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We derive a stochastic hierarchy of matrix product states (HOMPS) for non-Markovian dynamics
in open quantum system at finite temperature, which is numerically exact and efficient. HOMPS
is obtained from the recently developed stochastic hierarchy of pure states (HOPS) by expressing
HOPS in terms of formal creation and annihilation operators. The resulting stochastic first order
differential equation is then formulated in terms of matrix product states and matrix product oper-
ators. In this way the exponential complexity of HOPS can be reduced to scale polynomial with the
number of particles. The validity and efficiency of HOMPS is demonstrated for the spin-boson model
and long chains where each site is coupled to a structured, strongly non-Markovian environment.

Many physical and chemical processes require to take
the interaction with environmental degrees of freedoms
(DOFs) into account [1, 2]. Often some of these DOF
couple strongly to the system and exhibit a memory,
i.e., they are non-Markovian. To handle this challeng-
ing situation a variety of approaches have been put for-
ward [3–13]. One promising approach is the hierar-
chy of stochastic pure states (HOPS) [14, 15] which is
a stochastic, wavefunction based open quantum system
method, to solve the non-Markovian quantum state dif-
fusion (NMQSD) equation [16–22]. HOPS has been suc-
cessfully applied, for example to study energy transfer
in small photosynthetic systems [14, 23], or to simulate
linear [24] and non-linear spectroscopy [25]. HOPS con-
sists of a set of coupled first-order stochastic differen-
tial equations. For large systems with strong coupling
to several distinct environments, HOPS still requires a
substantial computational effort because the number of
coupled equations grows exponentially with the number
of effective environmental modes.

In this Letter, we show that a substantial reduction of
the computational effort can be achieved by formulating
HOPS in terms of matrix product states (MPS) and ma-
trix product operators (MPO). The resulting stochastic
hierarchy of matrix product states (HOMPS) can be effi-
ciently propagated [26] by modern algorithms that have
been used and tested for different problems [27–46]. Our
procedure is illustrated in Fig. 1 and described in the
following.

The open quantum system: We consider a quantum
system coupled linearly to a (infinite) set of harmonic
oscillators. The total Hamiltonian is written as

Ĥtot = ĤS + ĤB + ĤSB, (1)

with ĤS, ĤB, and ĤSB describing the system, the bath
and the system-bath interaction, respectively. We con-
sider a bath that can consist of several independent parts:

ĤB =
∑J
j=1 ĤB,j with ĤB,j =

∑
λ(
p̂2λ,j

2 + 1
2ω

2
λ,j q̂

2
λ,j)

FIG. 1. Our strategy to construct the hierarchy of ma-
trix product states (HOMPS). We consider a quantum sys-
tem interacting with a thermal environment at temperature
T consisting of bosonic modes which are linearly coupled to
the quantum system. After tracing out the environmental
degrees of freedom, this many-body problem is then treated
using the hierarchy of stochastic pure states (HOPS) method.
From this, we transform to a stochastic effective Schrödinger
type equation which can be solved efficiently using the MP-
S/MPO representation.

where {p̂λ,j} and {q̂λ,j} are the coordinates and momenta
of the bath DOFs. The system-bath coupling Hamilto-
nian is taken as

ĤSB =

J∑
j=1

HSB,j =
∑
j

L̂j ⊗
∑
λ,j

cλ,j q̂λ,j , (2)

where each system operator L̂j couples to its own en-
vironment. The interaction strength between system
and the (λ, j)-th mode is quantified by the coefficient
cλ,j . It is convenient to define the spectral densities,

Sj(ω) = π
2

∑
λ

c2λ,j
ωλ,j

δ(ω − ωλ,j), which describes the fre-

quency dependent system-bath coupling strength of the
j-th bath. In the time-domain, the bath correlation func-
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tion,

αj(t) =
1

π

∫ ∞
0

dωSj(ω)
[

coth
( ω

2T

)
cosωt− i sinωt

]
, (3)

fully characterizes the influence of the environment at
temperature T . We use the units ~ = kB = 1.

We are interested in the dynamics of the system which
is given by the reduced density matrix

ρ(t) = TrB{ρtot(t)}. (4)

Here, TrB{· · · } denotes the trace over all bath DOFs, and
ρtot(t) is the total density matrix. In the following, we

assume a factorized initial state ρtot(0) = ρ(0)⊗ e−HB/T

ZB

with partition function ZB = TrB{e−HB/T }.
To improve readability, we drop the index j and show

explicitly the derivation for a single operator L̂, which
we take to be Hermitian for simplicity, i.e., L̂ = L̂†. The
case of non-Hermitian L̂ can be easily handled along the
lines of Ref. 24.

Non-Markovian stochastic Schrödinger equation and
the hierarchy of pure states: Within the HOPS method
the reduced density operator ρ(t) is obtained from

ρ(t) = E
{
|ψt(Z∗t )〉 〈ψt(Z∗t )|

}
, (5)

where the |ψt(Z∗t )〉 are vectors in the system Hilbert
space that depend on stochastic processes Zt, and E[· · · ]
denotes the average over trajectories. The Zt are com-
plex valued and fulfill E[Zt] = 0 and [47]: E[ZtZs] = 0
and E[ZtZ

∗
s ] = α(t− s). To obtain the HOPS, the bath-

correlation function (3) is approximated by a sum of ex-
ponentials (which we denote as modes),

α(t) ≈
K∑
k=1

dke
−νkt (t ≥ 0), (6)

with complex numbers νk. Then the following hierarchy
of first order differential equations can be derived [14],

∂tψ
n
t =

[
− iĤS + L̂Z∗t −

K∑
k=1

nkνk
]
ψn
t

+ L̂

K∑
k=1

dk√
|dk|
√
nk ψ

n−ek
t

− L̂†
K∑
k=1

√
|dk|
√
nk + 1ψn+ek

t .

(7)

The superscript n = {n1, · · · , nk, · · · , nK} consists
of a set of non-negative integer indices, and ek =
{0, · · · , 1k, · · · , 0}. The initial conditions are ψ0

t=0 = ψini

and ψn
t=0 = 0 for n 6= 0. The trajectories entering Eq. (5)

are ψt(Z
∗
t ) = ψ0

t (Z∗t ).

Note that compared to the original derivation of
HOPS [14] we have rescaled the auxiliary vectors accord-

ing to ψn
t →

(∏K
k=1 nk!|dk|nk

)− 1
2ψn

t .
For the general case of several environments and sev-

eral system-bath operators as given in Eq. (2), for each L̂j
one obtains the terms as on the right hand side of Eq. (7),
where all k dependent quantities get an additional index
j. One now has J independent processes Z∗t,j . The hi-
erarchy is now labeled by n = {n11, · · · , nkj , · · · , nKJ}.
Details are presented in section SIII of the Supplemental
Material [48].

In practice one has to truncate the hierarchy, which can
be achieved by a suitable approximation of the terms ap-
pearing in the last line of Eq. (7). Possible choices are
for example the ‘terminator’ suggested in Ref. [14], or
simply setting these terms to to zero, as we do here. To
keep the number of coupled equations reasonably small
proper truncation is an important issue [49]. For ex-
ample for the common ’triangular’ truncation scheme∑J
j=1

∑K
k=1 njk ≤ Nmax, where Nmax determines the

’depth’ of the hierarchy. For given J , K and Nmax

the number of equations is then approximately given by
1+Nmax

JK

(
JK+Nmax

1+Nmax

)
. This shows that even for Nmax = 2

the size of the hierarchy is massive, if the total num-
ber of modes (JK) is large. To make things worse,
for many relevant parameter regimes a large Nmax is
required. Our MPS/MPO formulation will resolve this
fundamental problem.

Effective Hamiltonian for HOPS: To obtain at a con-
venient form to construct MPS and MPO, we formally
define states {|n〉} with |n〉 = |n1, · · · , nK〉 and introduce

|Ψ(Z∗)〉t =
∑
n

ψn
t (Z∗) |n〉 (8)

with the auxiliary vectors ψn
t of HOPS as expansion co-

efficients. Defining the following orthonormal relation,
〈n|n′〉 = δnn′ , these coefficient can be obtained from
ψn
t = 〈n|Ψ〉t. The HOPS system of equations (7) is then

expressed as

∂t |Ψ(Z∗)〉t =− iĤeff(Z∗) |Ψ(Z∗)〉t , (9)

with the effective stochastic Hamiltonian

Ĥeff =ĤS + iL̂Z∗t − i
K∑
k=1

νk b̂
†
k b̂k

− iL̂†
K∑
k=1

√
|dk| b̂k + iL̂

K∑
k=1

dk√
|dk|

b̂†k,

(10)

where creation (b̂†k) and annihilation (b̂k) have been de-
fined by

b̂†k |n〉 =
√
nk + 1 |n + ek〉

b̂k |n〉 =
√
nk |n− ek〉 .

(11)
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Now the labels {nk} of the hierarchy play the role of
occupation numbers. Thus we refer to the states |n〉 as
pseudo-Fock states. It is worth mentioning that the hi-
erarchy labels {nk} do not appear anymore in Heff and
that the third term in the right hand side looks like a
collection of harmonic oscillators, however with complex
frequencies {νk}.

Before we introduce the MPS representation, let us
mention that for numerical calculations, in particular
for strong system bath coupling, a non-linear, normal-
izable version of Eqs. (7) and (10) is required to achieve
convergence with respect to the number of trajectories
[14]. This non-linear equation is obtained through the
following replacements: L̂† → L̂† − 〈L̂†〉t and Z∗t →
Z∗t +

∫ t
0

ds α∗(t − s)〈L̂†〉s. Expectation values 〈·〉t are
calculated using the normalized state.

HOPS in MPS/MPO representation (HOMPS): The
sum-of-products form of Eq. (10) is convenient for an
implementation in terms of MPSs and MPOs. We repre-
sent the wavefunction in Eq. (8) as an MPS by expanding
|Ψ〉t on a product of system states (|`〉) and pseudo-Fock
states, that is |`〉 ⊗ |n〉,

|Ψ〉t =
∑
`,n

ψ`,nt |`, n1, · · · , nK〉

=
∑
`,n,a

A`1,a0A
n1
a0a1 · · ·A

nK
aK−1,1

|`, n1, · · · , nK〉 .
(12)

Each Aniai−1ai is a rank-3 tensor with ’physical index’ ni
and ’virtual indices’ ai−1 and ai. The ranges of the vir-
tual indices are denoted as bond dimensions Mi. In-
creasing the bond dimensions can systematically improve
the accuracy of an MPS. For fixed bond dimensions, the
computational cost to evolve Eq. (9) is polynomial rather
than exponential with the number of effective modes K.
The bond dimensions can also be optimized adaptively in
each time-step during propagation. We present calcula-
tions using both methods in this Letter and the Supple-
mental Material [48]. Note, that the physical dimensions
nk stem from the original indexing of the HOPS. As long
as the bond-dimensions are not too large, one can go to
large Nmax without a drastic increase of the MPS rep-
resentation. One can even set the same maximal value
nmax for all modes. For the case of Eq. (2) this would
correspond to nJKmax coupled equations in HOPS. In con-
junction with the MPS, Eq. (10) is written as a MPO,

Ĥeff =
∑

`,`′,n,n′,w

W `,`′

1,w0
W

n1,n
′
1

w0w1 · · ·W
nK ,n

′
K

wK−1,1

|`, n1, · · · , nK〉 〈n′K , · · · , n′1, `′| ,
(13)

in which W
ni,n

′
i

wi−1wi is a matrix of local operators acting
only on the ith effective mode. This factorization is
not unique. We adopt the bipartite graph based algo-
rithm [50] to construct the most compact MPO with the
smallest size of virtual indices wi, in order to reduce the

FIG. 2. Population dynamics of the spin-boson model with
ε = 1.0, ∆ = 1.0, η = 0.5 by averaging over 102 (yellow), 103

(orange) and 104 (red) trajectories. (a) High temperature β =
0.5 and small γ = 0.25. HOMPS results are obtained using
K = 1 and nmax = 39. As inset the MPS/MPO arrangement
is shown, which is used for all SBM calculations. (b) Low
temperature, large damping case, with γ = 5.0, and β = 50.0.
HOMPS results with K = 13, and nmax = 9 for each mode.
Inset : Evolution of maximum bond dimension averaged over
103 trajectories. The HEOM results (black, dashed) are taken
from Ref. [51].

computational cost of tensor contractions. Introducting
MPOs allows one to calculate Ĥeff |Ψ〉t using contractions
of local matrices, which is then of polynomial complex-
ity. We stress that all tensors A and W depend on the
stochastic processes.

The generalization to more than one environment as
given in Eq. (2) is straight forward (see the section SIII
of the Supplemental Material [48]). We would like to
emphasize that ordering (and to some extend also the
number) of the tensors in MPS can be chosen according
to the specific form of the system Hamiltonian HS and
the coupling operators HSB,j , as we will examplify below.

Numerical example 1: the Spin-Boson model (SBM).
The SBM is often used to test the applicability of a new
method. Here ĤS = εσz + ∆σx and L̂ = σz, where
σx = |1〉 〈2|+|2〉 〈1| and σz = |1〉 〈1|−|2〉 〈2|. We consider
a Debye spectral density S(ω) = η ωγ

ω2+γ2 . In Ref. [51] cal-
culations using the density matrix based HEOM method
have been presented for ε = 1.0, ∆ = 1.0 and η = 0.5 and
(a) a ‘high temperature low damping’ case with γ = 0.25
and β = 0.5; (b) a ‘low temperature large damping’ case
with β = 50 and γ = 5.0. In Fig. 2 we show that HOMPS
quickly converges to these reference calculations. For the
high temperature case, panel (a), 1000 trajectories give
very good agreement, for the low temperature case, panel
(b), where fluctuations of the noise are smaller, only 100
trajectories are needed. This demonstrates the validity
of our procedure. Let us now consider in more detail
the complexity of the equations to solve. In each case
we have chosen the number of modes K large enough to
guarantee convergence of the bath-correlation function.
For the high temperature case only one mode is neces-
sary (K = 1), while for the low temperature case we
used K = 13. For simplicity, we use for each mode k the
same truncation condition nk ≤ nmax. Although for the
high temperature case we need nmax ≈ 40 (see section
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SVI of the Supplemental Material [48]), the problem is
still small, because of K = 1. The low temperature case
with K = 13 is more challenging. While for HOPS this
would results in 913 equations and one would have to use
adequate truncation procedures [49], for HOMPS it only
means a small increase computational effort. Relevant
for HOMPS is the size of the tensors in Eq. (12), which
is given by the product of nmax and the two bond dimen-
sions. Remarkably, as shown in the inset of Fig 2(b), the
actual maximum bond dimension Mmax is almost always
smaller than 3. This means that the largest tensor has a
dimension around 3 ·3 ·nmax = 81, for the used nmax = 9.

Numerical example 2: Exciton transport in a linear
chain. As a second example we consider the motion of
(electronic) excitations under the influence of damped
vibrational modes. Such a model describes e.g. molecu-
lar aggregates or biological light harvesting systems with
coupling to vibrations of the molecules [52, 53]. Treating
each molecule as an electronic two-level system, the total
Hamiltonian can be written as Ĥ =

∑
j=1 Ĥj+

∑
jj′ V̂jj′ ,

where the Hamiltonian Ĥj of the jth site is character-

ized by a system part ĤS,j = εja
†
jaj , system-bath cou-

pling operators L̂j = a†jaj and a corresponding spectral
density Sj(ω), which contains molecular vibrations and
the coupling to the local surroundings. The coupling
between sites is typically the long-range dipole-dipole in-
teraction and assumed not to couple directly to the en-
vironment. Further details are given in the section SIV
of the Supplemental Material [48]. For this problem we
use a MPO/MPS as shown in Fig. 3b, where each lo-
cal system Hamiltonian HS,j is followed by its modes
from the decomposition of the respective bath-correlation
function. This allows us to also conveniently treat the
case of several electronic excitations, needed for exam-
ple to describe exciton-exciton annihilation experiments
[54]. In Fig. 3 we show electronic excitation transport
along an one-dimensional chain with nearest neighbor
interaction Vjj′ = V δjj′ . A case of long-range dipole-
dipole interaction with Vjj′ = 1/|j − j′|3 is presented in
the Supplemental Material [48]. In Fig. 3 we present re-
sults for two different spectral densities and temperature
regimes. In panel (c) we use a Debye spectral density
with the same parameters as for the high temperature
case of the SBM (cf. Fig. 2a). In panel (d) the spec-
tral density consists of two broadened peaks; a spectral
density typical for weakly damped vibrational modes of
polyatomic molecules. Here we consider zero temper-
ature. These spectral densities and the corresponding
bath-correlation functions are shown in the upper row for
both cases. Below, we show the time dependent popula-
tions, for the converged results and for single trajectories
and on the bottom the time dependence of the bond di-
mensions. Additional examples of single trajectories can
be found in the Supplemental Material [48]. We see that
in both cases the bond dimensions remain small and rel-

FIG. 3. Application of HOMPS to a linear chain. (a)
one dimensional chain with intermolecular coupling strength
Vjj′ = 1

|j−j′|3 . (b) The used MPS/MPO structure. (c), (d):

Evolution of population and bond dimension for both average
and single trajectories. The corresponding spectral densities
and bath-correlation functions are shown in the upper row
of each panel. Parameters of HOMPS are (c) K = 1 and
nmax = 40. (d) K = 2, nmax = 20.

atively well localized. This is an additional benefit for
handling such large systems.

Conclusions: The numerical results demonstrate that
HOMPS works well in simulating quantum dissipative
dynamics for large systems in highly non-Markovian
regimes. This is achieved by a MPS/MPO representa-
tion of HOPS. Compared to Ref. [55], which parallels
our work, our focus has been the treatment of several
modes per site, which is important, e.g., when treating
temperature or vibrational modes of molecules.

We have used here a representation of HOPS where
the hierarchy is constructed from an decomposition of
a bath-correlation function that contains the tempera-
ture. Recently Hartmann and Strunz have derived a
version of HOPS where the temperature enters simply
as a classical stochastic process, and the hierarchy is
constructed from the zero-temperature bath-correlation
function [56]. This approach can also be readily used
within the MPS/MPO of the present work.

An appealing feature of the present HOMPS is that the
reduction in size can be done by automatically adapting
the bond-dimensions in each time step. In that sense
HOMPS shares similarities to other adaptive schemes
for Markovian and non-Markovian quantum state diffu-
sion [57, 58]. A promising future direction is to meld
HOMPS with such schemes. We believe that HOMPS is
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a fruitful approach to explore the dissipative dynamics in
open quantum systems.
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[26] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[27] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[28] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Ver-
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