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Exchange of information between a quantum system and its surrounding environment plays a fundamental

role in the study of the dynamics of open quantum systems. Here we discuss the role of the information exchange

in the non-Markovian behavior of dynamical quantum processes following the decoherence approach, where we

consider a quantum system that is initially correlated with its measurement apparatus, which in turn interacts with

the environment. We introduce a way of looking at the information exchange between the system and environment

using the quantum loss, which is shown to be closely related to the measure of non-Markovianity based on the

quantum mutual information. We also extend the results of Fanchini et al. [Phys. Rev. Lett. 112, 210402

(2014)] in several directions, providing a more detailed investigation of the use of the accessible information

for quantifying the backflow of information from the environment to the system. Moreover, we reveal a clear

conceptual relation between the entanglement- and mutual-information-based measures of non-Markovianity in

terms of the quantum loss and accessible information. We compare different ways of studying the information

flow in two theoretical examples. We also present experimental results on the investigation of the quantum loss

and accessible information for a two-level system undergoing a zero temperature amplitude damping process.

We use an optical approach that allows full access to the state of the environment.

DOI: 10.1103/PhysRevA.90.052118 PACS number(s): 03.65.Yz, 42.50.Lc, 03.65.Ud, 05.30.Rt

I. INTRODUCTION

The investigation of open quantum systems from various

different perspectives has been a subject of intense research

in recent years motivated by fundamental questions, and

also due to their crucial role in the realization of quantum

information protocols in real world situations [1–3]. One

interesting approach to address open quantum systems is

through the information flow among constituents of composite

quantum systems, or in particular, to explore the exchange of

information between the system of interest and its surrounding

environment. From the point of view of memory effects, the

dynamical quantum maps are usually divided into two groups,

namely, Markovian and non-Markovian maps. Memoryless

processes are often recognized as Markovian, where the

information is expected to monotonically flow from the system

to the environment. On the other hand, it is rather natural to

assume that the backflow of information from the environment

to the system is connected to the presence of memory effects,

because in these cases the future states of the system may

depend on its past states as a result of the inverse exchange of

information.

Quantum Markovian maps are traditionally defined as the

ones obtained from the solutions of Lindblad-type master

equations, which can be described by quantum dynamical

semigroups [1]. Thus, manifestation of memory effects in

the form of recoherence and blackflow of information has

been associated with the violation of the semigroup property.
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However, for such memory effects to emerge, failure to satisfy

the semigroup property is not sufficient. The quantum map

should also violate another property called divisibility [4].

Recently, there has been an ever increasing interest in

the non-Markovian nature of quantum processes [5,6] and

quantifying their degree of non-Markovianity using several

distinct criteria [7–11]. Whereas some authors have directly

adopted the property of divisibility as the defining feature of

quantum Markovian processes [7,8], others have employed

different means to identify memory effects [9–11], which are

not exactly equivalent but closely related to the divisibility

approach. In fact, unlike its classical counterpart, there is

no universal definition of non-Markovianity in the quantum

domain, and different measures do not coincide in general. Yet,

it is reasonable to believe that conceptually different measures

capture complementary aspects of the same phenomenon.

One of the most widely studied and significant quantifiers

of the degree of non-Markovianity has been proposed by

Breuer, Laine, and Piilo (BLP) [9]. Rather than defining

non-Markovianity based on the violation of divisibility, the

BLP measure intends to determine the amount of non-

Markovianity of a quantum process by checking the trace

distance between two arbitrary states of the open system

during the dynamics, which in fact quantifies the probability

of successfully distinguishing these two states. Considering

that the ability of distinguishing two objects is in a sense

related to how much information we have about them, it is

claimed that the monotonic reduction of distinguishability can

be directly interpreted as a one-way flow of information from

the system to the environment, which defines a Markovian

quantum process. In contrast, if there is a temporary increase

of trace distance throughout the time evolution of the system,

then the quantum map is said to be non-Markovian due to the

backflow of information from the environment to the system.
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Another popular approach to quantify the degree of non-

Markovianity is based on a well-known property of local

completely positive trace-preserving (CPTP) maps, that is,

on their inability to increase entanglement between a system

and an isolated ancilla [12]. Rivas, Huelga, and Plenio (RHP)

have introduced a witness for nondivisibility of quantum maps

by making use of the monotonic behavior of entanglement

measures under CPTP maps [7]. Although this quantity does

not provide a necessary and sufficient condition for divisibility,

it can be adopted as a measure of non-Markovianity on

its own since it has been shown that it encapsulates the

information exchange between the system and environment

through the concept of accessible information [13]. In this

case, a non-Markovian process is characterized by a temporary

increase of entanglement between the system and the isolated

ancilla, which is an indicator of the backflow of information

from the environment to the system. In the same spirit, Luo,

Fu, and Song (LFS) have proposed a similar quantity that relies

on the mutual information between a system and an arbitrary

ancilla instead of entanglement [10]. Despite being easier to

manage than an entanglement-based measure mathematically,

especially for high dimensional systems, this quantity does

not yet have an interpretation directly related to the flow of

information between the system and the environment.

In this work, our aim is twofold. First, using the language

of the decoherence program, where a system S is coupled

to a measurement apparatus A, which in turn interacts with

an environment E [14], we introduce a simple scheme to

demonstrate how quantum loss [15] can be utilized to describe

the backflow of information from the environment E to the

system S. This approach is shown to be exactly equivalent

to the LFS measure of non-Markovianity and thus gives it an

interpretation in terms of information exchange between the

system S and the environment E . Furthermore, we reveal how

the entanglement and the mutual-information-based measures

of non-Markovianity are conceptually related to each other

through the connection between quantum loss and accessible

information. Second, we extend the results of Ref. [13] in

several directions. In particular, we investigate the role of

both accessible information and quantum loss in quantifying

non-Markovian behavior, via conceptually different means of

information flow, in two paradigmatic models. We find out

that, unlike the BLP measure, both LFS and RHP measures

can capture the dynamical information in the nonunital aspect

of the dynamics and thus can successfully identify non-

Markovian behavior in corresponding models. Lastly, for

a two-level system undergoing relaxation at zero tempera-

ture, we experimentally demonstrate the connection between

quantum loss and quantum mutual information performing a

quantum simulation with an all optical setup that allows full

access to the environmental degrees of freedom [16].

This paper is organized as follows. In Sec. II we introduce

the definitions of the considered non-Markovianity measures,

and discuss how they are related to the flow of information

between the system and the environment. We also present a

clear conceptual connection between the quantum loss and the

accessible information in quantifying information exchange.

In Sec. III, using the RHP, LFS, and BLP measures, we

examine two examples of paradigmatic quantum channels

theoretically, and present the experiment and its results.

Section IV includes the discussion and summary of our

findings.

II. MEASURING NON-MARKOVIANITY VIA

INFORMATION FLOW

Let us first define the type of quantum processes that

we consider. We assume that a dynamical quantum map is

described by a time-local master equation of the Lindblad

form

∂

∂t
ρ(t) = Lρ(t), (1)

with the Lindbladian superoperator L [17] given as

Lρ = −i[H,ρ] +
∑

i

γi

[

AiρA
†
i −

1

2
{A†

i Ai,ρ}
]

,

where H is the Hamiltonian of the system, γi’s are the decay

rates, and Ai’s are the Lindblad operators describing the type

of noise affecting the system. Provided Ai’s and γi’s are time

independent, and also all γi’s are positive, Eq. (1) leads to a

dynamical semigroup of CPTP maps �(t,0) = exp[Lt] with

t > 0 satisfying the semigroup property

�(t1 + t2,0) = �(t1,0)�(t2,0), (2)

for all t1,t2 � 0. Such a quantum dynamics defines a con-

ventional Markovian process. However, it is possible that the

Hamiltonian H , noise operators Ai , and decay rates γi may

have explicit time dependence. In this case, Eq. (1) leads

to what is known as a time-dependent Markovian process,

if γi(t) � 0 throughout the time evolution of the system.

Dynamical maps might be written in terms of a time-ordered

exponential as �(t,0) = T exp[
∫ t

0
L(t ′)dt ′], which takes the

state at time 0 to the state at time t . Such Markovian maps

have a fundamental property that they satisfy the condition of

divisibility. In particular, a CPTP map �(t2,0) can be expressed

as a composition of two other CPTP maps as

�(t2,0) = �(t2,t1)�(t1,0) (3)

with �(t2,t1) = T exp[
∫ t2
t1
L(t ′)dt ′], for all t1,t2 � 0. It is

important to stress that time-dependent decay rates γi(t)

may become temporarily negative during the dynamics of

the system. In such a situation, there exists an intermediate

dynamical map �(t2,t1) which is not CPTP, and thus violating

the composition law for divisibility given by Eq. (3) [18]. Let

us remember that what we have introduced as a time-dependent

Markovian process above is centered on the property of

divisibility. However, the criteria for non-Markovian dynamics

that we will discuss in the following sections are not exactly

equivalent to nondivisibility of the dynamical maps, but rather

rely on the idea of information backflow from the environment

to the system from three conceptually different points of view.

A. Trace distance

The BLP measure of non-Markovianity [9] is constructed

upon the trace distance between two arbitrary states ρ1(t) and

ρ2(t) of the reduced system of interest, which is given by

D(ρ1(t),ρ2(t)) = 1/2 Tr|ρ1(t) − ρ2(t)|, (4)
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where |A| =
√

A†A. It has been discussed that the trace

distance has a physical interpretation in terms of the relative

distinguishability of two quantum states. Suppose that Alice

prepares a quantum system in either ρ1 or ρ2, with equal

probabilities, and then sends it to Bob whose goal is to

perform a single measurement on the system to reveal its

state. In this scenario, it is possible to show that Bob can

successfully identify the state of the system with an optimal

probability of 1/2[1 + D(ρ1,ρ2)]. Hence, the trace distance

can in fact be thought of as a quantifier of the distinguishability

of two states, the variation of which during the evolution

can be interpreted as an information exchange between the

system and the environment. In particular, a monotonic loss

of distinguishability between ρ1(t) and ρ2(t) during the

dynamics, i.e., dD(t)/dt < 0, indicates that information flows

from the system to the environment at all times and thus

the process is Markovian. On the other hand, dD(t)/dt > 0

means that there exists a backflow of information from the

environment to the system, giving rise to a non-Markovian

process. Based on this criterion, the BLP measure is defined

as

NBLP(�) = max
ρ1(0),ρ2(0)

∫

[dD(t)/dt]>0

dD(t)

dt
dt, (5)

where the maximum is taken over all possible pairs of initial

states ρ1(0) and ρ2(0). We should also note that the above

equation can also be equivalently expressed as

NBLP(�) = max
ρ1(0),ρ2(0)

∑

i

[D(bi) − D(ai)], (6)

where time intervals (ai,bi) correspond to the regions where

dD(t)/dt > 0, and maximization is done over all pairs of

initial states. Even though this optimization is a considerably

hard task, it is possible to simplify the procedure in several

ways by reducing the number of possible optimizing pairs.

Furthermore, considering the fact that CPTP maps are

contractions for the trace distance, one can show that the

distinguishability between ρ1(t) and ρ2(t) is guaranteed to

monotonically decrease for all divisible processes. Thus,

according to the BLP measure, all divisible dynamical maps

define Markovian processes. Nonetheless, the inverse state-

ment is not necessarily true, that is, there exist nondivisible

maps for which the trace distance does not show any temporary

revival at all. In fact, the trace distance is actually a witness for

nondivisibility. In addition, it has been recently shown that the

trace distance is not able to capture the dynamical information

in the nonunital aspect of quantum dynamics. Consequently,

it fails to identify the non-Markovianity originated from the

nonunital part of the transformation [19].

B. Quantum loss

In this section, we introduce a method of quantifying

non-Markovianity through the flow of information between

the system and the environment, using a conceptually different

approach than the BLP measure. Our discussion relies on the

decoherence program, where a quantum system S is coupled

to a measurement apparatus A, which in turn directly interacts

with an environment E . Let us first consider a quantum system

S that is initially correlated with the apparatus A. We assume

FIG. 1. (Color online) We consider an initially pure environment

E , and an entangled pure stateSA. As the systemS evolves free of any

direct interaction, the apparatus is interacting with the environment

E .

that the bipartite system SA starts as a pure state, and the

environment only affects the state of the apparatus A. As a

result of the interaction, there emerges an amount of correlation

among the individual parts of the closed tripartite system

SAE , and thus the environment E acquires information about

the system S by means of the interaction with the apparatus

A. This setting is graphically sketched in Fig. 1, where the

system S evolves trivially while the apparatus A is in a direct

unitary interaction with the environment E . The final state of

the composite tripartite system SAE is given by

ρSÃẼ = (IS ⊗ UAE )ρSAE (IS ⊗ UAE )†, (7)

where a tilde denotes the state of the subsystems after the time

evolution. The resulting state of each part of the composite

system can be obtained by tracing over the remaining parts.

Particularly, if we discard the environment E , we obtain the

bipartite state of the system S and the apparatus A as

ρSÃ = TrE (ρSÃẼ ), (8)

which corresponds to applying a general CPTP map to the

apparatusAwhile leaving the state of the system S untouched.

Let us now introduce some preliminary concepts that will be

relevant to our treatment of the information exchange between

the system and the environment. For a bipartite system XY ,

while the conditional quantum entropy is defined as

S(X|Y ) = S(XY ) − S(Y ), (9)

the quantum mutual information is given by

S(X : Y ) = S(X) − S(X|Y )

= S(X) + S(Y ) − S(XY ), (10)

where S[X(Y )] ≡ S(ρX(Y )) = −Tr(ρX(Y ) log2 ρX(Y )) denotes

the von Neumann entropy of the considered systems, char-

acterizing the uncertainty about them. Provided that we have a

quantum system XY in a pure state, we obtain S(XY ) = 0 and,

as a result, S(X : Y ) = 2S(X) = 2S(Y ). Moving to tripartite

system XYZ, we can define the conditional quantum entropy

of X and Y conditionally on Z as

S(X : Y |Z) = S(X|Z) − S(X|YZ)

= S(X|Z) + S(Y |Z) − S(XY |Z)

= S(XZ) + S(YZ) − S(Z) − S(XYZ), (11)

whereas the quantum ternary mutual information reads

S(X : Y : Z) = S(X : Y ) − S(X : Y |Z). (12)
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S AE
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FIG. 2. (Color online) The entropy diagram of the tripartite sys-

tem composed of the system S, the apparatus A, and the environment

E , before and after the interaction. The amount of information will

stay the same inside the area enclosed by thick red curves, i.e.,

I = Ĩ + L̃ = 2S(ρS ), where Ĩ is the mutual information and L̃ is

the quantum loss.

It is important to note that S(X : Y |Z) � 0, and the quantum

ternary mutual information S(X : Y : Z) vanishes for a pure

tripartite state, i.e., S(X : Y ) = S(X : Y |Z).

In the following, we adopt the terminology introduced

in Ref. [15]. Making use of the analogy with the classical

information theory, we can make an entropy diagram for the

composite system of SAE to show how each part of the

tripartite system shares and exchanges information among its

subsystems. For this purpose, we define three quantities that

will be very useful to describe the information dynamics of

the tripartite system, namely, the quantum mutual information

Ĩ , the quantum loss L̃, and the quantum noise Ñ :

Ĩ = S(S : Ã), (13)

L̃ = S(S : Ẽ |Ã) = S(S : Ẽ), (14)

Ñ = S(Ã : Ẽ |S) = S(Ã : Ẽ). (15)

In Fig. 2, we display the entropy diagram for SAE using the

above quantities. The quantum mutual information Ĩ quantifies

the amount of residual mutual entropy between the system

S and the apparatus A after the decoherence occurs. On

the other hand, the quantum loss L̃ represents the amount

of information that is getting lost in the environment E .

Actually, among these three quantities, only Ĩ and L̃ are

relevant to us, since information exchange between the system

S and the environment E is characterized by the balance

between them. It is very important to emphasize that the

equality

Ĩ + L̃ = 2S(ρS ) = 2S(ρA) (16)

holds at all times during the dynamics. That is, twice the initial

entropy of the system S will be redistributed to the apparatus

A and the environment E as decoherence takes place. In other

words, the total amount of information inside the closed thick

red line in Fig. 2 will remain invariant. Indeed, as the composite

tripartite system SAE evolves in time, the environment E will

learn about the system S, and the quantum mutual information

I will start to decrease as a result of its monotonicity under

local CPTP maps. This will be directly reflected as an increase

in the quantum loss L̃, which is naturally zero initially, as can

be observed from Eq. (16). However, it is also possible that

Ĩ might temporarily revive during dynamics, which will give

rise to a temporary decrease in L̃.

Regarding non-Markovianity as a phenomenon that is

intrinsically related to the backflow of information from the

environment E to the system S, it is reasonable to expect

the quantum loss L̃ to monotonically increase for Markovian

dynamics, since it is an entropic measure of information that

the environment E acquires about the system S. Therefore,

one can define non-Markovian processes as the ones for which

there is a temporary loss of L̃ as the system evolves in time,

i.e., dL̃/dt < 0, since this is an indication that the information

flows back to the system S from the environment E .

We should clarify that when we say information flow from

the system S to the environment E or vice versa, we do not

actually mean that total information content of the system

changes, since it is constant at all times due to the fact that the

system S does not directly interact with the environment E .

Rather, we mean that information is being redistributed in the

tripartite composite systemSAE in such a way that the amount

of information that the system S shares with the environment

E increases or decreases, as depicted in Fig. 2.

At first sight, one might think that evaluation of the quantum

loss L̃ requires the knowledge of the state of the environment

E , which typically consists of an infinite number of degrees

of freedom, and is virtually impossible to access in real world

situations. However, we actually do not need to directly access

the environment to be able to calculate L̃. It can be explicitly

written without dependence on the environment E ,

L̃ = S(ρA) − S(ρÃ) + S(ρSÃ). (17)

An interesting point is that the quantum loss L̃ can also

be rewritten as a difference of the initial and final mutual

information shared by the system S and the apparatus A, that

is,

L̃ = I − Ĩ , (18)

as can be easily seen from Eq. (16), since the initial mutual

information I is twice the initial entropy of the system S.

Taking the time derivative of this simple equation, we find

that

d

dt
L̃ = −

d

dt
Ĩ . (19)

Recalling that the LFS measure [10] of non-Markovianity

is based on the rate of change of the quantum mutual

information shared by the system S and the apparatus A, we

immediately realize that in fact the quantum loss approach to

non-Markovianity is exactly equivalent to the formulation of

the LFS measure. In particular, the LFS measure captures

the non-Markovian behavior through a temporary increase

of the mutual information of the bipartite system SA.

Mathematically, the LFS measure can be written as

NLFS(�) = max
ρSA

∫

(d/dt)Ĩ>0

d

dt
Ĩ dt, (20)

where the maximization is evaluated over all possible pure

initial states of the bipartite system SA. Thus, the quantum

loss gives an interpretation to the LFS measure in terms
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of information exchange between the system S and the

environment E , since any temporary loss of L̃ will be observed

as a temporary revival of Ĩ by the same amount. Note that it

directly follows from the composition law of divisibility given

in Eq. (3) that the LFS measure vanishes for all divisible

quantum processes due to the monotonicity of the mutual

information under CPTP maps. We should still keep in mind

that the inverse statement is not always true. Some nondivisible

maps do not increase the mutual information, or equivalently,

decrease the quantum loss at all.

C. Accessible information

Next, we introduce another quantity known as the accessi-

ble information [20], which quantifies the maximum amount

of classical information that can be extracted about the system

S by locally observing the environment E ,

J←
SE = max

{ŴE
i }

[

S(ρS ) −
∑

i

piS
(

ρi
S

∣

∣ŴE
i

)

]

, (21)

where {ŴE
i } defines a complete positive operator valued

measure acting on the state of the environment E , and ρi
S =

TrE [(IS ⊗ ŴE
i )ρSE ]/pi is the remaining state of subsystem

S after obtaining the outcome i with the probability pi =
Tr[(IS ⊗ ŴE

i )ρSE ]. Considering the fact that the quantum loss

L̃ is nothing but the quantum mutual information between

the system S and the final state of the environment after

decoherence, Ẽ , it is possible to express it as

L̃ = J←
SẼ

+ δ←
SẼ

, (22)

where δ←
SẼ

(known as the quantum discord in literature as a

genuine measure of nonclassicality [21]) quantifies the part

of the quantum mutual information L̃ that the environment

Ẽ cannot access about the system S locally during the

decoherence process. In other words, despite the system S and

the environment Ẽ have the information L̃ in common, we can

only access a fraction of it, namely, J←
SẼ

, by just observing the

state of the environment E . In Fig. 3, we display the accessible

and and inaccessible information in the entropy diagram of

SAE after the interaction starts to take place.

FIG. 3. (Color online) The accessible information J ←
SẼ

and the

inaccessible information δ←
SẼ

in the entropy diagram of the tripartite

system SAE after the interaction of the apparatus A with the

environment E .

Returning to the discussion of non-Markovianity, one

might argue that it is also quite reasonable to define non-

Markovianity in terms of information flow using the accessible

information instead of the quantum loss. The reason is that the

accessible information measures the fraction of information

that the environment E can actually access about the system

S, rather than the total amount of information they share as

quantified by the quantum loss. Similarly to the case of Ĩ , we do

not need any information about the state of the environment S
to be able to evaluate the accessible information. Remembering

that the environment E is initially in a pure state, that is,

we consider a zero temperature reservoir, and also that the

tripartite state SAE stays pure at all times, the Koashi-Winter

relation implies that [22]

ESA = S(ρS ) − J←
SE , (23)

where ESA denotes the entanglement of formation (EoF)

shared by the system S and the apparatus A, which is a

resource-based measure quantifying the cost of generating a

given state by means of maximally entangled resources [23].

Although it is not necessary make an assumption about the

dimension of the system S or the apparatus A at this point,

since we will use qubits in our later discussions, we recall that

the EoF in the case of two qubits is given by

E(ρ) = h

(

1 +
√

1 − C2(ρ)

2

)

; (24)

h(x) = −x log2 x − (1 − x) log2 (1 − x), (25)

where C(ρ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, with {λi}
being the eigenvalues of the product matrix ρρ̃ in decreasing

order. Here, ρ̃ = (σ y ⊗ σ y)ρ∗(σ y ⊗ σ y), σ y is the Pauli spin

operator in the y direction, and ρ∗ is obtained from ρ via

complex conjugation. Since the system S does not interact

directly with the environment E , we know that its state is

invariant in time throughout the dynamics, then the time

derivative of the Koashi-Winter relation given in Eq. (23)

leads to a simple relation between the rate of changes of the

entanglement of formation and the accessible information [13],

d

dt
ESÃ = −

d

dt
J←
SẼ

. (26)

This relation immediately implies that any temporary decrease

in J←
SẼ

will be reflected as a temporary increase of ESÃ. Thus,

the non-Markovianity measure based on the rate of change of

the accessible information J←
SE can also be expressed in terms

of the rate of change of the entanglement of formation between

the system S and the apparatus A [13]. At this point, we recall

that the basis of the entanglement-based RHP measure of non-

Markovianity [7] is the monotonic behavior of entanglement

measures under local CPTP maps. In particular, according

to the RHP criterion, any temporary revival of entanglement

is an indication of the non-Markovian nature of a quantum

process. The RHP measure depends on the rate of change of

the entanglement shared by the system S and the apparatus A,

and thus can be written as

NRHP(�) = max
ρSA

∫

(d/dt)ESÃ>0

d

dt
ESÃdt, (27)
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where the maximization is evaluated over all possible pure ini-

tial states of the bipartite system SA. With the help of Eq. (26),

it is now straightforward to observe that the entanglement-

based RHP measure of non-Markovianity is indeed exactly

equivalent to the accessible information approach. In other

words, when entanglement of formation is chosen as a measure

of entanglement, the RHP measure quantifies the total amount

of decrease in the information that the environment E can

access about the system S. The composition law of divisibility

given in Eq. (3) implies that the RHP measure vanishes for

all divisible quantum processes, just as in the case of the LFS

measure, and again the inverse statement might not be always

true since it is possible for some nondivisible maps not to

increase entanglement.

It becomes clear with our interpretation that the LFS and

RHP measures of non-Markovianity, despite being based on

different physical quantities, are closely related to each other

conceptually when the flow of information between the system

S and the environment E is considered. From this angle,

the only difference between them is the local accessibility

of the information, that environment E and the system S
have in common, by observing the environment E . Especially,

investigating the problem of information exchange from the

point of view of the decoherence program, we demonstrate

that both the mutual information and entanglement are relevant

quantities for quantifying non-Markovianity as a backflow of

information from the environment E to the system S.

Getting back to the optimization of the LFS and the RHP

measures, we should emphasize that it is in fact not necessary

to perform the optimization over all variables appearing in the

pure bipartite density matrix of SA. We can actually simplify

the optimization procedure for both LFS and RHP measures

without loss of any generality as follows. For instance, in the

case of a pure two-qubit system, one can consider a general

mixed single-qubit density matrix for the apparatus A, having

only three real parameters, and then purify it to obtain the

two-qubit pure state of the bipartite system SA. It is known

that all purifications of the apparatus A can be obtained by

applying unitary operations locally on the system S. Also note

that the entanglement and quantum mutual information of SA
remain invariant under these operations. Additionally, taking

into account that the system S does not directly interact with

the environment E , the simplification is justified and three real

variables are sufficient to perform the optimization.

Besides, note that we have assumed the environment E
to be initially in a pure state. This assumption does not

hold in general, in particular, when we consider a finite

temperature environment. In this case, the initial state of

the environment E is mixed, and the Koashi-Winter relation

given in Eq. (23) becomes an inequality. However, we can

purify the state of the environment E by extending the Hilbert

space with a complementary subsystem E ′, without loss of

generality. Consequently, we can again use the Koashi-Winter

relation, which gives ESA = SS − J←
S{EE ′}. We now see that

the entanglement between the system S and the apparatus A
is still connected to the information that the bipartite system

EE ′ can access about the system S. It is rather straightforward

to see that a similar treatment can be done for the case of the

quantum loss and the LFS measure via the extension of the

environment E with an extra purifying system E ′.

III. EXAMPLES

In this section, we discuss the similarities and differences

between the distinct ways of quantifying non-Markovianity

based on information exchange between the system S and the

environment E , considering two relaxation models for open

quantum systems. First, we examine the zero temperature

relaxation channel, for which we present an all optical

experimental simulation that realizes the required scenario

to investigate the information flow in terms of the quantum

loss and the accessible information. Second, we theoretically

examine the generalized amplitude damping channel. We

show that in this context there exist differences between the

accessible information and quantum loss approaches.

A. Amplitude damping

Here we treat the apparatus A as a two-level quantum

system interacting with a zero temperature relaxation envi-

ronment described by a collection of bosonic oscillators. The

corresponding interaction Hamiltonian is given by

H = ω0σ+σ− +
∑

k

ωka
†
kak + (σ+B + σ−B†), (28)

where σ± denote the raising and lowering operators of

the apparatus A having the transition frequency ω0, and

B =
∑

k gkak . The annihilation and creation operators of the

environment E are represented by ak and a
†
k , respectively, with

the frequencies ωk . We assume that the environment E has an

effective spectral density of the form J (ω) = γ0λ
2/2π [(ω0 −

ω)2 + λ2], where the spectral width of the coupling λ is related

to the correlation time of the environment τB via τB ≈ 1/λ.

The parameter γ0 is connected to the time scale τR , over which

the state of the system changes, by τR ≈ 1/γ0. Dynamics

of the apparatus A, with this spectral density, can be described

by a master equation having the form of Eq. (1),

∂

∂t
ρ(t) = γ (t)

(

σ−ρ(t)σ+ −
1

2
{σ+σ−,ρ(t)}

)

, (29)

where the time-dependent decay rate is given by

γ (t) =
2γ0λ sinh (dt/2)

d cosh (dt/2) + λ sinh (dt/2)
, (30)

with d =
√

λ2 − 2γ0λ. Then, we can express the dynamics of

the apparatus A in the Kraus operator representation as

ρ(t) = �[ρ(0)] =
2

∑

i=1

Mi(t)ρ(0)M
†
i (t), (31)

where the corresponding Kraus operators Mi(t) are

M1(t) =
(

1 0

0
√

1 − p(t)

)

, M2(t) =
(

0
√

p(t)

0 0

)

, (32)

satisfying the condition
∑2

i=1 M
†
i (t)Mi(t) = I for all values

of t , and the parameter p(t) is given by

p(t) = 1 − e−λt

[

cosh

(

dt

2

)

+
λ

d
sinh

(

dt

2

)]2

. (33)

The scenario of a system S entangled with a measurement

apparatus A, which interacts with the environment E in the

052118-6



NON-MARKOVIANITY THROUGH FLOW OF INFORMATION . . . PHYSICAL REVIEW A 90, 052118 (2014)

FIG. 4. (Color online) (a) Sketch of the experimental setup. The

H’s are half-wave plates, the Q’s are quarter-wave plates, the BD’s

are beam displacers, PBS is polarizing beam splitter, and DET is

single photon detector. The light beams propagate from left to right.

(b) Implementation of the amplitude damping channel for the photon

polarization, condition p = 0. (c) Implementation of the amplitude

damping channel for the photon polarization, condition p 	= 0.

form of an amplitude damping channel, can be realized with

polarization entangled photon pairs and interferometers [16].

A sketch of the experimental setup is presented in Fig. 4(a).

We employ a widely used source of polarization entangled

photons [24]. We send the signal photon through the inter-

ferometers and the idler photon goes straight to polarization

analysis and detection. The polarization state of the idler

photon represents the system S. The polarization state of the

signal photon represents the apparatus A. The signal photon

enters the first interferometer that implements the amplitude

damping channel. In this way the polarization state of the

signal photon evolves in perfect analogy with the spontaneous

emission of a two-level atom. In the case of the atom, as

time passes, the amplitude probability associated with the

excited state decreases exponentially. In the case of the photon

polarization, there is a parameter p ranging from 0 to 1, which

is equivalent to time, so that p = 1 is equivalent to t → ∞.

Therefore, the interferometer produces a controlled decrease

of the polarization component representing the excited state. In

Fig. 4(b), we show what happens when the control parameter is

p = 0 and the input state is |ψin〉 = (1/
√

2)(|H 〉 + |V 〉). The

incoming photon splits in two polarization components. The

vertical one is represented by the blue ball (the ball associated

with a vertical arrow) and is transmitted. The horizontal one is

represented by the red ball (the ball associated with a horizontal

arrow) and is deviated to another propagation mode. Half-wave

plates H1 and H2 are adjusted to rotate polarizations V to H

and vice versa. This causes the two beams to recombine in the

second beam displacer, so that the state at the output is the

same as the state at the input.

In Fig. 4(c) we show the case where p 	= 0. In this case,

the half-wave plate H2 does not rotate the polarization from

V to H completely. There is a residual vertical component

so that the recombination of the beams in the output of the

interferometer does not recover the same state as the input.

The output state has the horizontal component reduced, and

this component leaks out to the upper propagation mode.

Therefore, the input mode is coupled to two output modes.

The state of this pair of modes, or path degree of freedom,

represents the environment E . This evolution is isomorphic to

an increase in the ground state component of the atom in our

analogy, or an increase in the probability of the atom to emit a

photon to the environmental modes.

After propagation through the first interferometer corre-

sponding to the application of the map, there is a second

interferometer, which is composed by beam displacers BD2

and BD3, as shown in Fig. 4(a). Together with the half- and

quarter-wave plates H4 and Q4, it is used to reconstruct the

state of the three qubits. The total system is given by the idler

polarization, the apparatus represented by the signal photon

polarization, and the environment represented by the path de-

gree of freedom of the signal photon. Finally, for the quantum

state tomography, 64 combinations of wave plate angles are

used, and signal and idler photons are detected in coincidence.

We performed the experiment and reconstructed the final

three-qubit state for different values of p. From this state, we

computed the correlations displayed in Fig. 5. We can see

the theoretical plot of the quantum loss L̃ (blue line) and the

quantum mutual information Ĩ (dashed red line). The curves

were obtained by evolving the experimentally reconstructed

initial state, which is not perfectly pure, and calculating the

quantities from the evolved states. The inset displays the decay

rate γ (t)/γ0 (orange line) as a function of scaled time γ0t ,

that is being experimentally controlled by p(t) → θp(H2) the

rotation angle of the half-wave plate H2. The experimental

points for L̃ and Ĩ are the black dots and purple triangles,

respectively. In Fig. 5(a) we observe the monotonicity of

information flow in the Markovian regime with λ/γ0 = 3. In

Fig. 5(b) the nonmonotonous behavior in the non-Markovian

regime with λ/γ0 = 0.1 is shown. There is good agreement

between theory and experiment.

In Fig. 6, we show essentially the same results as in

Ref. [13], but instead of considering an ideal pure initial state,

we obtain the theoretical points from the evolution of the exper-

imentally reconstructed initial state. We notice that taking into

account this aspect leads to an improved agreement between

theory and experiment. From these results we conclude that the

interpretation in terms of exchange of information between S
and E is valid. In the case of the amplitude damping, from

Figs. 5 and 6 we observe that accessible information and

quantum loss are essentially equivalent. In the next section,

we will theoretically demonstrate that this is no longer true for

the generalized amplitude damping channel.

B. Generalized amplitude damping

In the second example we consider the generalized am-

plitude channel which describes the relaxation of a quan-

tum system when the surrounding environment is at finite

temperature initially, i.e., when the environment starts from

a mixed state. This phenomenological model is particularly

interesting for us since it has been recently proved that the BLP

measure, based on the trace distance, is not able to capture the

information about the dynamics of the system coming from

the nonunital parts of quantum maps [19]. Thus, in order to
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FIG. 5. (Color online) Theoretical plot of the quantum loss L̃ (blue line) and the quantum mutual information Ĩ (dashed red line). The insets

display the decay rate γ (t)/γ0 (orange line) as a function of scaled time γ0t , that is being experimentally controlled by p(t) → θp . Experimental

points for L̃ and Ĩ are shown by black dots and purple triangles, respectively. As (a) demonstrates the monotonicity of information flow in the

Markovian regime with λ/γ0 = 3, (b) displays its nonmonotonous behavior in the non-Markovian regime with λ/γ0 = 0.1.

compare different approaches to information exchange, our

aim here is to check the behavior of the quantum loss L̃

and the accessible information J←
SẼ

under this channel, where

nondivisibility actually is originated from the nonunital part

of the dynamical map. In particular, the set of Kraus operators

describing the dynamics of the apparatus A is given by

K1(t) =
√

s(t)

(

1 0

0
√

r(t)

)

,

K2(t) =
√

s(t)

(

0
√

1 − r(t)

0 0

)

,

(34)

K3(t) =
√

1 − s(t)

(√
r(t) 0

0 1

)

,

K4(t) =
√

1 − s(t)

(

0 0√
1 − r(t) 0

)

,

where
∑4

i=1 K
†
i (t)Ki(t) = I at all times t with s ∈ [0,1] and

r ∈ [0,1], and the quantum map � represented by the above set

of operators is unital, that is, �(I ) = I , if and only if s = 1/2

or r = 1. Similarly to what was done in [19], to construct a

quantum process, we choose the parameters as s(t) = cos2 ωt

and r(t) = e−t , where ω is a real number.

Before comparing the different approaches to monitor the

information exchange between S and E , let us first introduce

another quantity which has been introduced in [7], based on

the Choi-Jamiolkowski isomorphism,

g(t) = lim
ǫ→0

Tr|(I ⊗ �t+ǫ,t )|�〉〈�|| − 1

ǫ
, (35)

where |�〉〈�| = 1√
d

∑d2−1
j=0 |j 〉 ⊗ |j 〉 is the maximally en-

tangled state of the system S and the apparatus A in the

considered dimension. In fact, the condition g(t) > 0 is

a necessary and sufficient criterion for nondivisibility of

dynamical quantum maps. Moreover, one can also define a

measure of nondivisibility using g(t) by summing it over time

during the time evolution of the open system. Therefore, with

the help of Eq. (35), we can investigate relation of information

exchange, quantified through the quantum loss L̃ and the

accessible information J←
SẼ

, to the regions of nondivisibility

where the intermediate maps �t+ǫ,t are not CPTP. For the

generalized amplitude damping channel, it turns out that [19]

g(t) = 1
2
[|1 − f (t)| + |f (t)| − 1], (36)

where f (t) = −ω sin(2ωt)(1 − e−t ) + cos2(ωt).

While we show the graphs of the quantum loss L̃ (solid

blue line) and the quantum mutual information Ĩ (dashed
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FIG. 6. (Color online) Theoretical plot of the accessible information J ←
SẼ

(blue line) and the entanglement of formation ESÃ (dashed

red line). The insets display the decay rate γ (t)/γ0 (orange line) as a function of scaled time γ0t , that is being experimentally controlled

by p(t) → θp . Experimental points for J ←
SẼ

and ESÃ are shown by black dots and purple triangles, respectively. As (a) demonstrates the

monotonicity of information flow in the Markovian regime with λ/γ0 = 3, (b) displays its nonmonotonous behavior in the non-Markovian

regime with λ/γ0 = 0.1.
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FIG. 7. (Color online) (a) Plot of the quantum loss L̃ (solid blue line) and the quantum mutual information Ĩ (dashed red line). (b) Plot of

the accessible information J ←
SẼ

(solid blue line) and the entanglement of formation ESÃ (dashed red line). (c) Plot of the nondivisibility criterion

g(t). The dynamical map becomes nondivisible when g(t) > 0. In all three plots, we set ω = 5 and the initial state is a maximally entangled

one.

red line) in Fig. 7(a), we display the accessible information

J←
SẼ

(solid blue line) and the entanglement of formation ESÃ

(dashed red line) in Fig. 7(b). In all the plots, the initial state

is taken as a maximally entangled one, and we set ω = 5. The

regions of nondivisibility are displayed by the intervals where

g(t) is positive in Fig. 7(c). We note that, as expected due to

Eqs. (19) and (26), L̃ and Ĩ , and J←
SẼ

and ESÃ behave in an

exact opposite manner. It is remarkable that, unlike the trace

distance, both approaches based on information flow through

entropic quantities reveal an exchange of information between

the system S and the environment E . However, comparing

the regions with g(t) > 0 to the intervals where L̃ and J←
SẼ

temporarily decrease, we see that they do always not coincide,

which is in contrast to the zero temperature relaxation model

in the previous section. This model demonstrates an explicit

example of how the occurrence of nondivisibility throughout

the dynamics of the open system might not always imply flow

of information from the environment E back to the system

S, even when the information exchange is measured via the

quantum loss L̃ and the accessible information J←
SẼ

.

Furthermore, another interesting observation is that al-

though the quantum loss L̃ monotonically increases until

t ≈ 0.5 in Fig. 7(a), the accessible information J←
SẼ

decreases

temporarily starting from t ≈ 0.3 in Fig. 7(b). This clearly

demonstrates that, despite their conceptual similarities, L̃ and

J←
SẼ

do not have to agree on the backflow of information from

the environment E to the system S, and can grow or decay

independent of each other. Nonetheless, we note for the con-

sidered model that the accessible information J←
SẼ

diminishes

for some time in all intervals where g(t) becomes positive.

IV. CONCLUSION

We have presented a detailed investigation of the relation

between the non-Markovianity in quantum mechanics and

the flow of information between the system S and the

environment E . Our treatment is based on the approach of

assisted knowledge where we consider a principal system S
that is initially correlated with its measurement apparatus A.

Although there is no direct interaction between the system

S and the environment E , there still exists an exchange of

information among the constituents of the tripartite system

SAE , due to the fact that the apparatus A interacts with the

environment E . Centered on this scenario, we have introduced

a way of understanding the information exchange between

the system S and the environment E through the quantum

loss L̃, which quantifies the amount of residual information

that the environment E and the system S have in common

after the interaction. We have also shown how measuring

the information flow and thus non-Markovianity via quantum

loss is in fact equivalent to utilizing the LFS measure of

non-Markovianity. This equivalence gives a straightforward

information theoretic interpretation to the LFS measure.

Moreover, recognizing that using the entanglement-based

RHP measure is equivalent to the accessible information

approach, we have provided an alternative way of quantifying

the exchange of information between the system S and the

environment E . More important, we have also revealed a clear

connection between two apparently unrelated measures of

non-Markovianity, namely, the LFS and the RHP measures,

by making use of the link between the quantum loss L̃ and the

accessible information J←
SẼ

. In particular, the only conceptual

difference between these two quantities lies on the local

accessibility of the information shared between the system S
and the environment E , when local observations are performed

on the environment E .

We have studied the information exchange in terms of

the quantum loss L̃ and the accessible information J←
SẼ

in

two paradigmatic models, namely, for the zero and finite

temperature relaxation processes. For the zero temperature

case, we have demonstrated that both the quantum loss L̃ and

the accessible information J←
SẼ

are able to capture the flow of

information in a similar way. Moreover, we have provided an

experimental simulation of this process using an all optical

setup that allows full access to the environment. Our exper-

imental results are shown to be in good agreement with the

theoretical predictions. For the finite temperature relaxation

model, we have explored the similarities and the differences

of measuring information flow in terms of the trace distance,

the quantum loss L̃, and the accessible information J←
SẼ

.

Specifically, we have shown that, while the trace distance fails

to capture the inverse flow of information originated from the

nonunital part of the dynamical quantum map, both the quan-

tum loss L̃ and the accessible information J←
SẼ

can successfully

identify the exchange of information between the systemS and

the environment E in this case. On the other hand, we have also

found that, despite their conceptual similarities, it is possible

for the quantum loss (the LFS measure) and the accessible
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information (the RHP measure) to disagree on the flow of

information in certain time intervals during the time evolution.
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