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Abstract

Model organisms are widely used in research as

accessible and convenient systems to study a particular

area or question in biology. Traditionally only a handful

of organisms have been widely studied, but modern

research tools are enabling researchers to extend the

set of model organisms to include less-studied and

more unusual systems. This Forum highlights a range of

'non-model model organisms' as emerging systems for

tackling questions across the whole spectrum of

biology (and beyond), the opportunities and challenges,

and the outlook for the future.

Introduction—model organisms for
understanding biology
Wallace F. Marshall

The transition in biology from description to mechanis-

tic understanding during the 20th century was due in

large part to a conscious decision to employ model or-

ganisms. The idea of a model organism is that if one

wants to study a particular aspect of biology, it makes

sense to employ a simple, tractable organism that facili-

tates experimental work. Bacteriophage, bacteria, corn,

and yeast revealed most of what we know about basic

molecular biology of the central dogma, while flies,

worms, Arabidopsis, and mice played a similar role in

the study of development. The choice of these systems

was not arbitrary—they typically were chosen because

they were smaller, simpler, and faster growing than more

complex organisms such as humans or trees. The term

“model organism” was used to indicate a simplified,

tractable system that could be used to study a larger
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theme of biology, and indicated not so much a feature of

the system itself, as an attitude on the part of the re-

searcher. The “phage group” was not primarily interested

in how bacteriophage worked as an end in itself, but ra-

ther as a means to a larger end of understanding gene

regulation. Bacteriophage were simply a convenient

model for studying the bigger question. An experiment

could be done hundreds or thousands of times more

quickly and cheaply using bacteriophage than human

cells, so it is hardly surprising that research in simpler

systems rapidly outpaced work in humans. Likewise, flies

have been studied for a century not so much because so

many people find flies themselves interesting, but be-

cause flies made genetic analysis of development easy

and fast. In some cases the simplest systems are so sim-

ple that they lack key features of interest—for example,

bacteria and bacteriophage do not employ the full range

of regulatory mechanisms that eukaryotes do—requiring

the use of more complex model systems such as yeast for

the study of chromatin, meiosis, and other eukaryotic-

specific parts of the central dogma. The term model or-

ganism was used to describe these systems and conveyed

the meaning of “an organism that is inherently convenient

to study a particular area of biology”.

Because these model organisms were so convenient,

and made progress so rapid, researchers flocked to use

them. This led to the development of tools and re-

sources specifically for these organisms. Resources in-

clude infrastructure, such as databases and strain

collections, as well as molecular toolkits and extensive

collections of techniques and methods, accumulated

over the years by legions of researchers. The develop-

ment of these resources happened for model organisms

because so many people were working on them, and

because they were already so convenient. Why spend

time developing methods for a less convenient system?

As a result, model organisms began to outpace other

systems not only in terms of their inherent convenience,

but also in terms of the availability of infrastructure to
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study them. This difference was highlighted by the early

genome projects, which for obvious reasons focused on

model organisms. Once the yeast, Drosophila and Cae-

norhabditis elegans genomes were available, it made

even less sense to work on anything else. The gap in

methodology and resources between the select few

model organisms and everything else led to a gradual

linguistic shift in how the term “model organism” was

understood, so that now many people, when they say

model organism, use it not in its original sense, but in-

stead in the sense of “an organism for which a wealth of

tools and resources exist”.

But it was always appreciated that the major model or-

ganisms, while convenient for studying many aspects of

biology, weren’t necessarily the best systems for all pos-

sible questions. None of the standard models were that

good at regenerating, for example, and the extremely

sparse coverage of biodiversity represented by standard

models meant that evolutionary questions had to be

handled very carefully. Model organisms were known

for many of these hard-to-reach areas of biology, but

they were only model organisms in the original sense

(convenient for the study of a biological process) but

not in the newer sense (possessing infrastructure and

resources). Fortunately, the continual decrease in cost

of genomic sequencing has now made it feasible to

determine a genome sequence for these classic but

under-supported models. Even if, as is often the case,

established genome centers refuse to take on a new or-

ganism, citing lack of a large community of researchers,

it is now possible for individual labs to assemble their

own sequences. Once a genome sequence is in hand,

many methods, such as RNA sequencing, can be imme-

diately applied, and other methods such as CRISPR

come into range for development. As a result, there has

been an explosion of interest in extending the set of

model organisms to include both classic systems long

known to be excellent models for particular areas of

biology, as well as completely novel systems that have

never been explored experimentally but which pose fas-

cinating challenges for mechanistic understanding. We

will refer to organisms that are models in the original

sense, but not yet in the newer sense, as “non-model

model organisms” (NMMO).

The present Forum describes the opportunities cre-

ated by several such non-model model organisms, as

well as the challenges faced in developing methods and

resources to study them. The use of genomic informa-

tion is a common thread, as is the emphasis on Biology

writ large. The organisms discussed here were picked

up because of their inherent advantages for studying

key biological questions, including pattern formation

(diatoms, Stentor), branching morphogenesis (Physco-

mitrella, Ashbya), regeneration (Stentor, axolotl), and

aging (killifish). The diversity of life addressable using

NMMO provides new opportunities for studying the

evolution of multicellular life (Volvox), body plans

(Nematostella, tardigrades, cerebral organoids), and cell

biological processes (Oxytricha, Naegleria, Physcomi-

trella, fission yeasts). Other questions now being asked

using NMMO are more on the sci-fi end of the

spectrum, including suspended animation (tardigrades,

killfish), phase transitions (Ashbya), and nanobiotech-

nology (R bodies, diatoms). All of these examples have

one thing in common—exploiting the unique biological

features of a special organism to address questions of

general importance. These organisms aren’t being stud-

ied because they are weird, or because of a fondness for

biodiversity, but because they make it easier to ask

central questions about biology that have remained un-

answered to this day.

Diatoms are ready for their close-up
James J. Russell and Julie A. Theriot

Diatoms are unicellular eukaryotes abundant in aquatic

environments. Their photosynthesis represents a sig-

nificant fraction of global primary productivity and

oceanic carbon sequestration [1]. Among cell biologists,

however, diatoms are best known for their extraordin-

ary and beautifully nano-patterned cell walls, made of

silicon dioxide—that is, glass [2] (Fig. 1a). Many of us

first encountered diatoms in the form of isolated glass

cell walls, known as frustules, mounted on slides used

as a measure of resolving power, for dark field alignment

of microscopes, or in scanning electron micrographs

invoking alien-like architecture (Fig. 1b–d). Their exquis-

ite complexity is reminiscent of high-magnification images

of snowflakes; however, the diatom frustules are created

by genetically encoded developmental programs, and as

such are highly reproducible and characteristic for many

of the 10,000 to 100,000 estimated species [3]. The variety

found even in a single environmental sample can be suffi-

cient to inspire endlessly fascinating but very tiny art [4].

How do these cells design and build their glass houses?

A wide variety of organisms, including protozoa such

as radiolarians, many vascular plants, and even some

metazoans such as the hexatinellid sponges, have inde-

pendently developed the ability to precipitate silicon di-

oxide from soluble silicon compounds (for example

silicic acid) in water [5], in a process analogous to the

more familiar biomineralization processes used by

humans and other vertebrates to precipitate calcium

phosphate in our bony skeletons, or by mollusks to

make shells using calcium carbonate. In all these cases,

the inorganic material is carefully organized and pat-

terned by active cellular processes, and organic mo-

lecules are intimately intertwined with the minerals in
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ways that enhance their material properties and de-

termine their characteristic larger-scale architectures

[6, 7]. For diatoms, the fundamental building block of

the glass frustule is a near-spherical silicon dioxide

nodule about 40 nm in diameter [8]. These precipitated

nodules can be formed from soluble silicic acid by sev-

eral characterized diatom proteins, notably the silaffins

[9]. However, the mechanisms by which the diatom

cells assemble these simple structural precursors into

highly regular nanoscale and microscale patterns in the

valve of the frustule are largely unknown. While subcel-

lular microtubule and actin distributions show

intriguing correlations with some frustule features [10]

and pharmacological disruption of microtubules can

lead to defects in pattern determination [11], there is

essentially no molecular information available about

the mechanisms of pattern formation.

Why do we know so little about the cell biological

mechanisms of these lovely organisms? One major bar-

rier has been the lack of useful classic genetics in any

diatom species. All characterized diatoms grow vegeta-

tively with diploid genomes, making random mutagen-

esis strategies difficult, and while individuals of many

species have been observed to undergo a sexual cycle in

Fig. 1. Images of various diatom species. a Differential interference contrast images of (clockwise from top left): Striatella unipunctata, Odontella

sp., Stephanopyxis turris, Pseudo-nitzschia sp., Thalassiosira sp., Cylindrotheca sp., Asterionellopsis glacialis, Skeletonema costatum, Grammatophora

oceanica, and Chaetoceros sp. Images are courtesy of Colleen Durkin and reproduced from [324]. b Differential interference contrast image of

Coscinodiscus excavatus, image courtesy of Robert Lavigne. c–d Scanning electron micrographs of Stephanopyxis turris theca (c) and nanoscale

features (d), images courtesy of Mark Webber. e-f Cylindrotheca fusiformis before cell division (e) and during cell division (f). Top: phase contrast.

Bottom: polymerized silica labeled with HCK-123 dye (green) and endogenous chlorophyll fluorescence (red). Scale bar in b 20 μm
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nature [2], they have proved to be shy about reliably

mating in the test tube. Despite the lack of classic gen-

etics, several recent advances have made possible the

examination of cell biological questions in diatoms

using reverse genetic and post-genomic approaches.

The first complete genome sequences for two widely

cultivated diatoms, Thalassiosira pseudonana and

Phaeodactylum tricornutum, were released in 2004 and

2008, respectively [12, 13], and several additional se-

quenced diatom genomes have been annotated and

made publicly available, belonging primarily to species

difficult to culture [14, 15]. Although diatoms are

phylogenetically distant from the opisthokonts, including

fungi and metazoans, where we have developed our most

complete understanding of the mechanisms of regulation

of eukaryotic gene expression, nevertheless the structure

of diatom genomes appears to be sufficiently similar to

our familiar model species that it has been possible to

generate robustly annotated genomes, with support from

diatom EST libraries and RNA-sequencing data.

Critically, several model diatom species have been

shown to be genetically transformable by either electro-

poration [16] or bacterial conjugation [17], and capable of

expressing tagged transgenic protein constructs, including

GFP fused to integral components of the glass frustule

[18]. In addition, CRISPR-Cas9 genome editing has re-

cently become feasible in model diatoms [19, 20], and sev-

eral diatom viruses have been sequenced [21] which may

provide useful resources for building tools as so many ani-

mal viruses have done before them. Owing to the relative

ease of adapting these modern genetic tools to diatoms,

several labs are engaging additional tools with promising

results, including proximity proteomics, live cell micros-

copy, and super-resolution fluorescence microscopy [22].

What is next for the study of pattern formation in dia-

toms? Unfortunately, the two model diatoms whose ge-

nomes have been robustly annotated are not among the

more charismatic of this clade. They are both small and

structurally simple; indeed Phaeodactylum tricornutum

is poorly silicified and does not produce clear nano-

patterns, and the tiny valve of Thalassiosira pseudonana

displays only a rudimentary silica pore structure. A few

more annotated genomes for a few elaborately struc-

tured but still rapidly growing laboratory strains would

be particularly useful; one enticing candidate is Cylin-

drotheca fusiformis, a large (~50 μm length), motile dia-

tom with gracious long arms and a dramatic helical twist

along its valvar (cell division) axis (Fig. 1e). C. fusiformis

is amenable to electroporation-mediated genetic trans-

formation (unpublished data). In addition to the intrinsic

value of diatoms as a case for studying pattern formation

and biomineralization, diatoms have also attracted atten-

tion as sources for large-scale biomolecule production

(including lipids for fuel or nutrition) [23], and further

development of molecular methods for diatoms could

enable genetic optimization for this purpose. Diatoms

are easy to grow and wondrous to observe, and now is

an ideal time to apply modern approaches to reexamine

the ancient mystery of how diatoms achieve their nano-

scale elegance.

Stentor coeruleus as a model for single-cell
regeneration
Pranidhi Sood and Wallace F. Marshall

Individual cells can exhibit a great deal of cellular com-

plexity in the organization of subcellular features and

organelles. These subcellular patterns must be estab-

lished and maintained to ensure a cell functions proper-

ly—for example, the apico-basal polarity of epithelial

cells is required for them to correctly organize in sheets

[24]. Cells are not small and amorphous, therefore, but

can display complex and invariable internal organization.

In fact, some even rival the size and complexity of multi-

cellular embryos. How is morphological complexity cre-

ated and regulated within a single membrane bound sac

of cytoplasm?

Understanding how analogously complex structures

arise in multicellular organisms formed the basis of the

field of developmental biology. To study these problems

before the availability of genetic tools, early researchers

took advantage of systems that could regenerate, for

example, the planarian flatworm. Similarly, studying the

regeneration of cells can provide a window into the origins

of cell geometry by decoupling assembly of structures

from the normal growth processes in the cell. Historically,

the analysis of regeneration in cells was in large part car-

ried out using the giant ciliate Stentor coeruleus (Stentor)

as an experimental system (Fig. 2). Stentor is a freshwater

pond organism, notable for its bright blue coloration and

the fact that a single cell can grow to be well over a milli-

meter in length. Each cell has an invariable, complex anat-

omy with an oral apparatus at one end, a holdfast at the

other, and longitudinal stripes of blue pigment, separated

by rows of cilia subtended by microtubule bundles, run-

ning down the length of the cell.

Stentor has many advantages for the study of regener-

ation at the single-cell level. First, it has unrivalled abil-

ities to heal wounds, allowing the cell to recover from

massive perturbations. For example, if a cell is bisected,

each half will regenerate a normal cell [25]. The ability

to sustain and recover from very large wounds is ac-

companied by the ability to graft pieces back together

[26]. Such cellular scale “cut-and-paste” experiments

are reminiscent of those that drove the field of experi-

mental embryology. A comprehensive review of the ex-

perimental surgical work in Stentor was provided by

Tartar [27]. An equally important feature of Stentor is
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the fact that its prominent organelles provide a clearly

visible, built-in coordinate system. For example, a cell’s

entire surface is covered with visible features including

long, oriented blue pigment stripes. These provide a

frame of reference to determine if a cell has been cor-

rectly re-formed or if different parts of the cell are in

the correct relative positions. Without these naturally

occurring fiducial markers, it would be far more diffi-

cult to assess the progress of regeneration. It is known

that the nucleus [27, 28] and transcription [29–32] are re-

quired for most regeneration processes in Stentor. How-

ever, there have been comparatively few molecular studies

of regeneration in Stentor, owing in part to the challenges

of growing large quantities. Stentor divides with a doub-

ling time of several days, and it can take a long time to

grow biochemically useful quantities.

Modern genomic technologies remove the need for

growing huge numbers of cells and these tools can poten-

tially shed light on the molecular mechanisms of

regeneration. The key pre-requisite is to have the genome

sequence. This was a major challenge in developing Sten-

tor as a model system, because genome centers and se-

quencing programs proved unwilling to sequence an

organism that didn’t already have a large community of

researchers studying it. In the end, we took a DIY ap-

proach, sequencing and assembling the genome in our

own lab in collaboration with the DeRisi lab at UCSF, and

then enlisting a team of experts to analyze the resulting

genome. Through teamwork, we were recently able to

publish the first Stentor genome [33].

With the Stentor genome in hand, we can begin to de-

cipher the molecular networks behind cellular level regen-

eration, using techniques such as RNA-seq. We know that

transcription is a key requirement for regeneration from

foundational biochemical studies [29–32, 34], though spe-

cific transcripts driving regeneration were not identified.

Also, there is evidence that transcripts synthesized during

regeneration can become physically associated with newly

formed organelles [32, 35], suggesting that RNA

localization might play a role in patterning the cell as it

does in the Drosophila melanogaster embryo. In the lab,

we have recently developed an RNAi methodology for

Stentor [36] that will allow us to functionally test the role

of any genes that appear to be specifically induced during

regeneration.

We expect that our molecular studies of regeneration

and re-patterning in Stentor will reveal fundamental

principles of how cells generate and regulate morph-

ology, a general phenomenon relevant to the survival of

all living systems. Cancer cells, for example, are marked

by their loss of subcellular organization and recent

studies have linked pathways that regulate polarity to

those that suppress tumors [37]. How an individual cell

establishes and maintains its subcellular organization is

therefore a vital area of study in the initiation of tumori-

genesis. Additionally, these studies could inform future

a b

Fig. 2. Single-cell regeneration in Stentor coeruleus a A living Stentor cell. The oral apparatus, located towards the upper left of the image, is a

large ring of cilia that collects food particles from the surrounding pond water. At the other end of the cell, a holdfast attaches the cell to the

surface of pond plants. b Regeneration after bisection of a Stentor cell. The panel on the left shows the longitudinal strips of blue pigment that

serve as markers for cellular pattern. When a Stentor cell is cut in half with a glass needle, as indicated by the dotted orange line, each half initially

heals its wounds to prevent cytoplasm from leaking out (middle panels) and then within approximately one day, regenerates a complete cell

(right panel), with the anterior half regenerating a new holdfast, and the poster half regenerating a new oral apparatus. Both halves are able to

regenerate because the cell contains a long polyploid macronucleus running down the length of the cell, such that when a cell is cut, both

halves retain many copies of the genome
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technology development ranging from novel regenera-

tive therapies that reactivate pathways in damaged cells

to the creation of self-healing cellular robots.

Life with 16,000 chromosomes: Oxytricha as a
model system to study genome biology, epigenetic
inheritance, and somatic differentiation
Laura F. Landweber

The unicellular eukaryote Oxytricha with its extreme

genomic architecture, provides a model system for many

studies, including chromosome biology, post-zygotic de-

velopment, epigenetics, and genome rearrangement.

Oxytricha is a ciliated protist, and like other ciliate gen-

era, including Stentor (see the preceding section from

Sood and Marshall in this Forum) and the classic

models Tetrahymena and Paramecium, Oxytricha

shares the feature of nuclear dimorphism—the coexist-

ence of two types of nuclei in one cell. The archival mi-

cronucleus is mostly transcriptionally silent but houses

the complete diploid germline genome, which is large

at over 500 Mb on at least 75 chromosomes [38], and it

produces haploid micronuclei for cell mating. The sec-

ond type of nucleus, the somatic macronucleus, is a

highly differentiated organelle devoted to gene expression.

It develops from a copy of the new zygotic micronucleus

after mating. Hence, nuclear differentiation in Oxytricha

offers a microcosm of animal development in a unicellular

model, as though development progresses to a sophisti-

cated two-cell stage, with differentiated germline and

soma, but without cell division. This results in a single

protist cell with multiple nuclei. Additionally, some ciliate

cells contain more than one nucleus of either type.

The process of forming a new macronucleus involves

massive DNA elimination, rearrangement, and amplifica-

tion [39]. Remarkably, approximately one-fifth of all Oxy-

tricha gene loci are scrambled in the germline [38]. These

loci require a combination of translocation and/or inver-

sion of DNA segments, in addition to DNA deletion, to

assemble the expressed macronuclear versions (Fig. 3d).

The combination of removal of nearly all intergenic DNA

and loss of all satellites and transposons results in a som-

atic genome comprising over 16,000 tiny chromosomes

that average approximately 3 kb, as well as a much smaller

genome size (approximately 50 Mb) [40]. Macronuclear

chromosomes lack centromeres but are capped with their

own telomeres and telomere binding proteins, and thus

classically Oxytricha was one of the first model systems

for studies of telomeres and their associated proteins [41,

42]. Amplification of these “nanochromosomes” to an

average copy number of ~1900 in the macronucleus [39]

creates a DNA-rich and physically enormous (10–30 mi-

cron) macronucleus [43] (Fig. 3c).

A phenomenal genome editor, Oxytricha reorganizes

its zygotic genome by stitching together over 200,000

germline DNA segments, requiring a nearly equal

number of programmed DNA breakage and joining

events [38]. These are accompanied by RNA-guided

DNA repair [44]. Noncoding RNA molecules are at the

heart of orchestrating all these complex events, with

long, noncoding, maternal RNA transcripts of the pre-

vious generation’s MAC genome supplying templates

for chromosome rearrangements [44, 45] and small

RNAs marking the specific germline regions to be

retained in the new somatic genome [46]. Therefore,

Oxytricha provides a paragon for studies of DNA and

chromosome dynamics, noncoding RNA-chromosome in-

teractions, DNA breakage, recombination, and repair, and

transposon participation [47]. The much reduced size of

Oxytricha’s somatic nanochromosomes also makes them a

unique platform for basic studies of chromatin biology

(Beh et al., unpublished data) as well as gene regulation,

genome annotation, and gene discovery [48].

The cytoplasmic mixing that occurs during mating

(Fig. 3d), coupled to the fact that the cytoplasm and cell

surface material of exconjugant cells explicitly derive from

the parental cells, make ciliates excellent model organisms

to study epigenetic inheritance (reviewed in [49]). RNA

molecules are among the contents that can be directly

passed on from parent to exconjugant daughter cell, and

RNA-mediated transgenerational inheritance has been

demonstrated via injection of foreign long or small RNAs

that reprogram genome rearrangement pathways [44, 46].

These approaches for RNA-guided gene editing, facilitated

by the natural machinery in the cell, also provide tools for

creating somatic gene knockouts or fusion genes [50]. For

example, the programmed retention of short genomic re-

gions that interrupt reading frames [46] can introduce

premature stop codons and lead to the construction of la-

boratory strains (that can be stored as frozen cysts) with

an inability to express a gene that is normally found in the

macronucleus. Additional tool development is underway

and still more is needed, for example, to permit parallel

screens, but Oxytricha is emerging as a powerful and

unique model system to probe features of complex

eukaryotic cells and chromatin within the confines of a

single cell.

Naegleria gruberi: one cell with two extreme
forms of motility
Lillian Fritz-Laylin

Organisms from across the eukaryotic tree rely on two

predominant forms of cell motility—crawling and swim-

ming [51]. Each of these modes of locomotion arises

from the basic characteristics of one of two conserved

cytoskeletal systems: flagella used for cell swimming

derive their power strokes from the sliding of stiff micro-

tubules, while crawling motility is driven by the expan-

sion and contraction of dynamic actin networks. The
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Fig. 3. Oxytricha as a model system to study genome biology, epigenetic inheritance, and somatic differentiation. a-c Single (a,c) and mating (b)

Oxytricha cells. Blue indicates DNA; Yellow is tubulin, highlighting the cilia. i = micronucleus, a = macronucleus. Image in (a) courtesy of National

Human Genome Research Institute, (b) courtesy of Robert Hammersmith, Ball State University and (c) courtesy of Wenwen Fang and reproduced from

[325]. d The sexual life cycle of Oxytricha trifallax and rearrangement of scrambled genes, reproduced from [47]. All vegetative cells (stages 1 and 10)

contain one (bi-lobed) macronucleus (MAC) and two micronuclei (MIC). The two MIC are genetically identical, but for simplicity we show only one

here. (2) When starved, two cells of compatible mating types partially fuse to initiate conjugation. Cell fusion occurs soon after mixing of mating types.

(3) Both vegetative micronuclei in each partner enter meiosis I. (4) One product from each meiosis I is promoted to meiosis II, and one of the four

meiosis II products is promoted to a post-meiotic mitosis. (5) The sister products of one mitosis develop into gametic nuclei: a posterior stationary and

an anterior migratory nucleus. This happens in both partners, such that both cells emerge with identical zygotic genotypes after the exchanged

migratory nucleus fuses with the retained stationary nucleus (6), resulting in (7) two genetically identical exconjugant cells. (8) The newly formed

zygotic nucleus divides twice: one daughter nucleus is destroyed, two become the new micronuclei, and (9) the parental macronucleus in each partner

cell degrades, leaving telomere-to-telomere RNA transcripts behind to guide rearrangement [44, 45]. One zygotic nucleus differentiates into the new

macronucleus. This cycle takes approximately 48–60 h. Shown inside the circle are representative MIC and MAC versions of a scrambled gene. Retained

DNA segments in purple; deleted DNA regions, including flanking DNA, in yellow; numbered segments correspond to the order in the expressed MAC

version; segment 2 is inverted; telomeres are shown as black bars at the ends of the MAC chromosome
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noninfectious Naegleria gruberi (Naegleria) takes on two

extremely different forms during its lifecycle: an amoeba

that crawls using actin, and a flagellate that swims with

two flagella (Fig. 4). The rapid differentiation between

these forms makes Naegleria a prime model for under-

standing both types of cell motility [52, 53].

Naegleria amoebae crawl and divide without any ob-

served cytoplasmic microtubules [53, 54]. Not only does

Naegleria undergo closed mitosis (the mitotic spindle is

always contained within the nuclear envelope), but the

barrel-shaped mitotic spindle lacks centrioles [54] and is

thought to be built from divergent tubulin expressed

prior to mitosis and degraded after the completion of

cytokinesis [55]. Therefore, and remarkably, all cellular

functions except mitosis are likely achieved without

microtubules—including crawling at speeds topping 120

microns per minute [56]. This makes Naegleria the

fastest crawling cell that I am aware of, at least twice as

fast as fish keratocytes, Dictyostelium discoideum, and

human neutrophils [57–59]. Chemical inhibitor data

from other organisms suggest that rapid actin-based cell

migration may not require microtubules [60, 61], and

Naegleria provides biologically relevant corroboration of

this hypothesis. Furthermore, there is a growing appreci-

ation that there are multiple modes of cell migration,

each driven by distinct molecular mechanisms [62–64].

Unpublished data clearly indicate that Naegleria, like D.

discoideum and some human cells [65, 66], migrates both

by using actin-filled pseudopods (a mode we call alpha-

motility) and by blebbing (a delamination of the plasma

membrane from the underlying actin cortex) (Fig. 4).

The differentiation of Naegleria from crawling amoebae

to swimming flagellates involves assembling an entire

microtubule cytoskeleton de novo, including two basal

bodies (centrioles), the two flagella (cilia) that they pattern,

and an entire cortical microtubule array [53, 67–71], as

well as coordinating this new cytoskeleton with the pre-

existing actin cytoskeleton. The process of differentiation

includes transcribing and translating all of the micro-

tubule cytoskeletal components—including tubulin—yet

takes only 60–90 minutes [53, 67, 69, 72–74].

Differentiation is easily synchronized, with >90% of cells

assembling basal bodies de novo within a 5–10-minute

window [54, 67, 71]. (In contrast, mammalian cells take

on the order of 24 hours to assemble centrioles de novo,

typically after large experimental perturbations [75–77].)

Recent evidence indicates that only one basal body is

formed de novo, with a second in quick succession by

mentored (previously “templated”) assembly [78]. The

speed and synchrony of Naegleria differentiation makes it

Fig. 4. Naegleria gruberi cells undergo a dramatic transformation between crawling amoebae and swimming flagellates, assembling an entire

microtubule cytoskeleton along the way. The crawling amoebae (top left) lack cytoplasmic microtubules, but use their actin cytoskeleton (pink) to

crawl with two types of protrusions (insets): actin-filled pseudopods and cytoplasm-filled spheres called blebs that appear after delamination of

the cell membrane from the underlying actin cortex. Amoebae can respond to a variety of environmental signals by differentiating into a vigorously

swimming flagellate (upper right). This process requires the transcription, translation, and assembly of an entire microtubule cytoskeleton (green),

including tubulin. Amoebae also can undergo a closed mitosis (lower left), during which the nuclear envelope remains intact, isolating the spindle

microtubules (blue) from the cytoplasm. Mitotic microtubules are thought to be built from divergent tubulin isoforms that are expressed prior to

mitosis, and then rapidly degraded after cytokinesis
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a useful model for studying centriole assembly, and in fact

it was the organism in which de novo centriole assembly

was first widely accepted [54]. Naegleria is also well suited

for understanding how cells build motile flagella, and tran-

scriptional synchrony of differentiation has been used to

identify novel centriole and flagellar components widely

conserved among eukaryotes, including humans [74].

Clearly, Naegleria is an organism uniquely positioned to

reveal new insights into both crawling and swimming mo-

tility. A completely sequenced genome and publicly avail-

able transcriptional profiling of differentiation provide

first steps toward harnessing this potential [51, 74]. The

greatest roadblock remains the lack of usable molecular

transformation and gene manipulation techniques, a hur-

dle we and others are actively attempting to overcome.

R bodies: simple, dynamic protein lattices
Jessica K. Polka

Long-range biological motion is typically the product of

nucleotide-dependent motors. For example, actomyosin

contraction, the bacterial flagellum, and intracellular

transport along microtubules all rely on nucleotide-

dependent processes carried out by complex assemblies of

proteins that can be difficult to reconstitute and engineer.

Therefore, if we wish to control biological motion for bio-

technological applications (for example, in delivering

therapeutic cargoes across membrane barriers), we should

instead look for simpler systems.

Some force-generating biological machines are com-

posed of dynamic lattices of proteins that amplify, through

polymerization, the nanoscale conformational changes of

their protomers to create large scale motion. Unrelated to

one another in sequence or structure, these lattices are

present in multiple domains of life. They include forisomes

(biological “stop-cocks” that can expand to occlude fluid

flow in the sieve tubes of plants [79, 80]), spasmonemes

(the motile elements in the stalk of Vorticella that rapidly

contract to withdraw the ciliate to its attachment site [81]),

and R bodies (coiled structures formed in the cytoplasm of

bacteria that extend, when triggered with low pH, to break

membranes). Each of these structures undergoes large scale

motion without relying on nucleotide hydrolysis. Because

R bodies are large, genetically simple, and chemically ro-

bust, they constitute a model system to study the mecha-

nisms of controlled self-assembly and conformational

rearrangements that drive functionally related protein ma-

chines. Furthermore, they have the potential to act as a

powerful chassis for engineering actuators for a variety of

biotechnology applications.

In nature, R bodies are coiled ribbons of protein

approximately 500 nm in diameter that bacteria use to de-

liver toxins to eukaryotes. Upon exposure to a trigger (such

as low pH) they rapidly extend in a telescopic fashion to

form lancets tens of microns long. This violent extension is

driven by protonation, does not require nucleotide fuel

sources, and is fully reversible (Fig. 5). Sequences encoding

Fig. 5. R-bodies transition between two states. a Type 51 R bodies reversibly transition between a rolled state at neutral pH and a tube state at

low pH by the extension of the ribbon from the center of the coil. The state depicted in the middle is transient. b This transition is visible

macroscopically; coiled R bodies sediment and extended R bodies remain in solution. c When an R-body-containing bacterium is ingested by a

sensitive strain of paramecium after being shed by a “killer” strain, the extension of the R body is triggered by the acidic environment of the food

vacuole. Extension causes the rupture of the bacterium and the food vacuole, releasing co-expressed toxins that ultimately result in the death of

the sensitive paramecium. Images adapted from [89]

Russell et al. BMC Biology  (2017) 15:55 Page 9 of 31



R bodies are widespread [82], but they were first discovered

in Caedibacter taeniospiralis, an obligate bacterial endosym-

biont of Paramecium tetraurelia [83, 84]. Strains of the

paramecium that carry C. taeniospiralis are capable of kill-

ing paramecium strains that do not carry the endosymbiont.

Bacteria containing the R bodies are shed into the environ-

ment, where they are consumed by sensitive strains of para-

mecium. In the acidic environment of the paramecium

phagosome, the R bodies extend to puncture the membrane

and mix its contents with the cytoplasm (Fig. 5c) [85]. Feed-

ing a diet of purified C. taeniospiralis is lethal to these sensi-

tive strains, but importantly, feeding purified R bodies is not

[86]. This suggests that the R body itself is not toxic; rather,

it acts as a delivery system for a co-expressed toxin.

The mechanisms of R body assembly and actuation in

response to low pH are largely unknown. Fortunately, R

bodies are extremely simple and eminently tractable: one

operon encoding four ORFS (each <120 amino acids) is

sufficient for their formation in Escherichia coli [87, 88]. By

an unknown mechanism, two of these small, nanometer-

scale polypeptides can self-assemble into an organized

structure many orders of magnitude larger than their indi-

vidual size [87]. This process is representative of a broad

biological challenge facing all cells: producing long-range

order from components that interact at short length scales.

By understanding the assembly processes, we may enable

the production of actuators of specified mechanical proper-

ties and materials with tunable geometries.

These assembled R bodies are resistant to sonication,

detergents, and diverse buffer conditions, making them

stable and robust force-generating machines that could

perform work in a variety of micron-scale devices. At the

same time, their behavior can be probed with a simple vis-

ual assay: under appropriate buffer conditions, contracted

R bodies sediment, while extended R bodies remain in so-

lution [89]. This change can be easily seen with the naked

eye as well as measured quantitatively by absorbance in a

plate reader (Fig. 5b). This assay enables R bodies to be

studied in a high-throughput fashion and enabled the

identification of mutant R bodies that can transition at

lower or higher pH than wild type [89].

R bodies’ amenability to engineering suggests that they

could be used to deliver biologically active payloads

across biological barriers. For example, R bodies could

be conjugated to cargo such as DNA, siRNA, labeled

proteins, and other chemicals. This strategy could also

be used to transform recalcitrant cell types or to deliver

high-value cargoes with improved efficiency.

The awesome power of comparative fission yeast
genetics
Snezhana Oliferenko

Working on a “non-model” organism can be exception-

ally rewarding because of the promise of new biology,

new insights into old problems, and a whole set of new

questions to solve. It might be especially tempting to

venture to understudied branches of the evolutionary

tree to capture the widest possible range of biological di-

versity. Yet, based on our experience studying mitotic

division in two fission yeasts, Schizosaccharomyces

pombe and Schizosaccharomyces japonicus, I want to

make a case for exploring the cell biology of closely re-

lated species. Such a comparative approach is comple-

mentary to the development of new “stand-alone”

systems discussed elsewhere in this Forum and I would

like to argue that it can be particularly powerful if one of

the two species is an established model organism.

Eukaryotes have evolved a staggering variety of mitotic

mechanisms. Different species and even different cell

types within the same organism may take various routes

to mitotic spindle assembly [90], nuclear envelope (NE)

remodeling [91], and cytokinesis [92]. For example, all

dividing eukaryotic cells must remodel the nuclear enve-

lope (NE) to allow chromosome segregation and forma-

tion of the daughter nuclei. This invariably involves

major rearrangements of the NE–endoplasmic reticulum

system coordinated with mitotic spindle dynamics. How-

ever, the strategies used to achieve the net result vary

from fission of a seemingly intact mother NE into two

daughters (“closed” mitosis) to a virtual loss of NE iden-

tity in prophase followed by its reassembly around the

segregated genomes (“open” mitosis) and several strat-

egies in between [91]. Although work by many groups

provided detailed insights into the mechanisms under-

lying NE remodeling in a number of organisms [93, 94],

we understand very little about how these circuitries

evolve. Investigating this process in closely related ex-

perimentally tractable systems may explain how vari-

ation arises in evolution, probe how mitotic nuclear

dynamics intersects with the rest of cellular physiology,

and inform our understanding of basic NE biology and

nuclear origins.

Fission yeasts are a small clade at the base of the

Ascomycete phylogenetic tree with overall conservation

of gene content and gene structure between the four

species [95]. S. japonicus forms an early diverging

branch within the clade. Strikingly, S. pombe, a widely

used model organism, undergoes closed mitosis but S.

japonicus breaks the nuclear membrane during anaphase

[96, 97] (Fig. 6). We linked this divergence to a simple

scaling argument—since nuclei maintain constant vol-

ume throughout closed division, cells must increase the

nuclear surface area to form two daughter nuclei from

one. It turns out that S. japonicus does not expand the

NE during mitosis, unlike S. pombe, and, therefore, must

break it to allow chromosome partitioning [96]. Further

work showed that divergent regulation of phospholipid

biosynthesis in the two yeasts through the phosphatidic
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acid phosphatase Lipin supports the differences in mi-

totic NE surface area control [98]. These observations

may be a starting point in linking the underlying meta-

bolic properties of the cell to the emergence of a par-

ticular mode of mitosis.

Another important point of divergence between the

two sister species relates to differences in regulating

chromatin–NE interactions during mitosis, with unex-

pected links to nucleolar dynamics. We have shown that

although chromosomes must detach from the NE for

the duration of mitosis in organisms with closed nuclear

division [99, 100], S. japonicus has evolved an anaphase-

specific mechanism supporting association between the

nuclear pore complexes (NPCs) and chromatin [101].

These interactions executed by the inner nuclear mem-

brane protein of the LEM domain family Man1 ensure

equal partitioning of the nuclear membrane and effi-

cient inheritance of the NPCs by the daughter nuclei,

which essentially co-partition with segregating chromo-

somes (Fig. 6). It remains to be seen if variations on

this mechanism function in other cell types with rela-

tively early NE reassembly, for example, during karyo-

mere formation in embryonic divisions in some animals

[102, 103]. Yet another LEM domain protein, Lem2,

functions in supporting timely NE breakage and refor-

mation in S. japonicus [96]. Thus, this organism can be

used as a simple model to elucidate the poorly un-

derstood molecular mechanisms responsible for func-

tions of the evolutionarily conserved LEM proteins in

maintaining nuclear structure and integrity across

eukaryotes [104–106]. Perhaps more surprisingly, in S.

japonicus chromatin–NE interactions appear to pro-

mote disassembly of the nucleolus that takes place in

cells where NE integrity is lost during mitosis but not

in organisms with closed nuclear division [101].

The examples above illustrate how comparing related

organisms may illuminate evolutionary innovations

required for attaining specific functions or identify con-

served elements obscured by grossly different molecular

toolkits of distant species. Knowing one of the model

systems well—in our case, S. pombe—allows for an easier

transition to a related organism, in terms of both recog-

nizing interesting phenotypes and adapting existing

technical tools. Another important advantage of work-

ing in closely related systems is the relative ease of pin-

pointing the divergent nodes in otherwise conserved

networks supporting cell biological processes, and ret-

roengineering the processes with novel properties in

the sister species. We have been using the latter ap-

proach in our studies of mitotic NE dynamics but also

to investigate division plane positioning in the two

yeasts. Cells of both species divide in the middle but

our studies suggest that S. pombe, a popular model for

cytokinesis research, has evolved an unusual medial

division ring assembly mechanism based on neofunctio-

nalization of one of the recently duplicated anillin para-

logs [107]. Importantly, unlike S. pombe that assembles

the actomyosin ring in metaphase and requires a mech-

anism preventing its precocious constriction, S. japoni-

cus initiates ring assembly only at mitotic exit, similarly

to animal cells [107, 108] (Fig. 6). In general, the

metazoan-like properties of S. japonicus division ring

assembly combined with mitotic NE breakdown make

it an attractive new model for studying regulation and

mechanisms of cytokinesis [109].

The salient differences in cell biology between the two

species outlined above are likely just the tip of the

iceberg. S. japonicus can be used as a valuable system on

its own to study phenomena not apparent in the es-

tablished yeast models. Importantly, it has all the ad-

vantages of the simple experimental system, including

straightforward culturing, short cell cycle, and the ease

of genetic manipulations—the latter owing largely to

Hironori Niki whose group developed S. japonicus

Fig. 6. Schizosaccharomyces japonicus and Schizosaccharomyces pombe exhibit divergent mitotic programs. Left: Live S. pombe and S. japonicus

cells expressing the endoplasmic reticulum marker GFP-ADEL and the nucleoplasmic protein Nhp6-mCherry. Note a considerably larger cell size

in S. japonicus. Scale bar 5 μm. Right: Schematic representation of mitotic division in the two sister species. Adapted from [108], Current Opinion

in Microbiology, Vol 28, Gu, Y. and Oliferenko, S., Comparative biology of cell division in the fission yeast clade, p.18-25, Copyright (2015), with

permission from Elsevier
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genetic tools [110, 111] and Nick Rhind who spear-

headed the fission yeast clade genomes project. Beyond

its utility studying mitotic NE dynamics and other as-

pects of mitotic division, S. japonicus could become a

great system for investigating the cell biology of hyphal

transition [112, 113], energy metabolism [114], and

centromere biology [95, 115]. Yet, it is capitalizing on

the “experiment of Nature” and using the two sister spe-

cies alongside each other that offers conceptually new

possibilities in cell biology by expanding its evolutionary

dimension.

Ashbya gossypii as a model for cytoplasm
organization
Therese Gerbich and Amy Gladfelter

All cells face challenges in spatial organization of their

contents. One solution used by eukaryotic cells is to

create individual membrane-bound compartments for

specialized cellular functions. But cells also need to be

able to organize all the cytosolic spaces between these

compartments so that biochemistry, signaling, and pro-

tein production can be tightly regulated. Gradients are

one example of organization that is widely observed

from micron-sized bacteria to developing insect em-

bryos [116, 117]. How cytosolic patterns are established

and maintained in spite of the dissipative power of dif-

fusion is an area of active investigation in a variety of

systems. However, the problem is especially striking in

syncytial cells where many nuclei are enclosed in a

large, single cytoplasm. Syncytia are found in diverse

contexts, including human muscle and placental cells,

many fungi, developing insects, and plant tissues. These

special cell types face even greater challenges in organ-

izing their cytosolic contents, making them a powerful

place to study fundamental principles of cytoplasmic

organization.

A non-traditional syncytial model system that has been

enormously useful for uncovering principles of cytosolic

organization is the filamentous fungus Ashbya gossypii

(Ashbya)(Fig. 7, left). Ashbya is an ascomycete that is

closely related to Saccharomyces cerevisiae, but with a

rather different lifestyle [118–120]. It has a small gen-

ome with ~4000 genes, tolerates replicating plasmids, is

readily transformed, and is amenable to molecular genet-

ics via gene targeting [121–123]. It has been a valuable

system for understanding highly polarized growth and

nuclear movement, and is even used as an industrial

producer of riboflavin. What makes the system notable

for cytoplasmic organization studies is that the many nu-

clei in the continuous cytoplasm go through the nuclear

division cycle asynchronously [124]. This is remarkable

because one would expect that all nuclei would go

through the cell cycle together, as global levels of each

cyclin protein rise and fall in the common cytoplasm. In

studying this paradoxical cell cycle, new modes of cyto-

solic organization have been revealed.

Ashbya nuclei create local zones within the cytoplasm

to insulate neighboring nuclei from one another so that

their division cycles don’t entrain. One way these

territories of cytosol form is through an RNA-binding

protein that self-associates and positions mRNA tran-

scripts of a G1 cyclin near nuclei [125] (Fig. 7, middle

and left). The protein contains a large polyQ tract that

enables it to form phase-transitioned assemblies that

then trap cyclin transcripts in the vicinity of nuclei. If

this protein can no longer undergo a phase transition

and position cyclin transcripts, nuclei in the shared

cytoplasm divide more synchronously [125, 126]. While

the ability of proteins to undergo liquid phase transi-

tions in vivo and in vitro had been observed previously,

studies in Ashbya are one of the best connections of a

biological function (positioning of cyclin transcripts to

establish and maintain nuclear asynchrony) to regulated

protein phase transition.

Cytosolic compartments are not just important for nu-

clear cycling in Ashbya but also in cell polarity. Ashbya

Fig. 7. Ashbya gossypii as a model for cytosolic organization. Left: image of a growing young mycelium. Middle: A.gossypii hyphae with clustered

mRNA transcripts. Asynchronously cycling nuclei are shown in blue and clustered cyclin transcripts in orange. Right: cartoon depiction of A.gossypii

hyphae with nuclei and clustered transcripts. Scale bars 5 μm
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grows exclusively in a polarized manner at cell tips such

that many polarity axes coexist in a shared cytoplasm

and new growth sites have to be established throughout

the cell. The same RNA-binding protein that acts near

nuclei forms physically distinct liquid compartments at

incipient and established growth sites. These liquid

droplets are important for positioning RNAs involved in

polarized growth and potentially locally regulating their

translation [127]. Future work in this organism will be

important for understanding how different liquid com-

partments form, coexist, and function within a shared

cytoplasm. By taking advantage of the special features

that the biology of these cells offer, study of Ashbya can

identify mechanisms of cytoplasmic organization rele-

vant to all eukaryotes. A key lesson from this and all un-

conventional systems is that it is important to embrace

biological paradoxes and try to figure them out. We have

only just begun to tap into understanding the diverse

ways cells and tissues solve the problems of staying alive.

Volvox: revealing the origins of multicellularity
and germ–soma division of labor
James Umen

Multicellularity evolving from unicellular ancestors is

considered one of the major evolutionary transitions

[128], with at least two dozen independent occurrences

among five major eukaryotic super-clades [129–131].

Approaches aimed at understanding the origins of multi-

cellularity, particularly for plants (embryophytes) and an-

imals (metazoans), are challenged by the difficulties

associated with reconstructing ancient events based on

deeply divergent extant multicellular and unicellular

lineages. Volvox and its close relatives (the volvocine

green algae) are an alternative model for investigating

multicellularity, including the early origins of traits such

as cell adhesion and intercellular connections, cell-type

differentiation with dedicated germ cells and terminally

differentiated somatic cells, asymmetric cell divisions,

morphogenetic patterning, and sexual dimorphism—all

of which are found in more complex multicellular taxa.

What differentiates volvocine algae from other taxa and

makes them a unique model is their simplicity and their

relatively recent transition to multicellularity, with sev-

eral well-characterized genera that capture successive in-

creases in morphological complexity [132, 133] (Fig. 8a).

Conveniently, a close relative of all multicellular volvo-

cine algae is the well-studied unicellular model organism

Chlamydomonas reinhardtii (Chlamydomonas) [134,

135] that serves as an outgroup and a proxy for the an-

cestral state of the lineage.

Volvox carteri (Volvox) has been used as a “non-

mainstream” model for development for several de-

cades [136, 137], and belongs to a genus with a distin-

guished history that dates back to some of the earliest

recorded light microscopic observations that were

made by van Leeuwenhoek [138]. Vegetatively propa-

gated Volvox individuals have a spheroidal shape and

exhibit a streamlined body plan composed of just two

cell types: ~2000 small terminally differentiated somatic

cells arranged on the spheroid exterior with flagella ori-

ented outward to provide motility, and ~16 large repro-

ductive cells called gonidia located on the interior

(Fig. 8b–e). All cells are embedded within an extensive

clear extracellular matrix that occupies ~99% of the

spheroid volume. Volvox somatic cells are similar in

size and overall structure to Chlamydomonas cells

(Fig. 8f ), though they possess several unique derived

features that distinguish them from Chlamydomonas

cells in form and function [139] (Fig. 8a).

The appeal of Volvox as a model for investigating the

evolutionary and mechanistic bases of multicellularity

derives not just from the potential to build on several

decades of detailed developmental and genetic studies

but also from increasing information on related genera

whose genome sequences are enabling the history of

developmental innovations and their genetic origins to

be reconstructed [140–142]. Intriguingly, all of the

developmental regulators identified so far in Volvox (as

yet only a handful) have either Chlamydomonas ortho-

logs or are members of protein families whose origins

can be traced to related families in Chlamydomonas

[132]. In some cases orthologs are interchangeable

between the two species, raising unanticipated ques-

tions about ancestral gene function when the trait gov-

erned by the Volvox gene has no obvious parallel in

Chlamydomonas (for example, tissue morphogenesis or

asymmetric cell division [143]).

As with any experimental system, the questions one

can ask are dictated by available tools and resources,

some of which have been reviewed recently [135]. The

focus here is on Volvox, but it should be understood

that Chlamydomonas has available an even more exten-

sive molecular genetic toolkit, making it an ideal partner

species for integrated and comparative cellular, develop-

mental, and evolutionary studies. Three volvocine ge-

nomes are now published and publicly accessible—those

of Volvox carteri, Chlamydomonas reinhardtii, and

Gonium pectorale [140–142]. All three haploid genomes

are similar in size (120–150 Mb) and have roughly simi-

lar gene contents with an extensive degree of 1:1:1

protein-coding-gene orthology. Several more genome se-

quences from species belonging to other volvocine

clades are forthcoming. All volvocine algae can be prop-

agated vegetatively (that is, mitotically) as diagrammed

in Fig. 8g for Volvox, but also have facultative, inducible

sexual cycles that allow mutants to be isolated and sub-

jected to classic genetic analyses [144, 145]. Transposon

tagging was developed to bypass the need for crossing
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which can be tricky [146–148], but there are newer iso-

lates of Volvox that perform well in crosses [149], and in

my opinion classic genetic approaches such as UV or

chemical mutagenesis followed by screening, outcross-

ing, and whole genome re-sequencing will be the pre-

ferred way to characterize and identify mutants going

forward. Volvox is transformable with exogenous

DNA that integrates randomly into its haploid gen-

ome, and a variety of transgenes have been expressed

including fluorescently tagged proteins, antibiotic re-

sistance markers, and endogenous genes [150–154].

Hairpin and antisense-based gene expression knock-

downs can also be done, making reverse genetics

feasible [149, 155, 156]. While CRISPR-Cas9 editing

has not been reported yet for Volvox, it has been

successful in Chlamydomonas and could be developed

for other volvocine species [157, 158].

As a developmental system Volvox has some ap-

pealing features, including organismal size and clarity

that make it well suited to live-cell 3D imaging

methods, including selective plane illumination mi-

croscopy (SPIM) [159]. The chlorophyll and other
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Fig. 8. Volvox and volvocine algae. a Cladogram of selected volvocine species shown in cartoon form with successive cellular and developmental

innovations indicated by bulleted descriptions above or below the node in which they arose. Species with published sequenced genomes have

names in blue-shaded boxes. b–e Light micrographs of vegetative phase Volvox carteri (Volvox) showing a mature pre-cleavage stage adult (b); a

mother spheroid with juveniles (c); and an isolated gonidium (d) or somatic cell (e) from a mature pre-cleavage adult spheroid. f Light micrograph of a

Chlamydomonas reinhardtii cell. g Schematic of the Volvox vegetative life cycle synchronized to a 48-h diurnal cycle. A boxed key showing cell types

and extracellular matrix (ECM) is in the upper left. Development starts with mature pre-cleavage adults (~11:00 on diagram) and proceeds clock-wise

through embryogenesis, cyto-differentiation of germ cells (gonidia) and somatic cells in juveniles, hatching of juveniles, and maturation to

become the next generation of adults. After hatching the ECM and parental somatic cells of the previous generation are discarded. The

cartooned stages corresponding to light micrographs in panels b and c are labeled
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pigments that are in Volvox cells can interfere with

live-cell fluorescence detection methods just as in

plants, but more discriminating confocal microscopy

technology and sensitive detection systems have

helped to mitigate this issue [160]. Vegetative Volvox

is easy to mass culture and will synchronize under a

two-day diurnal cycle (Fig. 8g). In addition, the individual

spheroids are large enough that rapid visual screens for

developmental mutants can be performed using only a

dissecting microscope and micropipette to pick out candi-

date mutants. Embryonic cleavage follows a stereotyped

pattern, and the lineage relationships between cells during

normal development are known; but interestingly, cell-

size is the ultimate determinant of germ–soma differenti-

ation for post-embryonic cells [161]. Many fascinating and

potentially valuable developmental mutants of Volvox that

affect specific multicellular and developmental traits have

been described [137], and some causative genes have been

identified [132], but most mutants are no longer in culture

(as yet there is not a routine way to freeze Volvox cultures,

though there has been some success reported [162]).

The pieces are in place to implement a promising ap-

proach for investigating multicellular innovations and

their origins in Volvox using a combination of forward

and reverse genetics, and making use of Chlamydomo-

nas and other volvocine species to interrogate ancestral

gene functions and origins. Descriptions of previously

isolated mutants, including several that alter germ and

somatic cell fates, provide an indication of the untapped

riches of Volvox development [132], and with a se-

quenced genome and relatively inexpensive sequencing

technology it is now possible to go from mutant pheno-

type to causative mutation in a matter of weeks. Once a

mutant is identified and verified, its function can be

studied not only in Volvox, but also in Chlamydomonas

and other volvocine species where the causative gene is

likely to have a 1:1 ortholog (or at least a homolog). In

some cases Volvox and Chlamydomonas orthologs will

be interchangeable in function, and in other cases not;

but either result can be informative for understanding

the relationships between ancestral and derived traits in

the volvocine lineage. A similar combined comparative

genomics and experimental approach for investigating

evolutionary divergence of mitotic mechanisms in fission

yeasts is described by Snezhana Oliferenko elsewhere in

this Forum.

The approach outlined above is only one of several

productive ways in which Volvox can be used to ask

about the origins of multicellular trait innovations, and

is meant to stimulate thinking about the new possibil-

ities that genomics and other recent technologies add

to this model system. Most importantly, the opportun-

ities for exciting discoveries far outnumber the re-

searchers who are currently using Volvox and its

relatives. A great way to learn more about Volvox and

volvocine algae and to tap into this research commu-

nity is to attend a meeting [163, 164], or to visit a la-

boratory that uses these intriguing microcosms of

multicellularity and experience first-hand their beauty

and the scientific wonder they inspire.

Physcomitrella patens: harnessing anatomical
simplicity to investigate the cellular basis of
tissue morphology
Magdalena Bezanilla

Living organisms use their genome as a blue print to

build intricately complex and beautiful structures.

Within an organism, where every cell has the same blue

print, simply controlling how the blueprint is read leads

to the formation of different body parts. However, even

single cells establish and maintain unique shapes, evi-

denced by the vast morphological diversity amongst

unicellular organisms. In many organisms, cell shape

stems from restrictions imposed by the extracellular en-

vironment. Eukaryotes control this by building a wide

variety of extracellular structures. For example, animals

build bones and shells, plants build polysaccharide

walls, and diatoms construct silica-based frustules as

described in this Forum by Russell and Theriot. Extra-

cellular structures, which often are patterned over

macroscopic scales, impose constraints on both cellular

and tissue morphology. Yet, individual cells are respon-

sible for depositing extracellular matrix. Thus, how or-

ganisms control this large-scale patterning of their

extracellular matrices is an open question.

To gain insight into this question, it would be ideal

to work on an organism whose body plan enables im-

aging of individual cells within tissues, and that builds

a complex extracellular matrix in the context of a

variety of tissues throughout development. Although

land plants, with their polysaccharide walls and their

indeterminate growth, certainly satisfy the latter cri-

terion, access to individual cells within all tissues is

challenging in the vast majority of vascular plants. In

contrast, the moss Physcomitrella patens (Physcomi-

trella) satisfies both criteria. The Physcomitrella body

plan is simple, with most tissues only a single cell

layer thick, thereby providing an excellent system

with which to dissect intracellular control in pattern-

ing of the extracellular matrix.

Physcomitrella germinates from a haploid spore, pro-

ducing a linear array of cells that branch out leading to

a filamentous network known as protonemata (Fig. 9).

The initial cells that germinate from the spore and es-

tablish the network are chloronemal cells (Fig. 9). In

protonemata, the apical cell is the stem cell, dividing

leaving a subapical cell and a new apical stem cell. The

filamentous network is further elaborated by branching
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events, whereby a subapical cell undergoes an asym-

metric division generating a new apical stem cell that

gives rise to a daughter filament. As the plant matures,

the apical cells differentiate into a second cell type

known as caulonemal cells (Fig. 9), which are character-

ized by faster growth and obliquely positioned cell

plates. Caulonemal cells are developmentally distinct as

they can grow in the absence of light whereas chlorone-

mal cells cannot [165].

The filamentous network is the juvenile state of the

plant and establishes a radial symmetry (Fig. 9). This

network begins to mature into the adult plant by under-

going an additional developmental transition character-

ized by the emergence of buds (Fig. 9) from subapical

cells. Buds represent a switch from two- to three-

dimensional growth. The bud initially resembles a new

branch but the apex of the cell is more rounded and the

first division is oblique (Fig. 9), establishing the apical

basal axis. Both daughter cells divide perpendicularly to

the first oblique division [166]. This division generates

the apical stem cell in the bud. The bud eventually de-

velops into gametophores that have leaf-like structures

known as phyllids (Fig. 9). Phyllids emerge regularly off

the gametophore and are only a single cell layer thick.

Within the vegetative state of Physcomitrella, both ju-

venile and adult tissues are a single cell layer thick and

thus readily accessible to microscopic observation. Fur-

thermore, these tissues grow via distinct mechanisms.

The juvenile state grows two-dimensionally by polarized

secretion of extensible cell wall material to the tip of the

apical stem cell, enabling turgor-driven cell expansion

only at the cell apex. In contrast, the adult state switches

to three-dimensional growth characterized by diffuse cell

expansion. Strikingly, the gametophore is generated

from a single apical stem cell [166], a dramatic simplifi-

cation in comparison to seed plants, which have an ap-

ical domain known as the meristem comprised of

several layers of undifferentiated stem cells.

Branch

BudBud Bud

PhyllidCaulonemal Cell

erohpotemaGatamenotorP

Chloronemal cell

50 µm

20 µm

20 µm20 µm 20 µm 50 µm

Fig. 9. Haploid tissues of the moss Physcomitrella patens. A plant regenerated from protoplasts is shown in the top center. The boxed regions in

this image represent the juvenile (protonemata) and adult (gametophore) tissues, which are drawn schematically on either side of the image.

Images acquired from tissue grown in microfluidic devices showing a variety of cell types and tissues are shown in the bottom row

Russell et al. BMC Biology  (2017) 15:55 Page 16 of 31



Even with the relatively simple anatomy of Physcomi-

trella, continuous imaging over developmental time of

events that occur in the denser regions of the filament-

ous network, such as caulonemal cell maturation and

bud formation, has been challenging. Phyllid expansion

that occurs in the air and in three dimensions was also

not accessible to high-resolution imaging. Recently these

limitations have been largely overcome by the ability to

grow Physcomitrella in custom-made microfluidic im-

aging chambers for weeks [167], providing the unique

opportunity to observe protonemal tissue differentiation,

bud formation, and phyllid expansion at cellular and

subcellular resolutions.

Another feature that makes Physcomitrella a particu-

larly useful model system is the ability to propagate the

plant vegetatively. Upon mechanical disruption, cells in

the damaged tissue de-differentiate into chloronemal

cells, re-establishing a new plant. This effectively enables

indefinite propagation of any Physcomitrella line, which

is especially useful for mutant strains with developmen-

tal defects. As an extreme example of vegetative propa-

gation, it is possible to remove the cell wall from

Physcomitrella tissue enzymatically, generating a suspen-

sion of protoplasts, which given appropriate osmotic

conditions then rebuild their walls and generate a new

plant resembling one germinated from spores.

Protoplasts are also easily transformable with DNA

[168] opening the door to genetic manipulations.

Among these is the ability to use homologous recom-

bination for gene targeting [169–171], a feature unique

to mosses amongst land plants, which has made it

possible to generate lines that express native proteins

fused to reporter genes [172] or fluorescent proteins

expressed from their own genomic context [173]. Most

recently CRISPR-Cas9-mediated gene targeting has also

been shown to generate genomic lesions effectively

[174, 175]. Because juvenile and adult tissues are hap-

loid, a genomic lesion immediately results in a mutant.

Additionally, RNA interference (RNAi), which can tar-

get multiple genes simultaneously, can be performed

transiently [176, 177] or inducibly [178], enabling loss-

of-function studies of whole gene families. Finally, since

whole-genome sequencing has become routine, it is

also possible to identify genomic lesions introduced by

random mutagenesis [179].

The extensive genetic tool box coupled with facile

imaging of single cells within the context of whole

tissues uniquely positions Physcomitrella among land

plants as an excellent model organism. In addition to

interrogating how molecules within individual cells

pattern extracellular matrix over macroscopic length

scales, Physcomitrella provides the opportunity to an-

swer key questions in plant cell and developmental

biology.

Cerebral organoids model human brain
development and disease
Madeline A. Lancaster

For centuries, the human brain has been one of the most

difficult organs to study. The brain is what makes us

unique, both as individuals and as a species. But for this

very reason, its particular features are impossible to

study in other organisms, and ethical and methodo-

logical limitations prevent us from directly studying it

mechanistically. So while animal models have provided

insight into what it is to be a vertebrate, a mammal, or

even a primate, there still remain many questions sur-

rounding what it is to be human. For example, while

neural stem cells behave in much the same fashion in all

vertebrates, their neurogenic potential is greatly in-

creased in humans, giving rise to over a thousand times

the number of neurons in a mouse brain [180], and a

brain that is over three times larger than our closest rel-

atives, chimpanzees and bonobos [181]. Furthermore,

there are important differences in cytoarchitectonic

organization, such as the presence of grey matter mini-

columns [181] and numerous unique interneuron popu-

lations in the cortex [182, 183], and overall denser, more

complex dendritic trees and spines [184].

Because of these unique features, it has proven diffi-

cult to recapitulate many human neurological disorders

accurately in mouse models. For example, primary

microcephaly (small head size) in humans is caused by

homozygous null mutations in any of a number of cen-

trosomal or DNA repair genes, yet when these muta-

tions have been introduced in mice, the effect on brain

size is minimal [185]. Likewise, mouse models of

human mutations seen in neurodegenerative conditions

fail to display the full range of defects, such as both

plaques and tangles seen in brains of patients with Alz-

heimer’s disease [186]. These are just a couple of the

numerous failures to model human neurological con-

ditions in traditional animal models, which unfortu-

nately has led to a drying up of the drug pipeline in this

area, and a lack of further interest on the part of the

pharmaceutical industry [187].

Recently, neuroscientists have turned their attention

in vitro with the hope that human features might be

modeled using human neural cells. However, until very

recently, in vitro meant a disorganized layer of cells

grown in 2D, hardly capable of being considered a

model of any developing organ. Then, in 2001, Zhang et

al. established the first so-called neural rosettes [188],

which modeled with remarkable fidelity the epithelial ar-

rangement of neural stem cells and the formation of

neural tube-like lumens. Over the next 10 years, im-

provements were made in the reproducibility and effi-

ciency of formation of neural rosettes [189, 190], and in

2008, Eiraku et al. published the SFEBq method [191]
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for generation of larger, more complex rosettes as a

result of culturing in 3D before plating tissues in 2D.

Building upon these studies, in 2013, we developed a

completely 3D model system of human brain deve-

lopment: so-called cerebral organoids [192]. Because of

their reliance on endogenous signals, cerebral organoids

are capable of remarkable self-organization resulting in

complex tissues containing a variety of interconnected

brain regions. That same year, Kadoshima et al. estab-

lished a 3D method for generation of forebrain tissues

[193], and in 2015, Paşca et al. developed a method for

generating spheroids containing cortical rosettes [194].

Overall, the methods that have arisen in the past 5

years have revealed the remarkable ability of stem cells

to self-organize and form tissues reminiscent of the early

developing brain. While cerebral organoids contain a

variety of brain regions with remarkable complexity,

spheroids generated with exogenous patterning factors

and small molecules more reproducibly generate fore-

brain and cortical rosettes [195]. But one thing all the

methods have in common is the ability to accurately

model the behavior of neural stem cells and their

organization into discrete progenitor zones highly rem-

iniscent of the tissue architecture in vivo. Because of

their organization, species-specific differences in tissue

architecture and stem cell behavior can be detected in

neural organoids (Fig. 10). For example, human cerebral

organoids display large numbers of outer radial glia

[192, 193], an extra population of neural stem cells that

is highly abundant in the developing primate brain, but

limited in mice. Furthermore, differences in both neural

stem cell division dynamics and fate have recently been

described between human and non-human primate

organoids [196, 197].

The fact that brain organoids display human-specific

features holds great promise for their use in modeling

neurological disorders. Indeed, despite their very recent

development, neural organoids have already been dem-

onstrated to model features of microcephaly [192], aut-

ism [198], lissencephaly [199], and even Zika virus

infection [200, 201]. A further testament to their utility

is the increasing adoption of these methods in numerous

independent laboratories. As with many novel technolo-

gies, widespread adoption takes time and so from the

cerebral organoid paper in 2013 through 2015 only four

publications made use of 3D neural organoids. But last

year alone this number jumped to 19 and there is no

sign of slowing in the immediate future. While it is still

early days, the hope is that the application of brain orga-

noid methodologies to the study of an increasing num-

ber of neurological syndromes will provide a treasure

trove of new insight into disorders of this previously en-

igmatic organ.

Nematostella vectensis: born to be a starlet
Shuonan He and Matthew C. Gibson

Cnidarians have long attracted attention from biologists

and it is easy to see why. From Abraham Trembley’s

classic illustrations of regenerating hydra to Ernst

Haeckel’s vivid depiction of discomedusae and sea anem-

ones in Art Forms in Nature, these delicate creatures ex-

hibit an exotic beauty [202, 203]. For contemporary

Ventricular
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Microcephaly Autism

Subventricular zone

Intermediate zone/

Cortical plate

FOXG1 (Forebrain) TBR2 (Intermediate progenitors) DAPI

Fig. 10. Cerebral organoids model the architecture of the developing human brain. Left: a section of an entire cerebral organoid stained for the

forebrain marker Foxg1, the intermediate progenitor marker Tbr2, and DAPI, revealing the presence of lobules of cerebral cortex as well as other

brain regions not positive for Foxg1. Right: a schematic of a lobule of cortex in an organoid showing the proper organization of progenitor zones:

ventricular zone (VZ) where radial glial neural stem cells reside, subventricular zone (SVZ) where transit amplifying populations reside, and the

intermediate zone (IZ) and cortical plate (CP) where neurons migrate to their final positions. Scattered pink puncta represent outer radial glia, a

population abundant in human brain development but much less present in rodents, while elongated purple neurons represent tangentially

migrating interneurons that originate outside the cortex. In the case of microcephaly (lower left) organoids overall are much smaller, as are

progenitor zones [192], whereas organoids derived from autistic patients display increased numbers of interneurons [198]. Scale bar 100 μm
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studies of evolutionary cell and developmental biology,

cnidarians have begun to offer much more than simple

visual appeal. Widely accepted as the sister group to

bilaterian animals, cnidarians possess apparent radial

symmetry, lack definitive mesoderm, and have only a

single opening that functions as both mouth and anus

[204, 205] (Fig. 11). Beyond aesthetic intrigue, these

morphological distinctions indicate key evolutionary

transitions in the bilaterian lineage after the split of both

phyla from their common ancestor, making cnidarian

biology central to our understanding of animal evolu-

tion. Nevertheless, more than 250 years after Trembley’s

pioneering work, we still know surprisingly little about

the molecular mechanisms that dictate the distinguish-

ing morphological features of cnidarians. One major

obstacle has been the absence of a singular cnidarian

species that is equally tractable for developmental, cellu-

lar, and genomic analysis.

Addressing this issue, the starlet sea anemone Nema-

tostella venctensis (Nematostella) has emerged at the

forefront of cnidarian model systems with the potential

to serve broad research interests.

Nematostella is an estuarine, burrowing sea anemone,

first described and named by Thomas Stephenson in

1935 [206]. In the wild, they can be found in brackish

ponds or marshes along the coast with recorded salin-

ities ranging from 8.96 to 51.54% and water tempera-

tures from −1 to 28 °C [207, 208]. Adaptation to such an

ever-changing habitat might explain why Nematostella is

exceptionally easy to culture in the laboratory compared

with most other cnidarian species. Nematostella belongs

to the class Anthozoa, which consists of corals, sea

anemones, and sea pens. Phylogenic analysis based on

morphology, rRNA, 18S rDNA, and mtDNA data placed

Anthozoa at a more basal position within the cnidarian

phylum [204, 209–212]. Indeed, it has been proposed

that the Anthozoan life history (with only a sessile

polypoid adult form) represents the ancestral state of

cnidarians [213–215]. If the polyp-first hypothesis is cor-

rect, comparative studies using Nematostella are ideal

for reconstructing morphological traits of the putative

bilateria–cnidaria common ancestor.

Nematostella is a dioecious species. Although sexual

plasticity has been reported in other Anthozoans, this

phenomenon has not been observed in Nematostella

[216, 217]. In the lab, spawning can be induced easily by

subjecting sexually mature animals to a combination of

light and heat shock [208, 218, 219]. During spawning,

females produce gelatinous egg masses, each containing

hundreds of eggs, while males release sperm directly into

the water. This highly controllable spawning process en-

ables access to large quantities of synchronized develop-

ing embryos that are amenable for further experimental

manipulations. Nematostella has a simple Anthozoan life

history with no medusa stage. The fertilized egg under-

goes a series of “chaotic” cleavages, and quickly forms a

?

?

?

?

Deuterostomia

Protostomia

Hexacorollia

Octocorollia

Staurozoa

Cubozoa

Scyphozoa

Hydrozoa

Porifera

Ctenophora

(Nematostella)

A
n

th
o

zo
a

M
ed

u
sa

zo
a

B
ila

teria
C

n
id

a
ria

Mesenteries 

or Septum

ba

Physa

Mouth

0.5mm

Pharynx

Tentacles

Fig. 11. Nematostella vectensis phylogenetic position and juvenile morphology. a Metazoan phylogenic tree highlighting the position of

Nematostella. The detailed ingroup relationships of medusozoa, as well as the position of Ctenophora and Porifera, are still uncertain, as indicated

by question marks. b Morphology of a fully relaxed juvenile Nematostella vectensis polyp. The thickened internal foldings along the body column

are called mesenteries. These delicate structures contain digestive glands, and retractor muscles as well as gonads. The reddish coloration of

mesenteries is due to feeding of Artemia nauplii under laboratory conditions. Tree in a adapted from [209, 326, 327]: Bridge, D; Cunningham, C W,

Class-level relationships in the phylum Cnidaria: molecular and morphological evidence, Molecular Biology and Evolution, 1995, Volume 12, Issue

4, p.679-89, by permission of Oxford University Press and Society for Molecular Biology and Evolution
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well-organized single epithelial layer. Epithelial polarity

is established in early cleavage stages, providing a perfect

system to study epithelial formation, growth, and mor-

phogenesis during early embryogenesis. Embryos gastru-

late around 20 hours post fertilization, developing only

two germ layers, the ectoderm and the endoderm (also

referred to as the entoderm or endomesoderm). Within

48 hours post-fertilization, the embryo develops into a

fully ciliated, free-swimming planula larva and starts to

escape from its surrounding gelatin matrix. By day

seven, elongated planulae settle down and metamorph-

ose into polyps bearing four tentacles [220, 221]. Under

optimal conditions, it takes 2 to 3 months for a juvenile

polyp to reach sexual maturity. Once sexually mature,

spawning can be induced every 2 to 3 weeks year round

without damaging the animals. Nematostella can also

undergo asexual reproduction, which usually occurs via

transverse fission through the body column, and can be

triggered by extensive feeding, even prior to sexual mat-

uration [222]. Interestingly, the life span of Nematostella

remains undetermined as it apparently exceeds the “life

span” of a PhD student or postdoc.

Nematostella was the first cnidarian to have its whole

genome sequenced. The high-quality genome sequence

revealed the presence of the majority of the gene re-

pertoire for bilateria development and biochemical

processes in the eumetazoan ancestor [223]. More

strikingly, at the genomic level, vertebrates share more

similarities with Nematostella than with ecdysozoans

(including, for example, fruit flies and nematodes)

[223–226]. Despite the notable conservation of intra-

genic sequence and gene structures, the conservation of

function as well as regulation of these genes remain

poorly explored. Fortunately, a rapidly expanding

Nematostella toolkit will fulfill this purpose. Morpho-

lino and mRNA delivery via microinjection has proven

to be a powerful approach to manipulate gene expres-

sion level [227]. Meganuclease-mediated transgenesis is

also well established, which helped the generation of

several tissue- and cell lineage-specific reporter lines

[228–230]. Genomic approaches such as ChIP-seq enable

the identification of potential enhancer/promoter regions

for certain genes and allow a careful dissection of the gene

regulatory network [231]. Most importantly, to our know-

ledge, Nematostella is the only cnidarian system where

TALEN- and CRISPR/Cas9-mediated genome editing has

been reported [232, 233]. The ability to generate knock-

out as well as knock-in mutants opens up new possibilities

and finally permits sophisticated genetic analysis of gene

functions in a cnidarian species.

Over the past decade, studies on Nematostella have

shed light on a few fundamental innovations of bila-

terian evolution, including the determination of body

axis [233–236], the origin of mesoderm [237, 238],

and the emergence of a centralized nervous system

[229, 230, 239, 240]. Through these studies, a surpris-

ing new picture is emerging of a morphologically and

genomically complex eumetaozoan ancestor. Paralleled by

progress in other cnidarian model systems [241–244],

future research using Nematostella will provide new in-

sights into common molecular mechanisms behind the di-

versity of life and promises to reshape our understanding

of animal evolution.

Water bears: evolution of body forms and survival
of extremes
Bob Goldstein

In May 1997, a new molecular phylogeny of the animals

revealed that C. elegans and Drosophila were much

more closely related than had been thought [245]. Pre-

vious phylogenies had placed the nematodes (which

include C. elegans) and arthropods (which include

Drosophila) so distantly from each other that arthro-

pods were thought to be even more closely related to

us than they were to nematodes. But the new work

revealed that these two groups were united along with

a handful of hard-to-pronounce animal phyla: ony-

chophorans, kinorhynchs, priapulids, nematomorphs,

tardigrades, and later the loriciferans as well. I thought

that this branch of the tree of life would be a terrific

place to look for new models for comparative biology

that could take advantage of the two strong model sys-

tems nearby. I was especially interested in studying

how developmental mechanisms evolved in ways that

produced diverse animal forms, and I figured that C.

elegans and Drosophila could be rich and ongoing

sources of information for comparative studies.

Tardigrades, better known as “water bears”, are eight-

legged microscopic animals (Fig. 12). These animals live

just about everywhere, and remarkably, they survive

desiccation, so they can be found readily by placing

clean biological substrates such as mosses or lichens in

spring water. We were fortunate that amateur scientist

Bob McNuff had been growing water bear cultures con-

tinuously in his home for two decades [246], apparently

overcoming historical difficulties with keeping cultures

long-term [247], and he generously shared his culture

methods. And another lab had begun to collect se-

quence data [248]. The species we had chosen, which

Roberto Bertolani kindly identified for us as Hypsibius

dujardini [246], has a short, two-week generation time,

and is easy to keep as living cultures in the lab or as

frozen stocks [246].

Our initial work was necessarily descriptive. PhD

student Willow Gabriel and I observed and described

embryonic development and started to build a cell

lineage. We found that unequal cell divisions, nuclear

migrations, and cell migrations occurred in stereotyped
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patterns in each embryo [246]. And we began to develop

tools, including methods for immunostaining and enzyme

histochemical staining [246, 249]. Postdoc Jennifer Tenlen

developed methods for RNA interference, which made

feasible for the first time investigations into the functions

of individual water bear genes [250]. We viewed these

methods as forming a platform for investigating two

topics: how developmental mechanisms evolve in ways

that produce novel body plans, and how animals and bio-

logical materials more generally can survive in extreme

environments.

Water bears are a convenient case study for asking

how unique animal body plans arose because water

bears share with arthropods highly modular body

plans, composed of segments. This fact gave us some

hope that homologous body parts could be recognized

readily between water bears and organisms like Dros-

ophila. Postdoc Frank Smith, who had developed in

situ hybridization methods for water bears, has sought

to understand how the compact body plan of water

bears arose long ago, back when the major groups of

animals had diverged. Frank found that the Hox

genes that define the head segments of arthropods

are expressed in the same anterior-to-posterior regis-

ter in water bears—but throughout almost their entire

body—leading the animals to be called at times “walk-

ing heads” [251, 252]. Water bears’ compact bodies

appear to have arisen by loss of a large part of an an-

cestral body plan, corresponding to the entire thorax

and nearly the entire abdomen of Drosophila. This

work revealed that animal body plans can arise by

loss of a large body part, and a far larger part than

we had anticipated [251]. How the finer, essential de-

tails of water bear anatomy first evolved and later di-

versified is not yet known. Work on these questions

will likely benefit from Drosophila and C. elegans as

sources for candidate mechanisms.

Water bears are among just five animal clades with

representatives known to survive desiccation, together

with certain arthropods, rotifers, nematodes, and flat-

worms [253]. Among these organisms, water bears have

to date survived the most remarkable environmental

extremes, including freezing in liquid nitrogen in the

hydrated state, freezing to within a degree of absolute

zero in the dried state, and more than 4000 grays of ion-

izing radiation in the dried or hydrated state [254]. In

September 2007, desiccated water bears were launched

in a Soyuz rocket and then exposed to the vacuum of

space for 10 days. Upon rehydration, animals survived

and produced young that hatched at normal or nearly

normal rates [255, 256]. Many of these extreme condi-

tions should damage even what water bears and other

organisms are made of—DNA, proteins, membranes—-

suggesting that water bears must produce protectants

[254]. Postdoc Thomas Boothby sought to identify pro-

tectants, using transcriptome sequencing and RNA

interference to identify essential protectants induced by

extreme conditions, and then expressing the identified

components in other kinds of cells to test for sufficiency

to promote tolerance to extremes. This work has iden-

tified a set of water bear-specific proteins that promote

desiccation tolerance [257]. Other groups have identified

a water bear-specific chromatin-associated protein that

can protect even human cultured cells from DNA

damage [258]. Water bears may well serve as a contin-

ued source of a variety of molecules that can protect

diverse molecular components against diverse kinds of

extreme conditions.

Water bears have fairly complete and well-assembled

genomes [258, 259]. Work using water bears would

benefit tremendously at this stage from the develop-

ment of methods to insert genes and edit the genome.

In the meantime, there are many tools that can be ap-

plied to water bears, and other emerging models dis-

cussed in this Forum, to help unveil mechanisms of

interest [260].

Fig. 12. Scanning electron micrograph of the water bear Hypsibius

dujardini. Image credit: Vicky Madden and Bob Goldstein
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Axolotls as models for regeneration
Elly M. Tanaka

How biological systems restore missing parts is fascinat-

ing at every level: at the level of cells, cellular aggre-

grates, and embryonic regulation; but perhaps the most

remarkable example is the regeneration of the tetrapod

limb as seen in salamanders including axolotls. Upon

limb severing—which, as salamanders tend to be a car-

nivorous sort and eat each other’s body parts, is not

uncommon—the remaining cells jump into action to ex-

quisitely replace each and every tissue type, including

blood vessels, muscle, bone, nerve tracts, and skin, with

the correct shape and function. How does this system

work? Much of the tissue-scale logic of regeneration was

worked out by capitalizing on the remarkable graftability

of salamander tissues. For example, a limb blastema

grafted to another body location still regenerates the

limb it would have in situ, which showed us that the

cells residing in the limb and tail have a memory of their

position [261, 262]. Tissue-specific roles were defined by

blocking regeneration through irradiation and then res-

cuing it with grafts of normal tissue, which, for example,

gave the first indications that dermal cells play an im-

portant role in regeneration of patterned skeleton [263].

Molecular analysis proved challenging due to the need

to work in adult tissue, but over time, all the required

approaches to manipulate cell and molecular function

have been developed, and it has been an exciting time to

delve into the mechanisms of regeneration.

When choosing any model organism for research,

one has to carefully consider why. I chose the axolotl as

a model organism to study limb and spinal cord regen-

eration because it was one of the few species that was

easily breedable in the laboratory, and therefore allowed

for the development of transgenesis and, more recently,

CRISPR-mediated gene mutation to study regeneration

[264–268]. These genetic approaches are facilitated by

the ability of the animals to lay up to 500 eggs per mat-

ing. Furthermore, several natural mutant strains exist,

including those with absolutely no skin pigment. This

allowed us to implement live imaging of fluorescent

protein-expressing cells in larval axolotls to identify the

cells that build the regenerate. Viral approaches to gene

expression have also been very useful [269–272].

Several other features make the axolotl advantageous

for tissue imaging studies. Due to the large genome, the

cells are very large and therefore can be tracked using

low magnification objectives with long working dis-

tances. This tissue is quite hardy, and is highly recep-

tive to electroporation as a means of transfection.

Furthermore, being cold-blooded, the animals can be

kept at a variety of temperatures, including room

temperature [273]. With the development of these

molecular genetic and imaging capabilities, it has been

possible to pinpoint the cells that form the blastema,

and to start to identify and study the cues that initiate

and sustain regeneration, as well as pattern the rege-

nerate (Fig. 13).

Axolotls are certainly not the only experimental sala-

mander system, with work in Cynops pyrroghaster,

Pleurodeles Waltl, and Notophthalmus viridescens each

bringing a different set of opportunities to understand

regeneration biology and its diversity [274–277]. We

have been astonished by the divergence in the imple-

mentation of skeletal muscle dedifferentiation as found

in N. viridescens but not in axolotls, who use muscle

stem cells to regenerate their muscle tissue [278].

I think that with the new developments in genome

engineering that are available, it is a wonderful time for

researchers to re-assess and survey metazoans, and look

to Nature for those organisms that provide amplified

traits that help us to solve biological questions. The

axolotl is a great example of an organism that presents

unique opportunities to study biology, that has a

unique set of experimental advantages, and that has

recently opened up to highly molecular, mechanistic

approaches. It will be exciting to define further the gen-

etic programs that convert cells from the adult state to

the regeneration state while retaining their positional

Fig. 13. Limb regeneration in salamanders. Reprinted from [328],

Elsevier Books, Richard Goss, Principles of Regeneration, Copyright

(1969), with permission from Elsevier
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memory, and to investigate the role of humoral factors,

including the immune system, in this process.

Stop the clock: the killifish model of aging in
diapause
Chi-Kuo Hu and Anne Brunet

Aging biology and model organisms

How do we age? This may be one of the most intriguing

questions in biology. Aging is a progressive process that

converts young and healthy individuals into old and

decrepit ones, thereby limiting their lifespan. In nature,

lifespan is an amazingly diverse trait, with maximal life-

spans ranging from days in the medfly to over 500

years in clams [279]. This diversity opens up many

possibilities for new model systems for aging and life-

span studies.

Much of our understanding of aging comes from

studies of short-lived non-vertebrates (for example, S.

cerevisiae, C. elegans, or Drosophila) [280–282]. While

many key “aging genes” are evolutionarily conserved,

the aging process in vertebrates is considerably more

complex than in non-vertebrates. For example, non-

vertebrates lack an adaptive immune system, which

underlies many aspects of vertebrate aging via “im-

munosenescence” (gradual deterioration of the immune

system during aging) [283] and “inflammaging” (chronic

inflammation that occurs during aging) [284]. However,

canonical vertebrate model organisms such as mice and

zebrafish have relatively long lifespans (a maximum of

~4 and ~5.5 years in mice and zebrafish, respectively

[285, 286]). This is a critical experimental hurdle to

study vertebrate aging.

To fill this gap, we and others have developed the

African turquoise killifish Nothobranchius furzeri as a

model organism for vertebrate aging [287–294]. The tur-

quoise killifish is the shortest-lived vertebrate that can

be bred in captivity, with a maximal lifespan of 7–8

months [288, 289] (C-KH and AB, unpublished data).

This is about an order of magnitude shorter than mice

and zebrafish. Despite its short lifespan, the turquoise

killifish recapitulates various stereotypical aging traits

that have been reported in other vertebrates, including

decline in normal functions and increased risk of dis-

eases such as cancer [295–297].

Lifecycle of the African turquoise killifish

The short lifespan of the turquoise killifish is likely a

consequence of an evolutionary adaption to its extreme

habitat. The turquoise killifish naturally lives in ep-

hemeral ponds in southeastern Africa, which entirely dry

up during the dry season. This species switches between

two distinct phases (Fig. 14) [298]. The first phase takes

place during the rainy season and consists of a com-

pressed lifecycle (~40 days from embryos to embryos of

the next generation), in which the turquoise killifish

grows fast, reproduces fast, and, likely as a consequence

of these constraints, also ages fast. The second phase

takes place during the dry season and consists of a state

Short Lifespan

Fast aging

Diapause

No/slow aging + rejuvenation?

Young adult

Old adult

Embryo in

diapause

Rainy Season Dry Season
(Compressed lifecycle) (Suspended development)

Aging rate Aging rate

Fig. 14. The African turquoise killifish has two distinct phases in its lifecycle. During the rainy season, the turquoise killifish has a naturally

compressed lifecycle. Turquoise killifish grow fast and rapidly reach sexual maturation, characterized by bright colors in males (Young adult). Old

fish recapitulate aging phenotypes, including loss of muscle mass, color, and tissue homeostasis (Old adult). Newly laid turquoise killifish embryos

enter diapause to survive the upcoming drought during the dry season (embryo). The embryos can stay in diapause for many months (several

times longer than the fish lifespan), raising the possibility that the damage that accumulates with time may be slowed or even reset (“rejuvenation”).

The embryos then break diapause and the fish resume their compressed lifecycle during the following rainy season. Some embryos escape diapause,

and it is therefore possible to study each state separately in the laboratory
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of suspended development called diapause, which en-

ables embryos laid during the rainy season to survive

through the drought—lasting months or even years

[299]. Notably, to hedge the risk, some embryos na-

turally skip diapause and exhibit a continuous lifecycle

[300] (C-KH and AB, unpublished data). This feature

allows turquoise killifish colonies to be conveniently

maintained in captivity without the hurdle of diapause

[294]. In captivity, both phases of the lifecycle remain

unchanged, even in constant water, indicating that both

the short lifespan and diapause of this species are under

genetic determination.

Genetic and genomic resources of the African turquoise

killifish

Since the initial characterization, a comprehensive tool-

set to study killifish has been developed. This includes a

standardized strain (in this case, GRZ [301])—one of the

critical features of a model organism. Several other

strains are reaching the status of inbred lines (C-KH and

AB, unpublished data), providing the community with

additional options of genetic backgrounds, thereby min-

imizing the risk of strain-specific artifacts.

Great progress has also been made in developing gen-

omic and genetic tools for this fish [294, 302–305]. We

and the Platzer group have independently de novo as-

sembled and annotated a reference genome for this fish

[288, 289, 306, 307] along with numerous transcrip-

tomic and epigenomic datasets [308–313]. An integra-

tive reference genome generated by the NCBI pipeline

with publicly available omics resources is available on-

line (NCBI Genome ID 2642 [314]), and the effort to

integrate the two genomes is currently ongoing. More

recently, transgenesis and highly efficient CRISPR-Cas9

genome editing have been developed, with the ability to

generate knockin or knockout lines in just 2 to 3

months [293, 302].

Short lifespan and compressed lifecycle: unique features for

lifespan studies

A key hurdle for all lifespan studies is the need to

control environmental variables throughout the whole

lifespan of the organism. Longitudinal control of envir-

onmental variables can be challenging in canonical ver-

tebrate model organisms such as mice, due to their

longer lifespan, but it is easier in the turquoise killifish.

In addition, relatively high throughput studies (for ex-

ample, to test several genes or compounds simultan-

eously) are more feasible in the killifish, due to the low

cost of maintaining a large cohort of animals. Finally,

systematic longitudinal studies to predict individual

lifespan trajectories are also more practical in the tur-

quoise killifish than in longer-lived species [313].

Diapause: another key feature of the African killifish

In addition to the fast aging process of the turquoise

killifish, which has clear values for vertebrate aging stud-

ies (reviewed extensively elsewhere [302]), the diapause

phase of this fish provides a unique foray into a state

that has features of “suspended animation”. Diapause

helps the species survive extreme stress such as drought,

by timing the birth of offspring to more environmentally

favorable conditions (such as the rainy season). Diapause

phenomena are widespread throughout the animal king-

dom, including mammals (for example, in roe deer and

bats, which helps the species survive winter [315, 316]).

C. elegans also has several diapause-like states—notably

the alternative developmental state called “dauer”—-

which help the species survive a dearth of food [317]. It

is interesting to note that in C. elegans, the regulatory

network underlying the dauer state shares many compo-

nents with that underlying aging [318, 319]. In C. elegans

or Drosophila, the period of time spent in diapause does

not impact lifespan when these individuals reach adult-

hood (compared to individuals that did not go into dia-

pause) [320–322]. This suggests that either no aging

takes place during diapause or the damage caused by

aging during this phase is corrected at the exit from

diapause [323]. Thus, studying diapause could not only

offer insight into the genetic network that regulates life-

span but also provide new ideas for prevention of

damage accumulation or erasure of damage. However,

due to the low embryo accessibility in mammals, dia-

pause is vastly understudied in vertebrates. With its

short lifespan and high embryo number and accessibility,

the turquoise killifish is uniquely well-suited to study the

relationship between diapause and aging and to un-

derstand how features of “suspended animation” could

be harnessed.
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