic scenar-

ios, which has hindered progress in describing complex quan-

tum processes. The reason for these shortcomings is aptly

summed up in the famous quote by Asher Peres [1]: “The

simple and obvious truth is that quantum phenomena do not

occur in a Hilbert space. They occur in a laboratory. If you

visit a real laboratory, you will never find there Hermitian op-

erators. All you can see are emitters (lasers, ion guns, syn-

chrotrons and the like) and detectors. The experimenter con-

trols the emission process and observes detection events.” In

this Article, we embrace Peres’s point of view, and propose

a new way to describe arbitrary quantum processes in terms

of control operations, as opposed to mappings from density

operators to density operators. In particular, our framework is

perfectly suited to describe temporally correlated, that is non-

Markovian, quantum processes.

Future quantum technologies, from quantum computers [2,

3] to artificial nanostructures [4], will have to embrace non-

Markovian dynamical effects if they are to operate under real-

istic conditions. Our understanding of fundamental processes

in nature, such as the dynamics of molecules [5] and the func-

tions of bio-chemical systems [4], also hinges on a clear the-

ory of non-Markovian quantum processes. Already, there are

∗ felix.pollock@monash.edu
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many interesting physical scenarios where going beyond the

Markov assumption can be advantageous [6]. In such in-

stances, the characterisation of the ensuing dynamics via con-

ventional methods poses many challenges; one often has to

relinquish either the complete positivity or the linearity of the

dynamics [7–9], leading to a mathematically consistent, but

physically inapplicable description for the dynamics [10]—

see Fig. 1(a) [11]. To overcome these difficulties, one must

consider that the environment (E), as well as the system-

environment (S-E) correlations, might have some memory

of previous states of the system (S), significantly complicat-

ing any theoretical description [12]. This is particularly true

in the quantum regime, where the timescales of the interac-

tion between S and E are often comparable to those of the

dynamics of the system alone [13].

In this Article, we present a general operational framework

to characterise arbitrary quantum processes, including those

which are non-Markovian. Our framework closely resembles

the quantum combs programme [14, 15] developed to under-

stand the most general quantum circuits. In our framework, a

quantum process is defined by the relationship between exper-

imentally implementable controls and experimentally measur-

able output states, see Fig. 1(b). Our approach is very much in

the spirit of Peres’s quote above. There are two main results

presented in this paper:

(I) A mapping, which we call the process tensor, from

the set of possible control operations to output states, see

Fig. 1(c). We show this mapping is universal, by proving that

it describes all quantum processes and can be simulated with

a quantum circuit. Our framework is free of any assumptions

about the underlying system-environment dynamics, and, un-

like many conventional methods in open dynamics, the pro-

cess tensor naturally accounts for multi-time correlations. We

detail the mathematical structure of the process tensor, show-

ing that it retains both linearity and complete positivity, before

showing how it can be tomographically reconstructed.

(II) A representation for the process tensor as a many-body

quantum state, which can be physically constructed using a

set of bipartite entangled states. This many-body state en-
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Figure 1. (a) The conventional approach to open quantum dynam-

ics attempts to relate the states of the system (S) at different times

by considering system-environment (S-E) unitary dynamics and av-

eraging out the state of the environment (E). The averaging of the

unknown variables is denoted by the red line. This cuts through S-E

correlations, leading to issues that have hindered progress in under-

standing and characterising non-Markovian dynamics. (b) The oper-

ational framework relates the operations an experimentalist can per-

form on S, denoted by Ak−1:0 = {Ak−1 . . .A0}, to the state of S

at a later time. The red line here cuts between the objects the experi-

mentalist can control and those that they cannot. (c) This leads to the

description of a quantum stochastic process as a mapping, encapsu-

lated in the process tensor Tk:0, from the set of control operations to

the output state ρk of S. The process tensor contains all the informa-

tion about the S-E initial state and interactions that can be inferred

from the system’s dynamics alone.

codes temporal correlations as spatial ones, and has a natural

matrix-product-operator representation [16]. As such, it can

be efficiently reconstructed using tensor network techniques

developed in recent years. This is our most significant con-

tribution, as it enables an efficient and systematic way to de-

scribe non-Markovian quantum processes, and opens the door

for the wide range of tools for characterising spatial correla-

tions (e.g. entanglement) to be directly applied to temporal

correlations.

Our framework single-handedly resolves the troubling is-

sues surrounding complete positivity and linearity (or lack

thereof) faced by the conventional framework when dealing

with initial correlations and memory effects. It leads to a com-

plete formulation of open quantum dynamics, in the sense that

it describes everything that could possibly be observed in an

experiment. Moreover, it could be used to better understand

quantum processes such exciton transport, chemical reactions,

and many more. It opens up the possibilities for systemati-

cally developing techniques for quantum control which will

be instrumental in the development of new quantum technolo-

gies. In an accompanying Letter, we also use our framework

to derive an operationally meaningful Markov condition and

corresponding family of measures for non-Markovianity [17].

II. OPEN QUANTUM PROCESSES

Operational framework We consider a quantum system

undergoing a process that we split into arbitrary discrete time

steps, labelled by k ∈ [0,K], where we do not assume any-

thing about the intermediate dynamics; nor do we assume any-

thing about the system’s initial state, which is a feature of

the process itself [18]. When the time steps are chosen to be

closely spaced, they will approximate a continuous-time evo-

lution. Within this setting, we begin by giving an operational

definition of process characterisation:

Definition 1 A quantum process is said to be characterised

for K time steps when the state of the system can be pre-

dicted at any time step 0 ≤ k < K. The system may

be subjected to arbitrary quantum operations A at previous

time steps. The mapping from the sequence of operations

Ak−1;0 := {Ak−1; . . . ;A1;A0} to the state ρk, given by

ρk := Tk:0[Ak−1:0], (1)

fully characterises the process. We call Tk:0 the process ten-

sor.

We have graphically illustrated Definition 1 in Figure 1(c).

This definition of the process tensor, which also encodes the

average initial state of the system, forms the basic building

block of this work. Operations A (where we have omitted the

subscripts) are called control operations: they represent all the

possible manipulations of the system – measurements, unitary

rotations etc. – that an experimentalist could perform, and are

mathematically described by completely-positive (CP) maps.

When the operations can be performed deterministically (for

example, a unitary rotation), they are also trace preserving

CPTP maps. Otherwise, when a control can only be applied

probabilistically, corresponding to a particular measurement

outcome for instance, the trace of the state is decreased. In

this case, the output of the process tensor is a subnormalised

density matrix proportional to the success probability of ap-

plying the trace decreasing controls.

In general, the control operations may even be correlated

with one another, corresponding to classical conditioning or

multiple interactions with the same ancillary system. Their

only restriction is that they must act on S alone. An important

subset of control operations is the combination of a measure-

ment followed by a preparation. Definition 1 represents the

idea that an experimentalist can probe a system many times,

and in many different ways, as it evolves, and that the full

statistics of all possible observations constitutes the effective

process accessible to the experimentalist.

A. Properties of the process tensor

The process tensor is a mapping from the set A to a quan-

tum state. Thus, its output is required to be a valid density op-

erator, up to normalisation (which depends on the probability

of applying A). Furthermore, it should satisfy the following

properties to be physically relevant:
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(P1) Linearity: T [aA + bB] = aT [A] + bT [B] for any

a, b ∈ R. This property embodies the linearity of mix-

ing, which must hold for any stochastic theory.

(P2) Complete positivity: If the controls act on the sys-

tem S undergoing the process and an ancilla A, the

final S-A state should still be physical. Therefore

T S ⊗ IA[ASA] = ρSA ≥ 0, where IA is the identity

process on the ancilla; this must be true for any A
SA.

This is analogous to complete positivity for quantum

operations.

(P3) Containment: For k ≥ k′ ≥ j′ ≥ j, the process tensor

Tk′:j′ is contained in Tk:j . That is, if we have the full

process tensor TK:0, then we can describe the dynamics

between any intermediate time steps, and Tk′:j′ can be

obtained from Tk:j . This amounts to a causal ordering

of time steps.

We now prove that the process tensor given in Definition 1

with these properties fully describes any quantum process –

even when it involves strong system-environment coupling –

and is guaranteed to have physical outputs. Unlike conven-

tional approaches, the process tensor has all of the desired

properties of a statistical-dynamical theory – linearity, a no-

tion of complete positivity etc. – while accounting for arbi-

trary non-Markovian behaviour.

B. Representation theorem

We use the term open quantum evolution (OQE) to describe

a system S interacting with its environmentE, where the joint

S-E dynamics is driven by unitary evolution, i.e., according

to the Schrödinger equation. As above, the system may be

interrogated, interrupted, or manipulated at intermediary time

steps by controls Ak−1:0 = {Ak−1 . . .A0}, which are simply

CP operations.

We can write the total dynamics as

ρSE
k := Uk:k−1 Ak−1 Uk−1:k−2 . . .A1 U1:0 A0 [ρ

SE
0 ], (2)

where ρSE
0 is the initial S-E state, {U} are unitary maps on

the S-E space given by Uj:i[ρ
SE
i ] = Uj:iρ

SE
i U†

j:i = ρSE
j ,

where Uj:iU
†
j:i = ✶ and ρSE

k is the state of S-E at time step

k. The state of the system is obtained by tracing over the

environment as ρSk = trE [ρ
SE
k ]. Equation 2 is the full quan-

tum mechanical description of the joint S-E evolution. We

now formalise the relationship between the process tensor and

OQE with the following Theorem.

Theorem 2 The state of a system, undergoing an open quan-

tum evolution, at any time step k is given by contracting a

choice of control operations with a process tensor satisfying

the properties: (P1) linearity; (P2) complete positivity; and

(P3) containment. Conversely, any process tensor is consis-

tent with an OQE of the form of Eq. (2), where the envi-

ronment is simulated by k ancillas of increasing dimension

dAj
≥ d2(3

j).

Figure 2. Quantum circuit to simulate the process tensor. Any pro-

cess tensor can be simulated by the quantum circuit above. For each

time step an ancilla of dimension dj ≥ (dS
∏j−1

n=0
dn)

2 and prepared

in a state ηj is introduced. The unitary at each step can be decom-

posed as Uj:j−1 = VjWj:j−1, where Wj:j−1 acts on the system

and all previous ancilla and Vj acts on all subsystems including the

new ancilla. See Appendix B 2 for a detailed proof of the converse

statement of Theorem 2.

The proof of the first statement, given in Appendix B 1, con-

structs Tk:0 explicitly by writing down the matrix indices for

all objects in Eq. (2). Specifically, to prove the Theorem, we

show that the action of the process tensor can be written as the

operator-sum decomposition

ρ = T [A] =
∑

l

Tl AT †
l , (3)

with the operators {Tl} defined in Eq. (B4). The second

equality implies complete positivity (and linearity) of T . The

containment property also arises naturally from our construc-

tion.

For the proof of the converse statement, given in Ap-

pendix B 2, we make use of the supermaps formalism intro-

duced in Ref. [19]. In a nutshell, we show that each step

of a process can be described by a supermap, and that this

implies a unitary representation for the dynamics during that

step. By induction, the unitary representation, or dilation, of

the full process tensor follows. It is also possible to represent

a general process tensor by a unitary evolution with ancillas

of smaller dimension dAj
≥ d2k+1 [20], albeit with a circuit

that cannot be straightforwardly extended to incorporate more

time steps.

The Theorem above show that the process tensor is the

most general descriptor for a quantum process. The direct

correspondence between OQE and the process tensor proves

its universality. It additionally provides a recipe for simulat-

ing general (discrete-time) non-Markovian dynamics. Given

a process tensor description of the dynamics, a set of uni-

tary operations {Uj:j−1} and ancilla states {ηj} can be (non-

uniquely) determined which, when applied using the quantum

circuit in Figure 2, fully simulate the reduced dynamics of

the system. Since this description is operational, it is exper-

imentally applicable, sidestepping issues of interpretation of

all other approaches. Nevertheless, since it can describe any
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quantum process, the process tensor contains the conventional

picture in the latter’s realm of validity.

C. Conventional picture from the process tensor

In the conventional approach the dynamics of a quantum

system is most often described by a master equation or a fam-

ily of dynamical maps. The former relates the rate of change

of a system’s state (represented by a density operator) at each

time to the state itself, or more generally to the state at earlier

times. On the other hand, in the latter approach, the future

states of the system are obtained by the action of a superoper-

ator on the initial state. In other words, the conventional de-

scription of a process involves keeping track of the state of the

system as a function of time. This limits the ability to deter-

mine the outcomes of measurements on the system to at most

two times in a given run, failing to account for multi-time cor-

relations, which are crucial for understanding non-Markovian

effects. Moreover, the conventional approach runs into trouble

when when the initial state of S-E is correlated.

The presence of initial S-E correlations indicates one of the

simplest non-Markovian processes; the initial correlations are

a record of the past interactions between S and E. In such

cases, the CPTP description of the dynamics breaks down.

Pechukas has shown that, in order to describe the dynamics

in the presence of initial S-E correlations, we must give up

something [7, 8], e.g. complete positivity or linearity [9].

Needless to say, neither of these two options is desirable, cre-

ating a double-bind. The operational interpretation of non-

CP or nonlinear maps is not clear, and they can lead to un-

physical behaviour [21–23]. These troubling features remain

when describing general (and more complex) non-Markovian

dynamics [24–26].

To overcome the double-bind presented by the initial corre-

lation problem there is a a third option: to give up altogether

the notion of states of S as the inputs of the map [27]. This

is because an independent set of input states of S is not well

defined when S is correlated withE [28]. If we recognize that

in order to prepare a desired state of S, we must, in reality, im-

plement some external control operation, then, it is thus natu-

ral to treat these operations as the inputs to the process [27],

which in turn yields the final state of S. This method is an op-

erationally sound way of describing dynamics when the initial

S-E state is correlated, and has been experimentally imple-

mented [29]. The resultant map is a single step process ten-

sor, also known as a superchannel. As such, it is both CP and

linear, overcoming the challenge posed by Pechukas.

While the superchannel resolves the problem of initial cor-

relations, the more general process tensor allows for describ-

ing correlations over multiple times steps. It too maps control

operations to states, instead of initial system states to final

states, and it is fundamentally different from the conventional

approach to non-Markovian dynamics [24, 30–34]. It also dif-

fers from non-Markovian master equations, which seek to re-

late changes in the state of a system at a given time to its initial

state and the effects of a memory kernel; this may be micro-

scopically derived or phenomenological in nature [12, 35, 36].

Figure 3. The conventional picture of open dynamics is fully con-

tained in the process tensor. When the initial system-environment

state is uncorrelated (i.e., ρSE
0 = ρS0 ⊗ ρE0 ), the picture of evolution

according to a CPTP map can be recovered by acting with the identity

map I (doing nothing) at all time steps but the first. The initial state

is simply given by ρ0 = A0[ρ
S
0 ].

As it is a more general description, the process tensor in-

cludes the same information (and more) about the dynamics

as the conventional approach. In particular, it can be used to

determine the density operator as a function of time. Let us

assume that the initial S-E state is uncorrelated. Thus, the

state of S at time step k is given by

ρk = trE [Uk:0 ρ
S
0 ⊗ ρE0 U†

k:0] = Λk:0(ρ0), (4)

where Λk:0 is a CPTP map from the initial time to time step

k. This expression can be obtained from the process tensor

by simply choosing the identity operation (do nothing) as the

control operation at each time step after the initial preparation:

ρk = Tk:0[I; . . . ; I;A0]. (5)

This equivalence is depicted in Fig. 3.

Moreover, by taking time steps closer and closer together,

we can also recover the changes to the state of the system.

This allows for deriving a non-Markovian master equation of

the Nakajima-Zwanzig type [37]. While the conventional ap-

proaches are recovered as limiting cases, the process tensor al-

lows for much more, including implementing temporally cor-

related control operations.

D. Temporally correlated controls

The linearity property (P1) of the process tensor applies in-

dependently to each of its arguments, that is the process tensor

is multi-linear in the applied control operations:

Tk:0[Ak−1; . . . ; (aAj + bA′
j); . . . ;A0] =

aTk:0[{Ak−1; . . . ;Aj ; . . . ;A0}] (6)

+ bTk:0[{Ak−1; . . . ;A′
j ; . . . ;A0}]

∀j ∈ [0, k − 1] and ∀a, b ∈ R. What this means is that

the argument A = {Ak−1; . . . ;A1;A0} can be seen as an

element of the tensor product space of control operations.

For independent operations this means we can write A =
Ak−1 ⊗ · · · ⊗ A1 ⊗A0.
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Figure 4. A process tensor acting on a correlated operation. Both

the process tensor and the sequence of control operations can be rep-

resented as quantum combs [15]. The density operator at time step

k results from their contraction. Any correlated CPTP operation act-

ing on the system can be implemented by interacting the system re-

peatedly with an ancillary system A, such that SA unitaries Vj are

applied at each time step. Any correlated CP operation can be imple-

mented with a further measurement with the correct outcome [38].

Noting the tensor product structure of the process tensor’s

argument means that we can extend its action to non-product

operations

A =
∑

jk−1,...,j0

cjk−1,...,j1,j0Ajk−1
⊗ · · · ⊗ A0. (7)

These correspond to correlated operations; for example, these

could be measurements whose basis depends on the outcome

of an earlier measurement, or they could represent repeated in-

teractions with the same ancillary system. In fact, these oper-

ations also have the structure of a general quantum comb, and

hence can be thought of as process tensors themselves (with

an uncorrelated initial state). In Fig. 4 we depict the action

of the process tensor on a general correlated operation, and

how this could be realised in practice. Correlated operations

can be used to describe experiments with quantum or classi-

cal feedback control. In the following section, we further use

the linearity of the process tensor and the control operations

to show how it can be reconstructed tomographically.

III. LINEAR CONSTRUCTION OF THE PROCESS

TENSOR

The collection of quantum operations A, which the pro-

cess tensor acts on, is itself a linear operation. That is,

an operation A, acting on the system at a given time step,

is a linear map on the density operator of the system. At

each time step j, it can be uniquely decomposed in terms

of a fixed set of linearly independent operations {A(µ,ν)
j

j }
as Aj =

∑

(µ,ν) α(µ,ν)
j
A(µ,ν)

j

j , with real numbers α(µ,ν)
j
.

Note that the coefficients α(µ,ν)
j

are not necessarily positive,

meaning the expansion above is linear but not convex. Fur-

ther, using the multilinearity of the process tensor discussed in

the previous section, any sequence of control operations can

Figure 5. Full-process tomography. In a convenient, but not unique

scheme for full tomography, the system is measured at each time step

and then freshly prepared. That is, the preparation at step k is inde-

pendent of the previous measurements and preparations. A linear

combination of measurements and preparations, each chosen from

a set that linearly spans the operator space, is sufficient to span the

space of control operations. Having statistics for all possible mea-

surements and preparations at all times is sufficient to construct Tk:0.

also be expanded in terms of tensor products of these basis

elements as

Ak−1:0 =
∑

(µ,ν)

k−1
⊗

j=0

α(µ,ν)
j
A(µ,ν)

j

j . (8)

As we will now see, by determining the final state for each

basis operation, the process tensor can be reconstructed in a

process tomography [39–41] involving many time-steps. As

with any quantum tomography, the scaling is not favourable.

An operation on any d-dimensional system can be expressed

in terms of O(d2) measurement operators and d2 prepara-

tions. Thus, the expansion of Ak:0 requires O(d4k) linearly

independent combinations of preparations and measurements

(or, more generally, O(d4k) linearly independent operations

of any sort). This may seem like an obstacle in character-

ising non-Markovian processes. However, it is still possible

to tomographically reconstruct a partial process tensor with a

smaller set of controls [42].

A convenient choice {A(µ,ν)} for the basis of oper-

ations, depicted in Fig. 5, is each of the outcomes of

an informationally-complete positive-operator-valued mea-

sure (POVM) {Π(µ)} followed by an update [43]. The up-

date is a preparation of a fresh state from the set {P (ν)},

which linearly spans the space of system density operators:

A(µ,ν)(ρ) = P (ν)tr[Π(µ)ρ], with
∑

µ Π
(µ) = ✶. For con-

venience, we can write the operations in terms of their Choi

state [10] (see also, Sec. IV), which for the basis elements is

the simple tensor product A(µ,ν) = P (ν) ⊗ Π(µ); we will use

this representation for the remainder of this section. Prepa-

ration of the ‘fresh’ state need not involve another copy of

the system, but could be achieved by applying an outcome

dependent unitary operation after the measurement (such that

the preparation is fully independent of the measurement out-

come).

The full control set on a set of time steps can also be cast

as a linear combination of sequences of measurements and

preparations at each time step. That is, the Choi state of the
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sequence can be decomposed as

Ak−1:0 =
∑

~µ,~ν

α(~µ,~ν)

k−1
⊗

j=0

P
(νj)
j ⊗Π

(µj)
j , (9)

where the notation ~η is shorthand for the list of indices

{ηk−1, · · · , η1, η0} corresponding to each time step, and we

have allowed for the basis {A(µ,ν)
j

j } to be different at differ-

ent time steps. When the operations applied at each time step

are independent, the coefficients can be decomposed into a

product α(~µ,~ν) =
∏

j α(µ,ν)j .

Writing the state at time step k as the action of the process

tensor on Ak−1:0, we can use the above decomposition to ex-

press it in terms of a fixed set of basis states:

ρk(Ak−1:0) =Tk:0(Ak−1:0) =
∑

(µ,ν)
k−1

· · ·
∑

(µ,ν)
0

α(~µ,~ν) ρk

(

A(µ,ν)
k−1

k−1 ;A(µ,ν)
k−2

k−2 ; . . . ;A(µ,ν)
1

1 ,A(µ,ν)
0

0

)

=
∑

(µ,ν)
k−1

· · ·
∑

(µ,ν)
0

α(~µ,~ν) ρk

(

P
(νk−1)
k−1 ,Π

(µk−1)
k−1 ; . . . ;P

(µ1)
1 ,Π

(µ1)
1 ;P

(µ0)
0 ,Π

(µ0)
0

)

. (10)

Let us further denote output states for the input basis elements

ρk(~µ, ~ν) := ρk

(

P
(νk−1)
k−1 ,Π

(µk−1)
k−1 ;P

(νk−2)
k−2 ,Π

(µk−2)
k−2 ; . . . ;P

(µ1)
1 ,Π

(µ1)
1 ;P

(µ0)
0 ,Π

(µ0)
0

)

. (11)

Since the basis elements correspond to non-deterministic op-

erations (particular measurement outcomes), these states are

subnormalised. The trace of one of these states gives the joint

probability pk(~µ, ~ν) = tr[ρk(~µ, ~ν)] to measure the sequence

of outcomes corresponding to POVM elements {Π(µj)
j } given

the set of preparations P
(νj)
j . Quantum state tomography on

the system after a given sequence of basis operations would

give the normalised conditional state

ρk

(

P
(νk−1)
k−1

∣

∣Π
(µk−1)
k−1 ; . . . ;P

(µ0)
0 ,Π

(µ0)
0

)

=
ρk(~µ, ~ν)

pk(~µ, ~ν)
. (12)

Equation (10) tells us that reconstructing the set of states

ρk(~µ, ~ν) for all possible values of (~µ, ~ν) is sufficient to con-

struct the state ρk for any arbitrary choice of operations

Ak−1:0. We simply need to know the expansion coefficients

for the sequence, i.e., α(~µ,~ν). This is a consequence of the

linearity of the process tensor: Given a set of operations,

spanned by some control parameters, an experimentalist can

test which operations are linearly independent—this is just a

more involved version of quantum process tomography. By

a linear inversion process, using A(µ,ν)
j and ρk(~µ, ~ν) we can

construct the map Tk:0 which fully characterises the process

up to time step k. Note again that the set of experiments

we are prescribing here simply involve performing a POVM

Πk = {Π(µk)
k } followed by an update Pk = {P (νk)

k } at each

time step. It is important to note that both Πk and Pk only

contain a finite number of elements. Performing (exponen-

tially many) experiments with randomised measurements and

preparations will sample from all possible combinations. The

states ρk(~µ, ~ν) are simply deduced from quantum state tomog-

raphy of the conditional states in Eq. (12) and the statistics

of the Πk while holding all of the priors constant, since the

POVM is informationally complete. We now give a Lemma

(analogous to the one given in Ref. [44]) which allows us to

construct the process tensor as a matrix.

Lemma 3 The process tensor can be constructed as

Tk:0 =
∑

~µ,~ν

ρk(~µ, ~ν)⊗DT
~ν ⊗∆T

~µ . (13)

where {D~ν} and {∆~µ} are the dual matrices to {P~ν} and

{Π~µ} satisfying tr[D~ν′ P~ν ] =
∏

j δνjν
′

j
and tr[∆~µ′ Π~µ] =

∏

j δµjµ
′

j
.

Proof. We first prove that for any set of linearly inde-

pendent matrices {P (ν)} there exists the dual set {D(ν)}.

Write P (ν) =
∑

ν′ hνν′Γ(ν′), where hνν′ are real num-

bers and {Γ(ν′)} form a Hermitian self-dual linearly inde-

pendent basis satisfying tr[Γ(ν)Γ(ν′)] = 2δνν′ [44]. Since

{P (ν)} form a linearly independent basis, the columns of ma-

trix H =
∑

νν′ hνν′ |ν〉 〈ν′| are linearly independent vectors,

which means H has an inverse. Let matrix J
T = H

−1, then

HJ
T = ✶, implying that the columns of J are orthonormal

to the columns of H. We define D(ν′) = 1
2

∑

j dνν′Γ(ν′),

where dνν′ are elements of J. The same proof applies to

{Π(µ)}, whose dual set is {∆(µ)}: tr[∆(µ′) Π(µ)] = δνν′ .

Since, D~ν =
⊗

j D
(νj)
j , ∆~µ =

⊗

j ∆
(µj)
j , P~ν =

⊗

j P
(νj)
j

and Π~µ =
⊗

j Π
(µj)
j , we have tr[D~ν′ P~ν ] =

∏

j δνjν
′

j
and

tr[∆~µ′ Π~µ] =
∏

j δµjµ
′

j
.

The action of the process tensor on a specific choice P~ν ⊗
Π~µ is given as

Tk:0[P~ν ⊗Π~µ] =
∑

~µ′,~ν′

ρk(~µ
′, ~ν′) tr[D~ν′ P~ν ] tr[∆~µ′ Π~µ]

=ρk(~µ, ~ν). (14)
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Its action is then defined on any control operation Ak−1:0, by

linearly expanding the latter in terms of P~ν ⊗ Π~µ and coeffi-

cients {α(~µ,~ν)}. The above decomposition therefore provides

an operational means to construct the process tensor. �

While the process tensor can be reconstructed in a finite

number of experiments this way, the complexity of the proce-

dure scales exponentially with the number of time steps. In

the following section, we will discuss an alternative represen-

tation for the process which can make its description more

efficient.

IV. EFFICIENT STATE REPRESENTATION OF THE

PROCESS TENSOR

To efficiently describe a quantum process, we will map

the process tensor into a many-body quantum state. For

CPTP maps, there is a remarkable relationship known as the

Choi-Jamiołkowski isomorphism [45], which can be seen as

an operational recipe for converting a process into a state. By

inserting one half of a maximally entangled state |ψ+〉 =
∑

j |jj〉 /
√
d into the process described by CPTP map Λ, a

state Υ = Λ ⊗ I [Ψ+] (where Ψ+ = |ψ+〉 〈ψ+|) can be con-

structed, whose matrix elements directly correspond to ele-

ments of Λ.

A. Choi representation for multi-time processes

Here, we develop an analogue of the Choi-Jamiołkowski

isomorphism for more general processes. Characterising the

corresponding state is no easier than characterising the pro-

cess tensor from the perspective of the number of parame-

ters. However, a range of techniques have been developed

for efficient quantum state tomography [46, 47]. Owing to

the isomorphism, such techniques are immediately available

for quantum process tomography, rendering it efficient. Our

claim is formalised in the following theorem:

Theorem 4 Any k-step process can be operationally repre-

sented by the generalised Choi state Υk:0 of a 2k + 1–body

system. Υk:0 can further be written in matrix product opera-

tor form [16], with a bond dimension that is bounded by the

effective dimension of the environment.

The generalised Choi state Υk:0, corresponding to the pro-

cess tensor Tk:0, can be prepared experimentally using the cir-

cuit presented in Figure 6. We provide a detailed proof of

this theorem in Appendix C, where we use the dilated OQE

in Eq. (2) to demonstrate that the elements of the density

operator that results from the circuit in Figure 6 are exactly

the elements of the corresponding process tensor. The action

of the process tensor Tk:0 on a set of operations Ak−1:0 is

equivalent to projecting the Choi state Υk:0 onto the Choi

state of Ak−1:0 (up to a transpose), i.e., Tk:0[Ak−1:0] =
trS [Υk:0(✶S⊗Ak−1⊗I⊗· · ·⊗A0⊗I[(Ψ+)⊗k−1])], where

the partial trace is over all subsystems except the one corre-

Figure 6. Generalised Choi-Jamiołkowski isomorphism. This quan-

tum circuit prepares the state that represents the process tensor ele-

ment by element. The resources required are k maximally entangled

pairs of ancillas of dimension d. That is k log
2
(d) ebits. Corre-

lations between pairs of ancillas in Υk:0 correspond directly to the

memory inherent in the non-Markovian evolution. Any desired ele-

ment of this state can be sampled using the techniques of quantum

state tomography. See Appendix C for details.

sponding to the output of the process tensor (the system S in

Fig. 6).

The Choi state representation allows direct access to impor-

tant properties of the process, and maps temporal correlations

onto spatial ones. Operational and mathematical tools, devel-

oped to understand, e.g. entanglement scaling, in many-body

quantum states can now be applied directly to general dynam-

ical quantum processes. This, in turn, enables the systematic

classification and bounding of memory effects.

B. Matrix product operator form

Our Theorem also implies that many physically relevant

quantum processes will have an efficient description. In the

second part of our proof, we show that the Choi state has a

natural matrix product operator form; with the addition of two

extra ancillas, the process tensor can be described by a pure,

matrix-product state (MPS), which arises due to the causal na-

ture of the process (this can also be seen in the second part of

the proof of Theorem 2).

In short, we show that the Choi state for a given OQE can

be written as the matrix product density operator [48]

Υk:0 =
∑

M
rkr

′

k−1sks
′

k−1

k · · ·Mr1r
′

0s1s
′

0

1 Mr0s0
0 (15)

× |rk r′k−1 . . . r1 r
′
0 r0〉 〈sk s′k−1 . . . s1 s

′
0 s0| ,

composed of d2E × d2E matrices

M
rjr

′

j−1sjs
′

j−1

j =〈rj |Uj:j−1|r′j−1〉⊗〈sj |U∗
j:j−1|s′j−1〉, (16)

j 6= 0, k, and length d2E row and column vectors

M
rkr

′

k−1sks
′

k−1

k =
∑

ǫ

〈rkǫ|Uk:k−1|r′k−1〉

⊗〈skǫ|U∗
k:k−1|s′k−1〉

(17)
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and

Mr0s0
0 =

∑

ǫ0γ0

ρSE
r0ǫ0;s0γ0

|ǫ0γ0〉 (18)

respectively—note that the superscripts here are not matrix

indices.

From this representation it is clear that the number of inde-

pendent elements of the process tensor does not always grow

exponentially with the number of time steps k, but will, in

many physically relevant cases, grow linearly: the size of the

matrix product operator and hence the process tensor grows

as O(kd2SD
2), where D is the bond dimension of the state. In

general, D ≤ dE , the dimension of the environment. This is

reassuring, since the description should not be more complex

than the corresponding OQE. Even though the environment

dimension could be large, there is always a consistent OQE

with dE ≤ d3
k−1, and we expect the effective bond dimension

to be much smaller than this in practice; often only part of the

environment interacts with the system at any given time and,

in practice, even an infinite-dimensional environment can be

approximated by a finite one [49, 50]. This comprises a signif-

icantly more efficient representation for processes with many

time steps, and opens up the possibility to use singular value

truncation and other techniques [46, 47, 51, 52] to meaning-

fully approximate the dynamics by pruning low-probability

branches of the MPS description. We now demonstrate how

the Choi state of a process tensor, defined on a set of time

steps, can be used to directly recover information about dy-

namics on subsets of those time steps.

C. Intermediate dynamics from the Choi state

In a direct application of the containment property of the

process tensor, we can recover the Choi state of smaller pro-

cess tensors from Υk:0. Taking the trace over the subsystem

corresponding to the final output state (S in Fig. 6) gives

trS [Υk:0] = ✶ ⊗ Υk−1:0; partial tracing over one further

subsystem gives the Choi state of the process tensor up to

k − 1. By iterating this procedure and projecting other un-

wanted time steps on the maximally entangled state (corre-

sponding to applying an identity operation), one can recover

any intermediate process tensor. Specifically, if we split the

time steps into a set we are interested in j1, j2, . . . jn and a set

we wish to ignore l0, l1, . . . lk−n then we have:

Υjn,...,j2,j1 = trj′n,{li,l′i}

[(

Ψ+
lk−n

⊗ · · · ⊗Ψ+
l1
⊗Ψ+

l0

)

Υk:0

]

,

(19)

where the primed and unprimed subsystem labels correspond

to those in Eq. (15) (depending on whether the final time step

k is included in the set {ji}, some of the subscripts on the

partial trace may be redundant). Replacing the maximally en-

tangled states Ψ+ in this equation with the Choi states of op-

erations other than the identity will result in the Choi state of a

conditional process tensor that corresponds to the case where

those operations were applied. An important special case of

this is where the Ψ+ are replaced by identity operators ✶—

the Choi state of a maximally incoherent operation (where all

inputs are mapped to the maximally mixed state). Υjn,...,j2,j1

then simply becomes a reduced state of Υk:0. In other words,

the reduced states of Υk:0 are Choi states of intermediate pro-

cesses averaged over possible operations that may have been

performed at other time steps.

We can also recover the Choi states of dynamical maps Λl:j

that take a freshly prepared system state at time step j to that

at later time step l:

Λl:j ⊗ I[Ψ+] = trjl′









⊗

m 6=j,l

Ψ+
m



Υk:0



 ; (20)

here the trace is over all subsystems but those labelled by j
and l′. In the case that j = 0 and the system is uncorrelated

with its environment initially, we recover the usual dynamical

map as discussed in Sec. II C. These intermediate dynamical

maps are always guaranteed to be completely positive, and

are exactly what one would reconstruct if usual quantum pro-

cess tomography were performed between step j and step l
(assuming that the initial preparation procedure involves a de-

terministic entanglement-breaking operation). Finally, when

all but the subsystem corresponding to index r0 in Eq. (15) is

traced out, we are merely left with the average initial system

state tr0[Υk] = trE [ρ
SE
0 ] = ρS0 .

V. DISCUSSION

We have presented a universal framework for characterising

arbitrary quantum processes, including non-Markovian ones,

demonstrating that the process tensor is the most general de-

scriptor of a quantum process. Our framework does not rely

on any microscopic models; we only assume that experimen-

tal control operations act solely on S and do not directly in-

fluence E (in practice, this could be used as a definition for

S). We have also shown how this characterisation could be

made efficient by casting the process tensor as a many-body

state, with a matrix product operator form. Moreover, in our

accompanying Letter [17] we have used this new framework

to derive consistent, unambiguous and meaningful measures

of non-Markovianity, based on an operational condition for

quantum Markov dynamics. Our methods could further be

applied to continuous control by making use of the Trotter

formula for the decomposition of the dynamics of a system.

By reconstructing, either numerically or in an experiment,

the dynamics of a system in the form of a process tensor, an

effective memory length and magnitude can be determined at

a coarse-grained level by studying the correlations and bond

dimension of the corresponding Choi state. Based on this,

an effective description of the system could be constructed—

using, for example, the transfer tensor method [37, 53]—in

the form of an approximate master equation. This simpler

description would capture the essential features of a complex

system’s dynamics, while discarding those details which are

superfluous at a given time scale.



9

This work further opens up many other avenues for future

research. Apart from the possibility to derive non-Markovian

master equations—by taking the limit of time-steps becom-

ing infinitesimally close—the process tensor could be used to

systematically study the properties of a typical process, anal-

yse temporal quantum correlations [54] and structures with-

out causal order [55, 56]. On the practical side, it could be

used for characterising electronic dynamics in molecules us-

ing spectroscopic techniques, or formalising adaptive quan-

tum machine learning algorithms. Also, the CP nature of the

process tensor enables the calculation of its Holevo capac-

ity [57], which bounds the information content carried by a

non-Markovian channel [58]. Moreover, our approach paves

the way for a general theory of non-Markovian error correc-

tion [2, 3].

Related representations for general quantum stochastic pro-

cesses have appeared in the literature as early as 1979 and

1982 [59, 60], albeit from a less operational starting point.

More recently, the approach to modelling quantum channels

with memory in Ref. [61] has led to a similar mathematical

theory. In other contexts, the mathematical structure of the

process tensor is also related to other formalisms which de-

scribe maps acting on quantum operations, notably the quan-

tum combs [14, 15], operator tensor [62], and process ma-

trix [63, 64] frameworks. However, it has not hitherto been

applied to the question of open quantum dynamics per se; here

we have constructed, for the first time, an operationally mean-

ingful prescription to characterise an arbitrary open process

across multiple time steps. The representation of the process

as a matrix product operator also provides a novel tool for its

efficient reconstruction.
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Appendix A: Index notation for quantum operations

Throughout this article CPTP control operations A are taken to be Hermitian, positive, trace-d matrices. In the remainder of

the Appendices, we make extensive use of index notation, which we detail here. The action of the map Aj is defined as

Aj [ρj ] =
∑

r′
j
,s′

j

Arjr
′

j
;sjs′j

ρr′
j
;s′

j
|rj〉 〈sj | . (A1)

Note that index j on the left denotes a time step. On the right we have expressed this as a subscript to matrix indices r, r′, s, s′;
these subscripts should not be interpreted merely as labels for dummy indices, but also reference the time step to which the

indexed operator corresponds. Alternatively, we can write the action of the map in the Sudarshan-Kraus form as A(ρ) =
∑

lAlρA
†
l . See the ‘B-form’ of the map in Ref. [65] for details of this representation of the map.

We write the action of a unitary transformation that takes the state of S-E from time step j to time step k as

ρSE
k =

∑

rkǫkskγk

ρSE
rkǫk,skγk

|rkǫk〉 〈skγk| (A2)

Uk:jρ
SE
j U†

k:j =
∑

rkǫkskγk
rjǫjsjγj

Urkǫk,rjǫj ρ
SE
rjǫj ,sjγj

U∗
skγk,sjγj

|rkǫk〉 〈skγk| . (A3)

Note that the input and the output indices of the unitary operators have different subscripts denoting the time steps they belong

to. We rewrite the last equation as a quantum map as

ρSE
k = Uk:j [ρ

SE
j ] =

∑

rkǫkskγk
rjǫjsjγj

Urkǫk,rjǫj ;skγk,sjγj
ρSE
rjǫj ,sjγj

|rkǫk〉 〈skγk| . (A4)

Finally, note that often we will omit the ‘kets’ and ‘bras’ from such equations.

As an example consider where unitary is acting on SE and control operation is acting only on S:

ρS2 =U2:1 A1 U1:0 A0[ρ
SE
0 ]

=
∑

r2s2

Ur2ǫ2x1ǫ1;s2γ2y1ǫ1Ax1r1;y1s1Ur1ǫ1,x0ǫ0;s1γ1y0ǫ0Ax0r0;y0s0ρ
SE
r0ǫ0,s0γ0

|r2〉 〈s2|

=
∑

r2s2

1
∏

j=0

Urj+1ǫj+1xjǫj ;sj+1γj+1yjǫjAxjrj ;yjsjρ
SE
r0ǫ0,s0γ0

|r2〉 〈s2| . (A5)

Here, xy indicates that all but indices x and y should be summed over.

Appendix B: Proof of representation theorem

1. Open quantum evolution implies process tensor

To prove the first part of Theorem 2 we need to derive the process tensor from the open quantum evolution in Eq. (2) and

show that it satisfies the three properties prescribed below Definition 1. We begin by writing down Eq. (2) in terms of matrix

indices. The state of the system at the time step k is ρSk = trE [ρ
SE
k ], and is a function of Ak−1:0 = {Ak−1, . . . ,A0}. We can

write down this state in terms of matrix indices of these maps:

ρSrk,sk =
∑

rk−1···r0
xk−1···x0

∑

sk−1···s0
yk−1···y0

∑

ǫk···ǫ0
γk···γ0

δǫkγk

k−1
∏

j=0

Urj+1ǫj+1xjǫj ;sj+1γj+1yjγj
Axjrj ;yjsjρ

SE
r0ǫ0,s0γ0

=
∑

rk−1···r0
xk−1···x0

∑

sk−1···s0
yk···y0







∑

ǫk···ǫ0
γk···γ0

δǫkγk

k−1
∏

j=0

Urj+1ǫj+1xjǫj ;sj+1γj+1yjγj
ρSE
r0ǫ0,s0γ0











k−1
∏

j=0

Axjrj ;yjsj





=
∑

rk−1···r0
xk−1···x0

∑

sk−1···s0
yk···y0

Trk,xk−1rk−1···x0r0;sk,yk−1sk−1···y0s0Axk−1rk−1···x0r0;yk−1sk−1···y0s0 , (B1)
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where the delta function in line one is the trace over the final state of E. In general, the initial state of the system can be

correlated with the environment, which is not traced out until the final time step. Note that we have denoted the time-step indices

as subscripts to matrix indices. Above, the process tensor and controls are defined as

Trk,xk−1rk−1···x0r0;sk,yk−1sk−1···y0s0 =
∑

ǫk···ǫ0
γk···γ0

δǫkγk

k−1
∏

j=0

Urj+1ǫj+1xjǫj ;sj+1γj+1yjγj
ρSE
r0ǫ0,s0γ0

(B2)

Axk−1rk−1···x0r0;yk−1sk−1···y0s0 =

k−1
∏

j=0

Axjrj ;yjsj . (B3)

The element by element product in the last equation is simply a tensor product of operations A at different times. That is, the

controls at different times are independent of each other. If these operations were correlated then we would have a more complex

entity for Eq. (B3).

Linearity of the process tensor can be seen by substituting Atot = pA + (1 − p)B into Eq. (B1) and finding T [Atot] =
pT [A] + (1− p)T [B]. We can interpret this linearity by considering a coin with probabilities p and 1− p for ‘heads’ and ‘tails’

respectively. The coin is flipped and the outcome determines the choice of control operation, A(1) or A(2). Subsequently, the

process outputs state T [A(1)] or T [A(2)]. Interestingly, the value of p or 1 − p need not be positive (aforementioned example

aside); the linearity condition holds for any linear expansion of controls A, so long as their combination remains a valid set of

operations.

Complete positivity for the process tensor can be shown by casting it in the Sudarshan-Kraus-Choi form [65–68]; a linear map

Λ is CP if and only if it can be decomposed as Λ(ρ) =
∑

n LnρL
†
n. In our case, we make use of the matrix form of unitary

operations, U [ρ] = UρU†, to split their action from the left and right as:

ρSrk,sk =
∑

rk−1···r0
xk−1···x0

∑

sk−1···s0
yk···y0

∑

ǫk···ǫ0
γk···γ0

δǫkγk





k−1
∏

j=0

Urj+1ǫj+1xjǫj

√

ρSE
r0ǫ0,s0γ0





×
k−1
∏

j=0

Axjrj ;yjsj





k−1
∏

j=0

√

ρSE
r0ǫ0,s0γ0

U∗
sj+1γj+1yjγj





=
∑

rk−1···r0
xk−1···x0

∑

sk−1···s0
yk···y0

(Tl)rk,xk−1rk−1···x0r0Axk−1rk−1···x0r0;yk−1sk−1···y0s0(Tl)
∗
sk,yk−1sk−1···y0s0

, (B4)

where we have used the positivity of the initial state to take its square root. We have achieved the desired form and thus proven

complete positivity. From Eq. (B4), we can write the operators Tl in Eq. (3) of the main text as

(Tǫk···ǫ0γk···γ0
)
rk,xk−1rk−1···x0r0

=

k−1
∏

j=0

Urj+1ǫj+1xjǫj

√

ρSE
r0ǫ0,s0γ0

, (B5)

where l = ǫk · · · ǫ0γk · · · γ0.

Containment property of the process tensor— implying Tk:j contains Tk′:j′ for j ≤ j′ ≤ k′ ≤ k—can be seen by letting all

controls from j to j′ be the identity map. This yields the total S-E state ρSE
j′ . Next, we allow arbitrary controls from j′ to k′

and then discontinue the evolution. This is just a special case of the procedure above with specific choices of controls outside of

the interval [j′, k′]. However, within the interval, Tk′:j′ is fully constructed. �

2. Proof that process tensor implies open quantum evolution

The converse statement is a generalisation of the Stinespring dilation theorem [69]. In order to prove that all process tensors

have a unitary representation, we first consider that, for a single time-step process, T1:0[A0] = ρ1 = $(A0)[ρ0], where ρ0 is

some initial reduced state of the system and $ is a supermap [19], which maps operations on the system to other operations:

$(A0)[ρ] = A′
0[ρ]. This description is possible due to the CP nature of the process tensor and its resulting Kraus decomposition

(see Sec. B 1).

In Theorem 1 of Ref. [19] it is proven that the action of a supermap can always be represented as

$(A0)[ρ] = trA0

{

W (A0 ⊗ IB)
[

ZρZ†
]

W †
}

, (B6)
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where Z : S → S × B0 and W : S × B0 → S × A0 are isometries acting on the system and two ancillas A0 and B0, and we

have written the identity map on the ancilla explicitly. Since the processes we are considering do not change the dimension of

the system, we can take A0 and B0 to be the same and of dimension dA0
≥ d2. In this case W corresponds to a unitary map

W on the joint system-ancilla space. Moreover, we can rewrite ZρZ† = V [ρ⊗ η0], where V is another unitary map on the

system-ancilla space and η0 is the initial state of the ancilla. Therefore, we have

T1:0[A0] = $(A0)[ρ0] = trA0
{W1:0A0V0 [ρ0 ⊗ η0]} . (B7)

Here, A0 acts on the system alone; there is an implied identity map on the ancilla.

Let’s assume that for the process up to step j − 1, Tj−1:0[Aj−2;0] can be represented by unitary evolution of the form

Tj−1:0[Aj−2;0] =trEj−1
{Wj−1:j−2 Aj−2 Vj−2 [. . . [W1:0 A0 V0 [ρ0 ⊗ η0] ⊗ η1] . . . ⊗ ηj−2]}

=trEj−1

{

ρSE
j−1

}

, (B8)

where Ej−1 is the environment consisting of ancillas A0 to Aj−2. An additional step, with operation Aj−1, can be added to the

process by considering the evolution as another supermap $j acting on the joint operation Aj−1 ⊗ IEj−1
, the result of which

then acts on the state ρSE
j−1. In other words, Tj:0[Aj−1;0] = trEj−1

{$j(Aj−1 ⊗ IEj−1
)[ρSE

j−1]}. We can then use Eq. (B6) to

write

Tj:0[Aj−1;0] = trEj

{

Wj:j−1Aj−1Vj−1

[

ρSE
j−1 ⊗ ηj−1

]}

, (B9)

where the new ancilla has dimension dAj
≥ d2(3

j). This evolution is of the same form as Eq. (B8), thus by induction it follows

from Eqs. (B7) & (B9) that the evolution in Eq. (B8) is valid for any time step.

If we define ρSE
0 = V0[ρ0 ⊗ η0]⊗ η1 · · · ⊗ ηk−1 as the initial system-environment state, then the process tensor is consistent

with OQE as defined in Eq. (2) with Uj:j−1 = VjWj:j−1 for j < k and Uk:k−1 = Wk:k−1. �

Appendix C: Proof that the process tensor has a matrix-product state representation (Theorem 4)

In this proof, we make use of Theorem 2 to represent the process tensor as an OQE with some environment; we further

introduce a set of 2k ancillas each of d-dimensions, which along with the system, will be used to encode the many-body state.

This theorem generalises the well-known Choi-Jamiołkowski isomorphism [70] to the process tensor.

Let us label the pair of ancillas to be used at the jth time step Aj and Bj , these are initialised in the maximally entangled state

|ψ+〉AjBj
=

∑d
xj=1 |xjxj〉 /

√
d. Let the total state of system–environment–ancillas at time step j be

Θj =
∑

Θr′
j
ǫjxj−1yj−1···x1y1x0y0,s

′

j
γjwj−1zj−1···w1z1w0z0 (C1)

× |r′jǫjxj−1yj−1 . . . x1y1x0y0〉 〈s′jγjwj−1zj−1 . . . w1z1w0z0|
Above the indicies {r′j , s′j} & {ǫj , γj} belong to S & E respectively, and {xl, wl} & {yl, zl} belong ancillas Al and Bl re-

spectively with 0 ≤ l ≤ j − 1. In each case the subscript on the index denotes the time step. Thus Θj includes ancillas

{Aj−1Bj−1 . . . A0B0}. Next we apply the SWAP operation Sj to S and ancilla Aj , defined as S |rx〉 = |xr〉. This gives us

S
SA
j Θj ⊗ |ψ+〉AjBj

〈ψ+|SSA
j =

1

d

∑

Θr′
j
ǫjxj−1yj−1···x1y1x0y0,s

′

j
γjwjzj ···w1z1w0z0 (C2)

× |xjǫjr′jxj〉 〈yjγjs′jyj | ⊗ |xj−1yj−1 . . . x1y1x0y0〉 〈wj−1zj−1 . . . w1z1w0z0| .
In the last equation the first line contains SjEjAjBj and the second line contains the previous ancillas Aj−1Bj−1 · · ·A0B0.

After the SWAP gate is applied the state is evolved to the next time step by the unitary map Uj+1:j . The action of the unitary can

be written

Uj+1:j (|xjǫj〉 〈yjγj |) =
∑

Urj+1ǫj+1,rjǫj ;sj+1γj+1,sjγj

× |rj+1ǫj+1〉 〈rjǫj | (|xjǫj〉 〈yjγj |) |sjγj〉 〈sj+1γj+1| (C3)

=
∑

Urj+1ǫj+1,rjǫj ;sj+1γj+1,sjγj
|rj+1ǫj+1〉 〈sj+1γj+1| δxjrjδyjsj . (C4)

Combining these equations, the total system–environment–ancilla state at the next time step is

Θj+1 =Uj+1:jS
SA
j Θj ⊗ |ψ+〉AjBj

〈ψ+| SSA
j (C5)

=
1

d

∑

Urj+1ǫj+1,rjǫj ;sj+1γj+1,sjγj
Θr′

j
ǫjxjyj ···x1y1x0y0,s

′

j
γjwjzj ···w1z1w0z0 (C6)

× |rj+1ǫj+1r
′
jrj〉 〈sj+1γj+1s

′
jsj | ⊗ |xj−1yj−1 . . . x1y1x0y0〉 〈wj−1zj−1 . . . w1z1w0z0| .
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Iterating Eq. (C6) with Θ0 = ρSE
0 and taking the trace over the environment, we find for a k-step process

Υk =trE [Θk]

=
1

dk

∑

δǫkγk
Urkǫkr

′

k−1
ǫk−1;skγks

′

k−1
γk−1

. . .Ur2ǫ2r
′

1
ǫ1;s2γ2s

′

1
γ1
Ur1ǫ1r

′

0
ǫ0;s1γ1s

′

0
γ0
ρSE
r0ǫ0;s0γ0

× |rkr′k−1rk−1 . . . r
′
1r1r

′
0r0〉 〈sks′k−1sk−1 . . . s

′
1s1s

′
0s0|

=
1

dk

∑

Trk r′
k−1

···r1 r′
0
r0;sk s′

k−1
···s1 s′

0
s0 |rkr′k−1rk−1 . . . r

′
1r1r

′
0r0〉 〈sks′k−1sk−1 . . . s

′
1s1s

′
0s0| . (C7)

This is clearly a density operator with matrix elements corresponding to the components of the process tensor.

To prove that the state in Eq. (C7) corresponds to a matrix-product state, we first realise that we can rewrite it as the matrix

product density operator [48]

Υk =
∑

M
rkr

′

k−1sks
′

k−1

k · · ·Mr1r
′

0s1s
′

0

1 Mr0s0
0 |rk r′k−1 . . . r1 r

′
0 r0〉 〈sk s′k−1 . . . s1 s

′
0 s0| , (C8)

composed of d2E × d2E matrices

M
rjr

′

j−1sjs
′

j−1

j = 〈rj |Uj:j−1 |r′j−1〉 ⊗ 〈sj |U∗
j:j−1 |s′j−1〉 , (C9)

j 6= 0, k, and length d2E row and column vectors

M
rkr

′

k−1sks
′

k−1

k =
∑

ǫ

〈rkǫ|Uk:k−1 |r′k−1〉 ⊗ 〈skǫ|U∗
k:k−1 |s′k−1〉 (C10)

and

Mr0s0
0 =

∑

ǫ0γ0

ρSE
r0ǫ0;s0γ0

|ǫ0γ0〉 (C11)

respectively—note that the superscripts here are not matrix indices. Given a decomposition of the initial state ρSE
0 =

∑

λ pλ |φλ〉 〈φλ|, then the latter vector can be rewritten as Mr0s0
0 =

∑

λ pλ 〈r0|φλ〉 ⊗ (〈s0|φλ〉)∗.

Aside from the subsystems corresponding to the initial and final time steps, the state is pure. It can thus be represented as a

(pure) matrix-product state with only two ancillas, using the results of Ref [48]:

|ψTk
〉 =

∑

pλ 〈rkǫ|Uk:k−1 |r′k−1〉 〈rk−1|Uk−1:k−2 |r′k−2〉
. . . 〈r1|U1:0 |r′0〉 〈r0|φλ〉 |rkr′k−1 . . . r1r

′
0r0ǫ λ〉 , (C12)

which has bond dimension D = dE . However, as can be seen from the construction presented in Fig. 2, the minimal dimension

of the environment, and hence the bond dimension, for the most general process grows with the number of time steps; this leads

to a tree-like structure of the MPS description. This completes the proof. �
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