
ar
X

iv
:1

50
5.

05
74

8v
1 

 [
qu

an
t-

ph
] 

 2
1 

M
ay

 2
01

5

The short-time and long-time behaviors of non-Markovianity measure using two-time

correlation functions in open quantum systems
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We investigate non-Markovianity measure using two-time correlation functions for open quantum
systems. We define non-Markovianity measure as the difference between the exact two-time correla-
tion function and the one obtained in the Markov limit. Such non-Markovianity measure can easily
be measured in experiments. We found that the non-Markovianity dynamics in different time scale
crucially depends on the system-environment coupling strength and other physical parameters such
as the initial temperature of the environment and the initial state of the system. In particular, we
obtain the short-time and long-time behaviors of non-Markovianity for different spectral densities.
We also find that the thermal fluctuation always reduce the non-Markovian memory effect. Also,
the non-Markovianity measure shows non-trivial initial state dependence in different time scales.

PACS numbers: 03.65.Yz, 03.67.Pp, 42.50.Lc, 03.67.-a

I. INTRODUCTION

Markov approximation [1–4] which completely ignores
the memory effects between the system and its envi-
ronments is widely used in the study of open quantum
systems. However, in quantum information processing,
many quantum devices exhibit non-Markovian (memory)
behaviors which prohibits the use of Markov approxima-
tion. In particular, non-Markovian memory effects are
typically significant for structured environments at low
temperature in the strong system-environment coupling
regime. Various concepts of non-Markovianity were in-
troduced recently to define the border between Marko-
vian and non-Markovian quantum evolution, although
the very definition of non-Markovianity is still a debated
issue. Many different measures of non-Markovianity have
been proposed in the literature to quantify memory ef-
fects in open systems, based on, for examples, the divis-
ibility of dynamical map [5–8], the distinguishability of
states [9–12], quantum entanglement [13–17], quantum
Fisher information [18–21], mutual information [22–25],
geometrical characterization [8, 26] and the decay rate
of the master equation itself [27, 28]. Predominately,
almost all these measures of non-Markovianity are in-
troduced in terms of mathematical quantities. Most of
them do not directly related to physically measurable
observables, although some of them are experimentally
measured through reconstruction of the output state in
terms of density matrix, using quantum state tomogra-
phy [11, 29]. Also, some of these measures even quanti-
tatively diverge from each other [25, 30, 31].
Recently, a general theory of non-Markovian dynam-

ics is developed for open quantum systems of bosons
(fermions) interacting with a general bosonic (fermionic)
environments through particle-tunneling processes [32],
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where exact dynamics of open quantum systems is ex-
plored through the nonequilibrium Green’s functions
which account all the information of non-Markovian
back-action memory effects. The relation between the
exact master equation and the nonequilibrium Green’s
functions manifests the fundamental importance of cor-
relation functions in the description of the non-Markov
dynamics for open systems. Therefore, non-Markovianity
measure extracted from correlation functions in time-
domain has a special significance. In particular, two-time
correlation functions are experimentally measurable. For
examples, the two-time correlation functions of the elec-
tromagnetic field emitted by an atom can be measured
through fluorescence spectrum [1–4]; the two-time corre-
lation functions of the number of emitted photons give
the information about the photon statistics and describe
the behavior of photon bunching and antibunching [1–
4]; two-time correlation functions have also been mea-
sured in optical measurements and light-harvesting pho-
tosynthesis for testing the non-Markovian memory effects
[33, 34]; the two-time correlation functions of the elec-
tric current through nanostructure devices are used in
quantum transport to study the current fluctuations and
noise spectrum [35–37]. Intuitively, two-time correlation
functions correlating a past event with its future provide
useful information about the system-environment back-
action processes revealing the non-Markovian memory ef-
fects.
In this paper, we introduce a non-Markovianity mea-

sure using two-time correlation functions. In open quan-
tum systems, when the Markov approximation [1–4] is
valid, two-time correlation functions are usually calcu-
lated using quantum regression theorem where the reser-
voirs are assumed to be always in an equilibrium state.
Our non-Markovianity measure in terms of two-time cor-
relation functions is defined as the departure of the ex-
act dynamics of the two-time correlation function from
the one obtained through quantum regression theorem
in the Markov limit. Our definition of non-Markovianity
measure is valid for arbitrary finite temperature of the
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environment. We also show that the non-Markovianity
defined in this way is a function of time and therefore
the non-Markovianity measure is a dynamical quantity,
which is physically expected. The non-Markovianity de-
fined in this method also depends crucially on various
system and environment parameters and on the nature
of system-environment coupling. As a specific example,
we take an open system with one dynamical degree of
freedom coupled to a general non-Markovian environ-
ment containing infinite degrees of freedom described by
the famous Fano-Anderson model [38, 39]. Then the
two-time correlation function we used to define the non-
Markovianity measure is just the first-order coherence
function in quantum optics, which can be easily mea-
sured in experiments [1–4, 35–37].
The rest of the paper is organized as follows. In

Sec. II A, we consider our open system described by the
Fano-Anderson model, where we show that the exact two-
time correlation functions of system operators can be ob-
tained through exact master equation associated with the
nonequilibrium Green’s functions. In Sec. II B, we calcu-
late the two-time correlation function in Markov limit
using the quantum regression theorem. We define our
non-Markovianity measure in Sec. II C using two-time
correlation functions, where we also include a compara-
tive discussion of our definition with other relevant non-
Markovianity measure. In Sec. III, we present our nu-
merical results and discussions, the dynamics of our non-
Markovianity measure for different system-environment
coupling, different initial temperature of the environ-
ment, and different initial states of the system. Our re-
sults also show non-trivial interesting non-Markovian fea-
tures on the dependence of the system and environmental
parameters, in particular, the existence of both the short-
time and long-time behavior of the non-Markovianity. Fi-
nally, a conclusion is given in Sec. IV.

II. THE NON-MARKOVIANITY MEASURE

BASED ON TWO-TIME CORRELATION

FUNCTION

A. Two-time correlation function obtained from

the exact master equation

We consider an open system described by the famous
Fano-Anderson Hamiltonian [38, 39]

H = ~ω0a
†a+

∑

k

~ωkb
†
kbk +

∑

k

~Vk

(
a†bk + ab†k

)
, (1)

where a† and a are the creation and annihilation op-
erators of a single frequency mode. A general non-
Markovian environment is modeled as a collection of in-
finite modes, and b†k and bk are the corresponding cre-
ation and annihilation operators of the k-th mode with
frequency ωk. The parameter Vk is the tunneling am-
plitude between the system and its environment. The

model Hamiltonian (1) has wide applications in atomic
physics and condensed matter physics [40, 41].
We consider initially the environment be at thermal

equilibrium. Tracing over all the environmental degrees
of freedom using the influence functional approach [42,
43] in the coherent state representation [44], the exact
master equation of such open systems has been derived
[45–47]:

d

dt
ρ(t) =− iω′

0(t)
[
a†a, ρ(t)

]

+ γ(t)
[
2aρ(t)a† − a†aρ(t)− ρ(t)a†a

]

+ γ̃(t)
[
aρ(t)a† + a†ρ(t)a− a†aρ(t)− ρ(t)aa†

]
,

(2)

The time-dependent coefficients in the master equation
are fully determined by the nonequilibrium Green’s func-
tions u(t, t0) and v(t, t), which satisfy the following Dyson
equation of motion and the non-equilibrium fluctuation-
dissipation theorem [32], respectively,

u̇(t, t0) + iω0u(t, t0) +

∫ t

t0

dτg(t, τ)u(τ, t0) = 0, (3)

v(t, t+ τ)=

∫ t

t0

dτ1

∫ t+τ

0

dτ2u(t, τ1)g̃(τ1, τ2)u
∗(t+ τ, τ2). (4)

The integral kernels in Eqs. (3) and (4) characterize
all the non-Markovian back-action between the system
and the reservoir, and can be determined by the spec-
tral density J(ω) of the reservoir through the rela-
tions: g(t, τ) =

∫∞

0
dω
2π J(ω)e

−iω(t−τ), and g̃(τ1, τ2) =∫∞

0
dω
2π J(ω)n̄(ω, T )e

−iω(τ1−τ2), where the spectral den-

sity is defined by J(ω) = 2π
∑

k |Vk|2δ(ω − ωk) and
n̄(ω, T ) = 1

e~ω/kBT−1
is the particle number distribution

of the bosonic reservoir.
The functions u(t, t0) and v(t, t + τ) are indeed re-

lated to the two-time correlation functions 〈[a(t), a†(t0)]〉
and 〈a†(t + τ)a(t)〉 respectively, which are the two ba-
sic nonequilibrium Green’s functions in the Schwinger-
Keldysh theory [32]. These two-time correlation func-
tions can also be calculated directly from equation of
motion approach [48, 49]. In fact, all two-time correla-
tion functions of system operators can be constructed in
terms of the above nonequilibrium Green’s functions. For
example, as we have shown in our previous works [46, 50],
the exact two-time correlation function 〈a†(t)a(t+τ)〉 can
be expressed in terms of u(t, t0) and v(t, t+ τ) as follows,

〈a†(t)a(t + τ)〉E =u∗(t, t0)n(t0)u(t+ τ, t0)+v∗(t, t+ τ).

(5)

The exact analytic solution of the integro-differential
equation (3) is recently given in [32],

u(t, t0) = Ze−iωb(t−t0)+

∫ ∞

0

J(ω)e−iω(t−t0)

[ω − ω0 −∆(ω)]
2
+ γ2(ω)

dω

2π
,

(6)
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where ∆(ω) = P
∫∞

0
J(ω′)
ω−ω′

dω′

2π is a principal-value integral

and γ(ω) = J(ω)/2, which are the real and imaginary
parts of the self-energy correction to the system induced
by the system-environment coupling,

Σ(ω ± i0+) =

∫ ∞

0

dω′

2π

J(ω′)

ω − ω′ ± i0+
= ∆(ω)∓ iγ(ω). (7)

The first term in Eq. (6) is the contribution of the
dissipationless localized mode, which exists only when
the environment has band-gap structures. The localized
mode frequency ωb is determined by the pole condition

ωb−ω0−∆(ωb) = 0, and Z = [1− Σ′(ωb)]
−1

corresponds
to the residue at the pole, which gives the amplitude of
the localized mode. Thus, the two-time correlation func-
tions can be exactly calculated from the exact solution
of Eq. (6) through Eq. (4).

B. Two-time correlation functions in Markov limit

using quantum regression theorem

Two-time correlation functions can easily be obtained
through the quantum regression theorem defined in the
Markov limit [51] when the back-action or memory effect
is totally negligible. Quantum regression theorem states
that in the Markov limit, evolution equations of the two-
time correlation functions of system observables is the
same as the evolution equation for single-time expecta-
tion values of the observables [2, 51]. The single time
expectation values of a complete set of system operators
Ôi, can be calculated using the master equation (2)

∂

∂t
〈Ôi(t)〉 = TrS

[
Ôi(0)

∂

∂t
ρ(t)

]
=

∑

j

Mij〈Ôj(t)〉, (8)

where the evolution matrix elements Mij are determined
from the master equation (see Appendix-A).
According to quantum regression theorem, the evolu-

tion equation (8) for single-time expectation values is also
valid for the two-time correlation functions in the Markov
limit:

∂

∂τ
〈Ô1(t)Ôi(t+ τ)〉 =

∑

j

Mij〈Ô1(t)Ôj(t+ τ)〉. (9)

The operator Ô1 can be any system operator, not neces-
sarily one of the {Ôi}, and Mij is the same matrix given
in Eq. (8).
The Markov master equation for the open system of

Eq. (1) is well known in the literature [2] and it has the
same form as the exact master equation (2). However,
the coefficients in the Markov master equation become
time-independent, and can be derived from the exact
master equation (2) using a perturbation expansion up
to the second order and then taking the Markov limit
[45]. The result is,

γ(t) → γ = J(ω0)/2, (10)

γ̃(t) → γ̃ = J(ω0)n̄(ω0, T ), (11)

ω′
0(t) → ω0 + δω0, (12)

with δω0 = P
∫∞

0
dω
2π

J(ω)
(ω−ω0)

. Using this Markov master

equation, one can obtain the evolution matrix Mij in the
complete set of system operators (a, a†, a†a, 1):

M =




β 0 0 0
0 β∗ 0 0
0 0 −2γ γ̃
0 0 0 0


 , (13)

where β = − (γ + iω′
0). By choosing the operator Ô1 =

a†, the evolution equation for the two-time correlation
function 〈a†(t)a(t+τ)〉 based on quantum regression the-
orem is given by

∂

∂τ
〈a†(t)a(t+ τ)〉M

= − (γ + iω′
0) 〈a

†(t)a(t+ τ)〉M, (14)

which can be solved explicitly with the solution

〈a†(t)a(t+ τ)〉M

=
[
n(t0)e

−2γt + n̄(ω0, T )
(
1− e−2γt

)]
e−(γ+iω′

0
)τ.(15)

Here “M” means that the correlation function is calcu-
lated in the Markov limit through the quantum regression
theorem. In the next subsection, we will use the exact
two-time correlation functions and the one in the Markov
limit to define the non-Markovianity measure.

C. Definition of non-Markovianity and its measure

Our definition of the non-Markovianity measure quan-
tifies the departure of the exact dynamics of two-time
correlation function from the one obtained in the Markov
limit. Thus, non-Markovianity measure in terms of two-
time correlation functions is defined by

N (t, τ) = |gE(t, τ) − gM(t, τ)| , (16)

where gE(t, τ) and gM(t, τ) are the first order coherence
functions in terms of two-time correlation functions for
the exact and Markov dynamics, respectively,

gE(t, τ) =
〈a†(t)a(t+ τ)〉E√

〈a†(t)a(t)〉E 〈a†(t+ τ)a(t + τ)〉E
, (17)

and

gM(t, τ) =
〈a†(t)a(t+ τ)〉M√

〈a†(t)a(t)〉M 〈a†(t+ τ)a(t+ τ)〉M
,(18)

Here 〈a†(t)a(t)〉E and 〈a†(t)a(t)〉M can be calculated
simply from Eqs. (5) and (15) by setting τ = 0. In
other words, we take gM(t, τ), which is obtained in the
Markov limit, as a reference point to account the non-
Markovianity of the open system dynamics.
Based on this definition (16), it is clear that such a

non-Markovianity measure can be directly measured in



4

experiments through the measurement of the exact two-
time correlation function or more precisely the first or-
der coherence function gE(t, τ). The two-time correlation
functions are defined for arbitrary finite temperature of
the environment. Hence the non-Markovianity measure
defined in Eq. (16) take into account the proper temper-
ature dependence, which will be explicitly described in
Sec. III. Our non-Markovianitymeasure is also an explicit
function of time. Physically, this must be the case be-
cause non-Markovianity characterizes the memory effect
which must be time-dependent in general. It is also clear
from the analytical expression (16) through Eq. (5) that
this non-Markovianity measure N (t, τ) depends on the
initial state of the system. This initial state dependence
is indeed expected as a typical non-Markovian memory
effect.
Here, we should point out that a similar definition of

non-Markovianity measure has been recently proposed
by Guarnieri et al. for a pure dephasing spin-boson
model at zero temperature [31]. In their work, the non-
Markovianity was defined as

N ′ = 1−
〈A(t2)B(t1)〉qrt
〈A(t2)B(t1)〉exc

, (19)

where 〈A(t2)B(t1)〉qrt is the two-time correlation
function obtained from quantum regression theorem
by naively using the exact master equation, and
〈A(t2)B(t1)〉exc is the exact two-time correlation func-
tion. We find that this definition cannot account all the
non-Markovianity. This is because quantum regression
theorem is based on a crucial assumption that the total
density operator of the system plus environment must
be approximately factorized and the environment must
always remain in the initial state at an arbitrary time,
namely

ρtot(t) = ρ(t)⊗ ρE(t0). (20)

The detail derivation of this condition is given in
Appendix-A). For non-Markov evolution based on the
exact master equation, the condition of Eq. (20) can-
not be satisfied in general and therefore the two-time
correlation functions calculated from such a naive quan-
tum regression theorem is inadequate. Thus, non-
Markovianity defined in Ref. [31] cannot account the true
non-Markovianity degree due to the improper use of the
quantum regression theorem.
To show this inadequacy explicitly, let us apply this

naive quantum regression theorem defined in Ref. [31]
to our exact master equation (2). It is straightforward
to show (see Appendix-B) that the two-time correlation
function based on such a quantum regression theorem is
given by

〈a†(t)a(t+ τ)〉qrt = u∗(t, t0)n(t0)u(t, t0)u(τ, t0)

+ v(t, t)u(τ, t0). (21)

This result is different from Eq. (5) which is exact, it is
also different from Eq. (15) which is the two-time cor-
relation function in the Markov limit. Thus, the two-
time correlation function of Eq. (21), if it is applicable,

contain partial non-Markovianity. As a result, the non-
Markovianity measure given in Ref. [31] cannot account
all the non-Markovianity degree.
On the other hand, in the literature, there are some

works [52–54] that attempted to generalize quantum re-
gression theorem to non-Markovian regime where the sys-
tem and the reservoirs are only weakly coupled to each
other so that the master equation can be obtained per-
turbatively under the condition of Eq. (20). In this case
Eq. (20) is actually the well-known Born-approximation.
Thus, under this condition, quantum regression theorem
is valid so that one can calculate two-time correlation
functions from the Born-approximated master equation.
But, the result obtained from such a quantum regres-
sion theorem cannot be used as a reference point to de-
fine non-Markovianity measure, because such a quantum
regression theorem-based two-time correlation functions
may contain partial non-Markovianity. In conclusion, our
definition of non-Markovianity properly accounts all the
non-Markovianity degree in terms of a physically mea-
surable quantity.

III. RESULTS AND DISCUSSION

In order to evaluate explicitly the two-time correlation
functions and the non-Markovianity measure N (t, τ), we
need to specify the spectral density J(ω) of the environ-
ment. In the following, we consider the Ohmic-type spec-
tral density which can simulate a large class of thermal
bath [55]

J(ω) = 2πη ω

(
ω

ωc

)s−1

e−ω/ωc , (22)

where η is the coupling strength between the system and
the environment, and ωc is the frequency cutoff of the
environmental spectra. When s = 1, < 1, and > 1, the
corresponding environments are called as Ohmic, sub-
Ohmic, and super-Ohmic in the literature, respectively.
With the spectral density specified, the Green’s function
u(t, t0) and v(t, t+τ) are determined by Eqs. (3) and (4).
The non-Markovianity measure can then be calculated
from Eq. (16) through the two-time correlation functions
of Eqs. (5) and (15).
In Fig. 1, we plot the non-Markovianity measure

N (t, τ) as a function of time τ for different system-
environment coupling strengths η at a fixed initial tem-
perature T = 0.5K. For simplicity, we also set t = 0. The
non-Markovianity measure is examined for different spec-
tral densities with s = 1/2 (Fig. 1a for sub-Ohmic), s = 1
(Fig. 1b for Ohmic), s = 2 (Fig. 1c for super-Ohmic), and
s = 3 (Fig. 1d for super-Ohmic). Different curves repre-
sent different coupling strengths, namely η = 0.1ηc (black
dotted), η = 0.5ηc (blue dashed), η = 1.0ηc (dashed
double dotted red), η = 1.2ηc (dashed dotted violet),
and η = 1.5ηc (solid green), where ηc = ω0/ωcΓ(s) is
the critical coupling strength [32] for the occurrence of
the localized mode given in Eq. (6). We observed that
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for spectral densities with s ≤ 2 and when the coupling
strength is below the critical value (see black-dotted and
blue-dashed curves in Figs. 1a-c for η < ηc), the non-
Markovianity measure increases very fast and approaches
a maximum value in a very short time scale, and then
decays asymptotically to zero. This indicate that when
the system-environment coupling is weak (η < ηc), the
non-Markovianity dynamics only shows a short-time be-
havior, as was pointed first by Caldeira and Leggett
in quantum Brownian motion [43]. For stronger cou-
pling strengths (η > ηc), the non-Markovianity dynam-
ics is significantly different, and we find that the non-
Markovianity measure tends to approach a saturated
value in the long time limit after few slow oscillations (see
dashed-dotted-violet, and solid-green lines in Figs. 1a-
c). This behavior of non-Markovianity dynamics is con-
tributed from the localized mode given by the first term
in Eq. (6). This corresponds to the localized-mode-
induced dissipationless dynamics discovered recently in
[32], as a long-time non-Markovian behavior.

For super-Ohmic case with s > 2, the above short-time
and long-time behavior of non-Markovianity dynamics is
slightly changed. In this case, for weak coupling η < ηc,
the decay rate of the non-Markovianity measure becomes
very slow (see Fig. 1d) where the non-Markovianity mea-
sure is calculated up to ω0τ ∼ a few thousands. This
result is quite different from the case of s < 2 where
the non-Markovianity measure already decays to zero at
ω0τ ∼ few hundreds or less. This slow decay for s > 2 was
discussed long time ago in Ref. [56], but in that work [56],
such a delayed damping was interpreted as an undamped
process and they claimed that the system would never go
to its equilibrium for s > 2. This interpretation is not
fully correct. As we can see from the black-dotted curve
and the blue-dashed curve in Fig. 1d, it shows that the
non-Markovianity measure damps very very slowly but
will eventually decays to zero, so that the system will
approach to equilibrium after a very long time. How-
ever, the system will not approach to equilibrium only
in the strong-coupling regime (η > ηc) when the local-
ized mode has significant contribution [32, 57–59]. In
this case, the non-Markovianity dynamics will show the
true long-time behavior, namely the memory effect will
be kept forever. This is given by the dashed-dotted-violet
curve (η = 1.2 ηc) and solid-green curve (η = 1.5 ηc) of
Fig. 1d, where the non-Markovianity measure reaches a
finite value in the long-time limit. To sum up, in Fig. 1,
we show for the first time the existence of both the short
time and long time features of non-Markovianity dynam-
ics for different system-environment coupling strength.

In Fig. 2, we discuss the temperature dependence of
the non-Markovianity dynamics using two different type
of coupling strengths: a weak coupling η = 0.5ηc (see
Figs. 2 a, c, e, and g) and a strong coupling η = 1.5ηc (see
Figs. 2 b, d, f, and h). The temperature dependence of
the non-Markovianity originates from the particle num-
ber distribution n̄(ω, T ) and non-equilibrium thermal
fluctuation v(t, t+τ) involved in the two-time correlation

functions of Eq. (5). We plot again the non-Markovianity
measure for different spectral densities with s = 1/2
(Figs. 2 a,b for sub-Ohmic), s = 1 (Figs. 2 c,d for Ohmic),
s = 2 (Figs. 2 e,f for super-Ohmic), and s = 3 (Figs. 2 g,h
for super-Ohmic), where the temperature dependence of
non-Markovianity is given for T = 0.05K (solid blue),
T = 0.5K (red dashed), and T = 5K (green dotted). For
spectral densities with s ≤ 2 and the coupling strength is
weak (η < ηc), non-Markovianity dynamics still shows a
short-time behavior as expected but it takes longer time
to decay to zero at low temperature (see solid-blue curves
in Figs. 2 a, c, and e for T = 0.05K). For a higher tem-
perature, the non-Markovianity decays much faster (see
green-dotted curves in Figs. 2 a, c, and e for T = 5K).
This indicates that the non-Markovian memory effect is
lost faster when temperature is higher. In stronger cou-
pling regime (η > ηc), non-Markovianity measure also
tends to approach a steady value in the long time limit
due to the localized mode contribution but the magni-
tude of this stationary values of non-Markovianity be-
come higher for lower temperature of the environment
(see Figs. 2 b,d). This shows that in both the weak and
strong coupling regimes, thermal fluctuation always re-
duce the non-Markovian degree for s < 2.
For super-Ohmic spectral densities with s > 2, the sit-

uation is quite different. For weak coupling η < ηc and
low temperature, the non-Markovianity shows a large os-
cillation and then decay extremely slow (see Fig. 2g for
T = 0.05K). The damping becomes faster with a higher
temperature of the environment (see the red-dashed and
green-dotted curves of Fig. 2g for T = 0.5K and T = 5K).
In the strong coupling regime, the non-Markovianity
takes much longer time to reach a steady value which
is significantly different from the case for s < 2. In this
case, strong oscillations of non-Markovianity is found at
low temperature (solid-blue curve of Fig. 2h) before ap-
proaching its long-time steady value. The large oscilla-
tions persists in the beginning even at higher tempera-
tures (red-dashed and green-dotted lines of Fig. 2h). We
also notice that the long time stationary values of the
non-Markovianity become less and less sensitive to the
temperature, contrary to the case for s < 2. To explic-
itly see this steady state behavior (see Fig. 2h), we check
the analytic expression of the non-Markovianity measure,
which is greatly simplified for t = 0 and τ → ∞ as

N (0, τ → ∞)=

∣∣∣∣∣
u(τ → ∞, 0)

√
n(t0)√

n(t0) |u(τ → ∞, 0)|2 + v(τ, τ → ∞)

∣∣∣∣∣.

(23)

This asymptotic solution shows that the steady value of
the non-Markovianity is determined through a compe-
tition between the temperature-dependent thermal fluc-
tuation v(τ, τ → ∞) and the temperature-independent
localized mode contribution n(t0)|u(τ → ∞, 0)|2. We
find that the steady value u(τ → ∞, 0) increases as we
increase the value of s due to an enhanced contribution
of the localized mode amplitude, while the steady value
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of thermal fluctuation v(τ, τ → ∞) decreases with the
increase of s. This is why the influence of thermal fluc-
tuation in the steady value of non-Markovianity is less
significant for s > 2 since the localized mode contribu-
tion dominate over the thermal fluctuation v(τ, τ → ∞)
under this situation.
In Fig. 3, we show the initial state dependence of

non-Markovianity measure. Here the different initial
state is characterized by different initial particle num-
ber n(t0). We take n(t0) = 1 (solid blue), n(t0) = 10
(red dashed) and n(t0) = 50 (green dotted) in Fig. 3,
with a fixed temperature (T = 0.5K) of the environment
for weak coupling η = 0.5ηc (see Figs. 3 a, c, e, and
g) and strong coupling η = 1.5ηc (see Figs. 3 b, d, f,
and h). The non-Markovianity dynamics shows an ex-
plicit n(t0)-dependence. We find that the magnitude of
non-Markovianity is hiked as the initial particle number
n(t0) is increased in the weak coupling regime (η < ηc),
although the decay time scale of the non-Markovianity
looks similar for different n(t0) (see Figs. 3a, c, and
e for spectral densities with s ≤ 2). But this initial
state dependence is only a short-time behavior in the
weak system-environment coupling regime. However, for
strong coupling (η > ηc) with s < 2, we find that the non-
Markovianity shows an explicit long-time dependence of
the initial state, due to the existence of the localized
modes in the strong coupling regime (see Figs. 3b,d for
η = 1.5ηc). Thus, the magnitude of non-Markovianity
measure increases in general, as the initial particle num-
ber n(t0) increases.
On the other hand, for super-Ohmic case with s > 2

in the weak coupling regime η < ηc, a very slow de-
cay of the n(t0)-dependent non-Markovianity degree is
observed (see Fig. 3g). In strong coupling regime, short-
time dynamics of non-Markovianity shows strong oscil-
lations which is n(t0)-dependent (see Fig. 3h). Whereas
the long-time steady value of non-Markovianity does not
significantly depend on n(t0). Such a steady state be-
havior (see Fig. 3h) is a consequence of the fact that
the localized mode contribution dominate over the ther-
mal fluctuation for s > 2, and the non-Markovianity ap-
proaches to unity according to Eq. (23). Physically, the
initial state dependence of the non-Markovianity mani-
fests different non-Markovian memory effects in different
time scales. Such non-trivial non-Markovian behaviors
are worthwhile for further experimental tests.

IV. CONCLUSION

To summarize, we have introduced a new definition
of non-Markovianity measure using two-time correlation
functions which play a fundamental role in the exact non-
Markovian dynamics of open quantum systems. Our non-
Markovianity measure quantifies the difference between
the exact two-time correlation function and the one ob-
tained in the Markov limit, namely we take Markov dy-
namics of two-time correlation function as a reference

FIG. 1. (Color online) The non-Markovianity measure N (t, τ )
is plotted as a function of τ with t = 0 at a tempera-
ture (T = 0.5K) for different system-environment coupling
strengths: η = 0.1ηc (black dotted), η = 0.5ηc (blue dashed),
η = 1.0ηc (dashed double dotted red), η = 1.2ηc (dashed
dotted violet), and η = 1.5ηc (solid green). Four different
spectral densities are considered (a) sub-Ohmic (s = 1/2) (b)
Ohmic (s = 1) (c) super-Ohmic (s = 2) and (d) super-Ohmic
(s = 3) for the bosonic reservoir. The other parameters are
taken as ω0 = 10 GHz, ωc = 5ω0, and n(t0) = 1.

point for measuring non-Markovianity. Such a definition
of non-Markovianity take into account the proper tem-
perature dependence given naturally in two-time corre-
lation functions, and can be measured directly in experi-
ments. We also find that the degree of non-Markovianity
is reduced in general due to thermal fluctuations for hot-
ter environments. Also, our non-Markovianity measure is
an explicit function of time. We discover that in general
non-Markovianity shows both the short-time and long-
time behavior, which crucially depends on the system-
environment coupling, and thereby the significant con-
tribution of the localized mode induced by the strong
system-environment coupling. The non-Markovianity
measure also depends on the initial state of the open
system in different time scales, as a non-trivial non-
Markovian memory effect. Our approach of quantifying
non-Markovianity is applicable to the more general class
of open quantum systems interacting with a general en-
vironment through particle tunneling processes. Further
experimental investigations are required to explore these
non-trivial dynamics of the non-Markovianity measure
through the measurement of two-time correlation func-
tions.
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Appendix A: Generalized quantum regression

theorem under Born approximation

Here we present a generalized quantum regression the-
orem. The total density operator of the system plus envi-
ronment is governed by the quantum Liouville equation

FIG. 3. (Color online) Initial state dependence of non-
Markovianity measure is shown as a function of τ for three dif-
ferent n(t0): n(t0) = 1 (solid blue), n(t0) = 10 (red dashed),
and n(t0) = 50 (green dotted) with two type of coupling
strengths: (a,c,e,g) weak coupling (η = 0.5ηc) and (b,d,f,h)
strong coupling (η = 1.5ηc). Four different spectral densi-
ties for the bosonic environment is investigated: (a,b) sub-
Ohmic (s = 1/2), (c,d) Ohmic (s = 1), and (e,f) super-Ohmic
(s = 2), and (g,h) super-Ohmic (s = 3). The other parame-
ters are taken as ω0 = 10 GHz, ωc = 5ω0, and T = 0.5K with
a fixed value of t = 0.

in the Schrödinger picture

∂

∂τ
ρtot(τ) =

1

i~
[H, ρtot(τ)] , (A1)

with a formal solution

ρtot(τ) = e−
i
~
Hτρtot(0)e

i
~
Hτ . (A2)

Consider an initial state ρtot(0) of the total system to be
uncorrelated and the reservoir to be in a thermal equi-
librium state, that is,

ρtot(0) = ρ(0)⊗ ρE(0), ρE(0) =
e−βHE

Tr e−βHE
, (A3)
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where HE =
∑

k ~ωkb
†
kbk and β = 1/kBT is the initial

temperature of the reservoir. In this case, if no non-linear
dynamics is involved, tracing over all the environmental
degrees of freedom is easily carried out to obtain a time-
local master equation in terms of the reduced density
operator

∂

∂τ
ρ(τ) = L(τ)ρ(τ), (A4)

where ρ(τ) = TrE [ρtot(τ)]. One can then calculate the

mean values of a complete set of system operators Ôi,
i = 1, 2, ..., using Eq. (A4). The expectation value of an

operator Ôi obey the relation

∂

∂τ
〈Ôi(τ)〉 = 〈Ôi(0)ρ̇(τ)〉 = 〈Ôi(0)L(τ)ρ(τ)〉. (A5)

For each Ôi, one can define

〈Ôi(0)L(τ)ρ(τ)〉 =
∑

j

Mij(τ)〈Ôj(τ)〉, (A6)

Then Eq. (A5) becomes

∂

∂τ
〈Ôi(τ)〉 =

∑

j

Mij(τ)〈Ôj(τ)〉. (A7)

On the other hand, given two system operators Ô1 and
Ô2, their two-time correlation function is defined more
conveniently in the Heisenberg picture,

〈ÔH
1 (t1)Ô

H
2 (t2)〉 = TrS⊕E

[
ρHtotÔ

H
1 (t1)Ô

H
2 (t2)

]
. (A8)

Then going back to the Schrödinger picture through the
transformations

ÔH
1 (t1) = e

iHt1
~ Ô1e

−
iHt1

~ , (A9)

ÔH
2 (t2) = e

iHt2
~ Ô2e

−
iHt2

~ , (A10)

ρHtot = e
iHt
~ ρtot(t)e

− iHt
~ , (A11)

also taking t1 = t and t2 = t + τ , and using the cyclic
property of trace, we obtain

〈ÔH
1 (t)ÔH

2 (t+ τ)〉 = TrS⊕E

[
Ô2 e−

iHτ
~ ρtot(t)Ô1e

iHτ
~

]

= TrS⊕E

[
Ô2 ρtot,Ô1

(t, τ)
]
, (A12)

where we have used the fact that the state of the total
system ρtot(t) in the Schrödinger picture acted by the op-

erator Ô1 becomes a new state denoted by ρtot,Ô1
(t, 0) ≡

ρtot(t)Ô1 such that

ρtot,Ô1
(t, τ) = e−

iHτ
~ ρtot,Ô1

(t, 0)e
iHτ
~ . (A13)

Now, if ρtot(t) is factorized as

ρtot(t) = ρ(t)⊗ ρE(0), (A14)

then

ρtot,Ô1
(t, 0) = ρÔ1

(t, 0)⊗ ρE(0), (A15)

where ρÔ1
(t, 0) ≡ ρ(t)Ô1 is the state of the system acted

by Ô1 at time t. Thus, Eq. (A12) can be reduced to

〈ÔH
1 (t)ÔH

2 (t+ τ)〉 = TrS

[
Ô2 TrE{ρtot,Ô1

(t, τ)}
]

= TrS

[
Ô2 ρÔ1

(t, τ)
]
, (A16)

with ρÔ1
(t, τ) = TrE{ρtot,Ô1

(t, τ)}.

As one can see, Eq. (A15) for ρtot,Ô1
(t, 0) obeys the

same initially factorized condition of Eq. (A3) for ρtot(0),
and the formal solution (A13) for ρtot,Ô1

(t, τ) has the

same form of Eq. (A2) for ρtot(τ). Thus, the master
equation for ρÔ1

(t, τ) with respect to τ must be the same

as that for ρ(τ), namely

∂

∂τ
ρÔ1

(t, τ) = L(τ)ρÔ1
(t, τ). (A17)

This gives

∂

∂τ
〈ÔH

1 (t)ÔH
2 (t+ τ)〉 = 〈Ô2L(τ)ρÔ1

(t, τ)〉. (A18)

For Ô2, we choose a complete set of system operators Ôi

so that for each Ôi

〈Ôi(0)L(τ)ρÔ1
(t, τ)〉 =

∑

j

Mij(τ)〈ÔjρÔ1
(t, τ)〉. (A19)

Thus, we reach

∂

∂τ
〈ÔH

1 (t)ÔH
i (t+ τ)〉 =

∑

j

Mij(τ)〈Ô
H
1 (t)ÔH

j (t+ τ)〉.

(A20)

This is the generalized quantum regression theorem
namely, the form of the evolution equation (A7) for
single-time expectation values is the same as that for
the two-time correlation functions (A20). Notice that
Eq. (A15) is the well-known Born approximation in the
derivation of the perturbative master equation up to the
second order for system-environment coupling. Thus, the
above generalized quantum regression theorem is only
valid under Born approximation.

Appendix B: Calculating 〈a†(t)a(t+ τ )〉qrt

Using the exact master equation (2), one can obtain
the evolution matrix Mij(τ) of Eq. (A7) by calculating
the single-time expectation values of a complete set of
system operators (a, a†, n and 1), where n = 〈a†a〉:

M(τ) =




α(τ) 0 0 0
0 α∗(τ) 0 0
0 0 −2γ(τ) γ̃(τ)
0 0 0 0


 , (B1)
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where α(τ) = − (γ(τ) + iω′
0(τ)). The evolution matrix

elements of M(τ) are now time-dependent, which is dif-
ferent from the Markov evolution where the matrix el-
ements are time-independent, see Eq. (13). The time-
dependent coefficients in the exact master equation (2)
are explicitly given by

ω′
0(τ) = −Im

[
u̇(τ, t0)

u(τ, t0)

]
, (B2)

γ(τ) = −Re

[
u̇(τ, t0)

u(τ, t0)

]
, (B3)

γ̃(τ) = v̇(τ, τ) + 2v(τ, τ)γ(τ). (B4)

Now, naively applying generalized quantum regression
theorem as done in Ref. [31] (this is indeed incorrect
because the exact master equation does not involve the
Born approximation), the evolution equation for the two-

time correlation function 〈a†(t)a(t + τ)〉 is given by

d

dτ
〈a†(t)a(t + τ)〉qrt

= − (γ(τ) + iω′
0(τ)) 〈a

†(t)a(t+ τ)〉qrt

=
u̇(τ, t0)

u(τ, t0)
〈a†(t)a(t+ τ)〉qrt. (B5)

The exact solution of this equation is

〈a†(t)a(t+ τ)〉qrt = n(t)u(τ, t0), (B6)

where n(t) = 〈a†(t)a(t)〉 which is given by [45]

n(t) = v(t, t) + u∗(t, t0)n(t0)u(t, t0). (B7)

Thus, the two-time correlation function naively using the
generalized quantum regression theorem is given by

〈a†(t)a(t+ τ)〉r = u∗(t, t0)n(t0)u(t, t0)u(τ, t0)

+ v(t, t)u(τ, t0). (B8)

This solution is not the exact two-time correlation func-
tion given by Eq. (5) nor the result of two-time correla-
tion function in the Markov limit, i.e. Eq. (15).
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