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Abstract

We consider the problem of video stabilization: remov-

ing unwanted image perturbations due to unstable camera

motions. We approach this problem from an image-based

rendering (IBR) standpoint. Given an unstabilized video

sequence, the task is to synthesize a new sequence as seen

from a stabilized camera trajectory. This task is relatively

straightforward if one has a Euclidean reconstruction of

the unstabilized camera trajectory and a suitable IBR al-

gorithm.

However, it is often not feasible to obtain a Euclidean

reconstruction from an arbitrary video sequence. In light of

this problem, we describe IBR techniques for non-metric re-

constructions, which are often much easier to obtain since

they do not require camera calibration. These rendering

techniques are well suited to the video stabilization prob-

lem. The key idea behind our techniques is that all mea-

surements are specified in the image space, rather than in

the non-metric space.

1. Introduction

In this paper, we consider the problem of video stabi-

lization. We define an unstabilized video to be an image se-

quence that exhibits unwanted perturbations in the apparent

image motion. The goal of video stabilization is to remove

these perturbations while preserving the dominant motions

in the image sequence.

Most video destabilization is due to physical motions of

the camera. Thus, many solutions to the problem involve

hardware for damping the motion of the camera, such as

a Steadicam rig or gyroscopic stabilizers. This equipment

works well in practice, but it is very expensive. Recently,

many consumer grade video cameras have been equipped

with video stabilization features. However, these methods

are often not good enough to stabilize gross motions of the

camera.

Because of these reasons, software solutions are attrac-

tive. We propose a software video stabilization algorithm

based on an image-based rendering (IBR) approach. The

basic premise of our approach is simple. Assume that an

ideal IBR algorithm exists that can generate perfect novel

views from some set of known reference images. Assume

further that the unstabilized camera trajectory (i.e., camera

positions and orientations) is also known. Then, video sta-

bilization can proceed in two steps:

1. Remove unwanted motions from the known camera

trajectory through some sort of filtering or smoothing

procedure.

2. Using the ideal IBR algorithm, render a new image se-

quence along the stabilized camera trajectory.

Unfortunately, the two above assumptions are rather re-

strictive. First, determining cameras’ positions and ori-

entations (i.e., recovering a Euclidean reconstruction of a

scene) is a difficult problem, especially for arbitrary video

sequences. In light of this, we have tailored our approach

to work with non-metric scene reconstructions. By working

with non-metric reconstructions, our approach is applicable

to uncalibrated video sequences.

Second, there is no ideal IBR algorithm that can generate

any desired view. However, there are algorithms that work

well when the desired viewpoints are reasonably close to

the reference viewpoints, which should be the case in video

stabilization.

However, many IBR algorithms assume a known Eu-

clidean reconstruction of the scene, making them not di-

rectly applicable to our problem. To develop a non-metric

IBR algorithm, we examine three features that we feel a use-

ful IBR algorithm should have. Briefly, these features are

correspondence between pixels in the reference images, in-

terpolation between multiple reference images, and virtual

navigation in the scene. By implementing these features un-

der non-metric assumptions, we derive a generalized, non-

metric IBR algorithm. Our new algorithm is applicable to

the video stabilization problem and, of course, other prob-

lems as well. The key idea behind our technique is that all

measurements are specified in the image space, rather than

in the non-metric space.
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1.1. Previous Work

In fact, many previous software approaches to video

stabilization have been “non-metric” algorithms. That is,

they assume little to no knowledge of the actual three-

dimensional camera motion, and instead they work to min-

imize image space motions directly. A common approach

is to estimate a dominant planar homography that stabilizes

a large planar region in the video [10] or to use simple 2D

translations to lock onto an object.

One basic problem with these approaches is that pure im-

age transformations often do not correspond to reasonable

camera transformations. For example, stabilizing a video

by using pure translation of the video frames is equivalent

to varying the camera’s principal point, which is unlikely

to be the true cause of the destabilization. Homography-

based schemes do a better job, but they only stabilize pla-

nar scenes or rotational camera motions. Highly non-planar

scenes or translational camera motions are not stabilized.

IBR stabilization methods potentially avoid these prob-

lem because they can allow for virtual camera navigation

in the scene. Thus, the virtual camera can be moved on

a smooth path, removing the video destabilization at its

source and resulting in a stable video for all image regions.

IBR methods can also merge information from multiple

video frames to synthesize a completely new view, so they

are not limited to simple image warping.

There have been many different proposed IBR algo-

rithms. Many algorithms represent scenes as calibrated im-

ages with associated polygons [4] or depth maps [2, 13].

New images are produced by warping the depth map to a

new view and (possibly) blending colors from the origi-

nal images. Some algorithms use dense pixel correspon-

dences rather than explicit depth maps [1]. Other algo-

rithms use much less scene structure in favor of larger num-

bers of reference images [7, 11]. These “light field” ren-

dering techniques blend multiple reference images together

using clever interpolation techniques and consequently re-

quire less geometric information.

All of the above IBR algorithms assume a Euclidean re-

construction of the scene. In most cases, the problem of

virtual camera navigation (discussed further in Section 2)

necessitates a Euclidean assumption. However, some IBR

algorithms have been developed to work in a non-metric set-

ting. Good examples of these are view morphing [14], joint

view triangulation [12], and earlier work with fundamental

matrix representations [6].

2. Three IBR Features

A basic goal of image-based rendering is to generate

plausible, novel views of a real scene from a set of known

views. A useful IBR algorithm generally has to address

three problems: correspondence, interpolation, and naviga-

tion. Often, the solutions to these problems assume a Eu-

clidean scene reconstruction.

Correspondence Most IBR algorithms represent corre-

spondence between pixels in the reference images. The cor-

respondence may be explicit, as in the case of flow fields or

warping fields, or it may be implicit, as in the case of polyg-

onal geometry or depth maps. In any case, the correspon-

dence defines how pixels move when the virtual camera

moves. Fortunately, pixel correspondence is generally not

difficult to represent in both metric and non-metric scenes.

Interpolation Many IBR algorithms, especially those

that work with multiple reference views, include some type

of interpolation or blending of reference views. Often,

this interpolation requires a Euclidean reconstruction of the

scene. For example, in view-dependent texture mapping

[4], images are blended based on the angles between rays.

In the light field and lumigraph algorithms, the blending

factors are determined by distances measured in two planes

defined in the scene. Unfortunately, angles and distances in

non-metric spaces are not meaningful.

Navigation Generally, an IBR algorithm should allow vir-

tual camera navigation. This requirement is often the most

difficult to satisfy in a non-metric setting. In a Euclidean

setting, camera positions can be specified, for example, by

setting a translation vector, a rotation matrix, and a field-

of-view. In a non-metric setting, the unknown intrinsic and

extrinsic camera parameters can not be nicely separated in

this way. Camera position, orientation, and field-of-view

must be specified in a different way, or constrained in such

a way as to be realizable.

3. A Non-metric IBR Algorithm

We can obtain a useful non-metric IBR algorithm by

modifying an existing IBR algorithm such that correspon-

dence, interpolation, and navigation can be achieved despite

a non-metric scene. We choose to modify a recent algorithm

called “unstructured lumigraph rendering” (ULR) [3] be-

cause it is designed for rendering from dense sets of images

that are arranged in an unstructured manner, such as those

found in an unstabilized video sequence. The key points

of the ULR algorithm are that correspondence is specified

by polygonal geometry, navigation is specified by moving

a virtual camera in Euclidean space, and interpolation is

based on the angles between rays.

We begin by assuming that a projective reconstruction of

a scene is known, and that it has been obtained from a set

of corresponding point features. We represent the scene as a

collection of 3×4 projection matrices Pi and 4×1 structure

points Mj . The projective reconstruction specifies only that

mij
.
= PiMj ,
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Figure 1. Color interpolation strategies for image-based rendering. (a) In the ULR algorithm, colors

along rays ri are blended together based on the angular distance from the desired ray. (b) In our

algorithm, we propose blending reference colors based on the distance of the vanishing points vi

from the projection of the scene point pdes. (c) The vanishing point tells which ray in the desired view

is parallel to the reference ray. If the reference ray is parallel to the desired ray (i.e., they are the same

ray) then the vanishing point equals pdes and the distance is zero.

where mij is a point feature (represented (u, v, 1)T ) in im-

age i, and
.
= denotes equality up to scale. Note that a pro-

jective reconstruction is uniquely defined up to an arbitrary

projective transformation T . That is, we can transform the

projection matrices and the structure points with T and ar-

rive at an equivalent projective reconstruction:

mij
.
= (PiT

−1)(TMj) = P ′

i M
′

j.

This unknown projective transformation makes it impossi-

ble to compare angles and distances in the non-metric space.

However, we can see that the projections of quantities into

the image space are unaffected by T . Thus, we design our

IBR algorithm to operate in image space whenever possible.

Correspondence The ULR algorithm uses correspon-

dence based on polygons, which are simply piecewise pla-

nar patches. We also define correspondence in our algo-

rithm using piecewise planar patches. Given some desired

view with projection matrix Pdes, we project the structure

points Mj into that view. We then Delaunay triangulate

these image points, which results in a tessellation of the

image plane. For each triangle Tk in the tessellation, we

compute the plane Πk that passes through the three struc-

ture points defining the vertices of the triangles. Using Πk ,

we compute the planar homography Hki that maps pixels in

the desired view to pixels in reference view i:

Hki
.
= PiP

+

k ,

where P +

k is a 4 × 3 inverse projection matrix that maps

pixels in the desired view onto the plane Πk [5]. The ho-

mographies Hki establish a correspondence between pixels

in the desired view and the reference views. An example

tessellation is shown in Figure 2.

Figure 2. An example triangular tessellation
that we use for pixel correspondence.

Interpolation For each individual pixel in the desired

view, the ULR algorithm blends between corresponding

pixels from multiple reference views. Given a set of corre-

sponding pixels pi in the reference views, the final color of

the pixel pdes in the desired view is computed as a weighted

average of these reference pixel colors. The colors are in-

versely weighted based on the angular difference between

the reference viewing rays and the desired viewing ray (see

Figure 1a). In fact, the actual angles are not important;

rather, it is the relationships between angles (e.g., the or-

dering of angles) that matter most. We exploit this fact in

our algorithm.

Consider measuring relative angle sizes using the follow-

ing metric defined in image space. We compute the van-

ishing points vi of all the corresponding reference rays as



seen in the desired view. The distance di = ‖vi − pdes‖
is then a measure of the angular distance between the de-

sired viewing ray and the reference viewing ray (see Figure

1b). This measure behaves enough like the true angle (i.e.,

smaller angles have smaller measures) to compute interpo-

lation weights. The diagram in Figure 1c demonstrates how

this construction works.

Of course, computing vanishing points requires knowl-

edge of the plane at infinity Π∞, which is unknown in a

projective reconstruction. If we could compute the plane at

infinity (i.e., upgrade the reconstruction from projective to

affine) then we could use vanishing points to measure rela-

tive angle magnitudes. In fact, is is not critical to have the

true plane at infinity to use this angle measure. In devel-

oping our algorithm, we have found that it suffices to use a

plane that satisfies cheirality constraints [8] to approximate

plane at infinity. Using such a plane, which we call Π̃∞,

results in a quasi-affine reconstruction of the scene [8].

Navigation Navigation is perhaps the most difficult IBR

problem when dealing with non-metric spaces. In a pro-

jective setting, the projection matrix of a novel view can

be computed by specifying the desired image locations of

the structure points. However, this method of navigation is

not very intuitive and may lead to non-rigid camera motions

or other improbable motions. Nevertheless, we have found

that this type of navigation is, in fact, well-suited to video

stabilization. First, we smooth the observed feature mo-

tion in the original unstabilized image sequences. Then, we

compute a sequence of stabilized projection matrices that

best reproduce the smoothed features. We discuss the de-

tails of this feature-smoothing procedure in the following

section.

4. Stabilizing Video

The first step in our video stabilization procedure is to

obtain a projective reconstruction of the video sequence. In

our implementation, we compute an initial solution using a

projective factorization technique [16]. Then we refine the

solution using standard robustified bundle adjustment tech-

niques [17]. For long image sequences, we break the solu-

tion up into overlapping sub-sequences of frames and com-

pute independent solutions for each sub-sequence. We then

compute pairwise projective transformations to map all of

the independent solutions into a common projective frame.

While this method does not always give a globally consis-

tent solution, it is sufficient for the video stabilization task.

Next, we upgrade the reconstruction to a quasi-affine

reconstruction by approximating a plane at infinity. We

have found that the procedure detailed in [9] provides a

suitable plane for this purpose. Given this plane Π̃∞, we

transform our projection matrices and structure points with

the corresponding 4 × 4 projective transformation to con-

vert to a quasi-affine reconstruction. Once we do this,

we can decompose our projection matrices into two parts:

Pi = (Pi,3×3 | pi). From this, we can compute the approx-

imate infinity homography relating any two images as

H̃i,j,∞
.
= Pj,3×3P

−1

i,3×3
.

This homography is used for computing approximate van-

ishing points.

4.1. Feature Smoothing

Once we have a quasi-affine reconstruction of the origi-

nal video sequence, we then proceed to compute a sequence

of stabilized projection matrices P ′

i . We do this by first

computing target locations for the features in the stabilized

sequence. Then we compute the stabilized projection ma-

trices by running a nonlinear optimization of the original

unstabilized projection matrices that minimizes the repro-

jection error of the structure points from the desired feature

locations. This second optimization runs efficiently since

we hold the structure points constant and allow only the

projection matrices to change.

Computing the stabilized target feature locations is the

most difficult step. One way to stabilize the locations of the

features is to smooth out the entire track of the feature, us-

ing a spline, and then remap the original features to points

on the new track. This technique works well for smoothing

general motion with few assumptions. However, we have

found it advantageous when we can apply a prior model to

the motion of the desired feature locations. Using a mo-

tion model helps insure that the new projection matrices

correspond to rigid motions. Some possible motion models

include linear translation, fronto-parallel translation, circu-

lar motion about a fixed target, and simultaneously moving

and zooming the camera while keeping the apparent size

of a scene object constant. We describe the linear motion

model with constant velocity in detail: the stabilized cam-

eras should move at a constant velocity along a straight line

while looking in the same direction. In this case, it is well-

known that all image features move radially to (or from) a

point called the focus of expansion.

To use a linear motion model, we first estimate (or spec-

ify by hand) the focus of expansion, which may be in or

out of the field of view, and fit radial lines to the initial fea-

ture tracks. Next we map the unstabilized features to points

on the radial lines. Often, the original features do not map

well onto the lines (see Figure 3a), but in any case we just

map the original features to the closest point on the line.

Next, we redistribute these points along the length of the

line according to a constant velocity model: points should

move with time toward (or away from) the focus of expan-

sion. More specifically, the projection of a point moving
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Figure 3. Three iterations of our feature smoothing procedure. The initial feature tracks are drawn

as solid lines, and the desired radial features are shown as dots. The desired focus of expansion is
marked with a circle. (a) Before optimization. (b) After one iteration. (c) After all iterations.

with constant velocity should fit a log function of the form

a log |t− t0|+ b, where t is a time index and a, b, and t0 are

unknown parameters that we optimize for each point.

After we determine the desired feature locations, we run

the optimization to compute new projection matrices. The

solution converges with only one or two iterations of re-

fitting the target features and optimizing the projection ma-

trices (see Figure 3b,c), and the projection matrices then

produce a stabilized video sequence when used with our

IBR algorithm.

4.2. Rendering

As the final step, we render the new image sequence cor-

responding to the new projection matrix sequence P ′

i . We

have implemented our non-metric IBR algorithm off-line

in a ray-tracing fashion. For each desired view, the ren-

derer first computes the triangular tessellation of the visi-

ble structure points.1 Then, for each pixel in the desired

view, the renderer computes the corresponding pixels in the

reference views using the planar homographies Hki. Each

reference pixel is assigned a weight according to the vanish-

ing point distances, which are computed using the homogra-

phies H̃i,j,∞. To compute these weights, we follow the ap-

proach in [3]. Specifically, we take the k closest reference

pixels (in terms of vanishing point distance) and linearly

convert those distances into weights such that the largest

distance is equal to zero: wi = 1−di/dk, where 1 ≤ i ≤ k,

and the distances increase with i. We then normalize the wi

such that they all add to one. The output color of the pixel is

taken to be the weighted sum of the reference pixel colors.

We typically use k = 4 reference images at each pixel, and

we use a maximum of 11 reference images for each desired

image.

1A structure point is deemed visible in a desired view if it is visible in

the corresponding original view.

5. Results

We have tested our video stabilization technique on a va-

riety of video sequences. All of our video sequences are ac-

quired with a hand-held video camera that has had its own

video stabilization features disabled. All other automatic

features of the camera have been enabled. In the first two

examples we use a constant velocity linear motion model

with the focus of expansion in and out of the field of view,

respectively. In the third example we use a simultaneous

moving and zooming motion model: the camera moves for-

ward while zooming out to keep the size of the foreground

object constant. This motion imitates a cinematographic ef-

fect made popular by Alfred Hitchcock. Note that both the

time varying intrinsic (focal length) and the extrinsic cam-

era parameters are smoothed.

In Figure 4 we have shown plots of feature motion as

they evolve over time. The tracks drawn with solid lines are

the original features that were tracked with automatic fea-

ture tracking software [15]. The tracks drawn in dotted lines

are the target features as seen from the stabilized camera tra-

jectory. The images below the track plots are representative

frames from the stabilized sequence. Note that the track

plots depict point features tracked over time and not linear

features in a single image.

6. Conclusions and Future Work

In this paper, we have demonstrated a technique for sta-

bilizing video sequences using non-metric image-based ren-

dering techniques. We have suggested that useful IBR algo-

rithms for this purpose should be able to do three things:

correspond points between reference images, interpolate

between reference images, and navigate a virtual camera in

the scene. In fact, these three properties are generally useful

in most IBR applications.

Unfortunately, most IBR algorithms handle these three

issues using the assumption that a Euclidean reconstruc-
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Figure 4. Smoothed feature tracks and rendered frames from our algorithm. Original features are
solid, and stabilized features are dotted. (a) The motion is forward, so the focus of expansion,

marked with a circle, is in the image. (b) The motion is mostly horizontal, so the focus of expansion

is to the left. (c) This sequence varies the camera focal length to simulate a “Hitchcock” zoom. The
sequence is stabilized with the motion model that the bear (marked with X’s) remains fixed and that

the background moves radially.

tion of the scene is available. Our algorithm requires only

a quasi-affine reconstruction, which is a projective recon-

struction that has been upgraded with a plane that satisfies

cheirality constraints. Empirical results suggest that the par-

ticular choice of the plane does not greatly impact the ap-

pearance of the output images.

One main drawback of our approach is the difficulty of

fitting motion models to complex motions. We have demon-

strated results with two simple motion models, but further

research is needed into more complex models and how to fit

them to observed data. One approach might be to express a

complex motion as a superposition of simpler motions.

Also, since our algorithm blends together multiple ref-

erence images, ghosting or double images may appear if

there are fast moving objects in the original sequence. A

more sophisticated algorithm for detecting moving objects

and interpolating them differently could reduce these arti-

facts.
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