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Abs t rac t .  We present a new f~zpoint theorem which guarantees the exis- 
tence and the finite computability of the least common solution of a count- 
able system of recursive equations over a welifounded domain. The functions 
are only required to be increasing and delay-monotone, the latter being a 
property much weaker than monotonicity. We hold that wellfoundedness is a 
natural condition as it guarantees termination of every fixpoint computation 
algorithm. Our fixpoint theorem covers, under the wellfoundedness condition, 
all the known 'synchronous' versions of fixpoint theorems. To demonstrate its 
power and versatility we contrast an application in data flow analysis, where 
known versions are applicable as well, to a practically relevant application in 
program optimization, which due to its second order effects, requires the full 
strength of our new theorem. In fact, the new theorem is central for establish- 
ing the optimality of the partial dead code elimination algorithm considered, 
which is implemented in the new release of the Sun SPARCompiler 4 language 
systems. 

1 M o t i v a t i o n  a n d  R e l a t e d  W o r k  

Many practically relevant problems in computer science can be characterized by 
means of the least common solution of a system of recursive equations 

~g = f l  (x) 

x = fn(x) 

where j r = ~  {fk : D ~ D I 1 < k < n} is a family of monotone functions on a well- 
founded partial order (D; E_). Solving this system of equations is equivalent to the 
computation of a fixpoint of 9 v, i.e. a common fixpoint x = fk (x) of all fk. A typical 
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iteration algorithm starts with the initial value .L, the smallest element of D, and 
successively updates the value of x applying the functions fk in an arbitrary order, 
so as to approximate the least fixpoint of ~'. People speak of a chaotic iteration. 

The origin of fixpoint theorems in computer science dates back to the funda- 
mental work of Tarski [Tar55]. Tarski's theorem considers a monotone function and 
guarantees the existence of its least fixpoint with respect to a complete partial order. 
This setup, however, turned out to be too restrictive for a lot of practically relevant 
applications which led to a number of generalizations. See [LNS82] for a survey of 
the history of fixpoint theory. 

Vector iteration [R.ob76] provides such a generalization, where one computes the 
least fixpoint x = ( z l , . . .  , x m) E D m of a monotone vector function f = ( f l , . . .  , fro). 
Liberalizing Tarski's iteration x0 = •  Xl = f(x0), x~_ = f (x l )  . . . .  , where xi denotes 
the value of x after the i-th iteration, one may choose x0 = .L, xl = f jo(xo),x2 = 
f j , ( x l ) , . . . ,  where ,li C_ {1, . . .  ,n} and the k-th component f j , (x i )  k of fj~(xi) is 
fk(xi )  if k E .Ii and x~ otherwise. Intuitively, at each step i the set .li denotes 
the indices k of the components which are updated. It  is known that  a fairness 
condition for the ,li is mandatory. Considering the vectors x as objects and the 
update operations f j  as functions, we have a clear instance of the chaotic iteration 
above (see also Section 3). Recent contributions to fixpoint theory provide efficient 
strategies for vector iteration, e.g. by using demand driven evaluation strategies (cf. 
[V~VL94, J0r94]). 

The vector approach has been further generalized towards asynchronous itera- 
tions [Bau78, Cou77, 0D89, Wei93], where fj~ may use components of a choice of 
earlier vectors x~, with j < i, of the iteration. 

Despite its power the vector iteration approach turns out too restrictive in two 
aspects. First, the functions involved in the fixpoint iteration may be such that  they 
cannot be regarded as components of a single function f .  To our knowledge, the 
only serious attack to this problem has been made by the Cousots [CC79]. The 
common fixpoints of a family -~'=d/ ( f k ) k ~  of monotonic functions are described 
by iterations, given that  each pair fk, fk' commutes: fk ( fk ' (x) )  = fk ' ( fk(Z))  for all 
z E D .  

Second, and even worse, program transformations may have what Rosen, Weg- 
man and Zadeck [RWZ88] call second order effects. Typically, program transfor- 
mations are not idempotent; one transformation may have a strong impact on the 
profitability of another transformation; often the transformation functions involved 
are no longer monotone. Then none of the known fixpoint theorems apply. 

In this paper we offer a new fixpoint theorem which does without monotonicity. 
Given d __ d ~, monotonicity amounts to show f~(d) __ fk(d~). Instead, we allow 
that  the expression fk(d ~) may be replaced by f j (d ')  for any j ,  and even by some 
arbitrary composition of functions applied to d ~. If the functions are increasing, this 
task becomes the easier to solve, the longer the compositions are. 

We require only two very weak conditions for technical convenience. First, we 
require that  the underlying domain is wellfounded, a condition which is reasonable 
in practice, because it means termination of the iteration. In fact we are confident 
that  wellfoundedness is not essential if one can afford nontermination. Second, we 



108 

require that  all functions in ~" are increasing, i.e. x E fk(x) holds for all k E IV. 
This condition is not really restrictive, as we will show (cf. Section 2 and 3). 

Our fixpoint theorem is applicable to an arbitrary countable family of functions 
2: =~f {f~ : D --r D Ik E AN} on a weUfounded partial order (D; E): Under the above 
mentioned premises our theorem guarantees the existence of a least common fixpoint 
of ~', which is reached eventually by any fair chaotic iteration. 

The remainder of the paper is structured as follows. We present the new fixpoint 
theorem in Section 2. In Section 3 we show that vector iterations are a special case 
of chaotic iterations. Section 4 demonstrates the power of our theorem by giving a 
classical application in terms of a data flow analysis algorithm, and by treating a 
problem beyond the scope of classical fixpoint theorems: the proof of the optimality 
of a program optimization for partial dead code elimination (cf. [KRS94b]), which 
is composed of program transformations with second order effects. This algorithm 
is implemented in Version 4.0 of the Sun SPARCompiler language systems to be 
released at the end of 1995, which underlines the practical relevance of the new 
fixpoint theorem. Section 5 contains our conclusions and directions to future work. 

Appendix A finally contains all technical proofs of the paper. 

2 T h e  F i x p o i n t  T h e o r e m  

In this section we present our new fixpoint theorem guaranteeing that  a family of 
functions, ~" =dr (fk)~eJv, has a least common fixpoint p~',  together with a corre- 
sponding 'generic' terminating algorithm. This requires the following basic notions. 

A partial order (D; E) is a set D together with a reflexive, antisymmetric, and 
transitive binary relation E c_ D x D. A sequence (di)ieJN of elements dl E D is called 
an (ascending) chain ifVi E IV. di E di+l. A chain T = d /  (d/)ieiv is stationary if 
(d~ l i ~ IV} is fnite. The partial order relation E is called weUfounded if every 
chain is stationary. A function f : D --r D on D is increasing if d E f(d) for all 
d e D, and monotone if Vd, d' e D. d E d ' ~ f ( d )  E f(d'). If ~ '=d/  (fk)kON is a 
family of functions and s = ( s l , . . .  , sn) E IV* then f ,  is defined by the composition 
f ,  =d/ f*, o . . .  o to1" 

The following notions are central for dealing with fixpoint iterations of a family 
of functions. 

Def in i t ion  I S t r a t egy ,  C hao t i c  I t e r a t i o n  Sequence  and  Fai rness .  Let (D; E) 
be a partial order and ~" =d/ (fk)kCnv he a family of increasing functions fk : D --r D. 
A strategy is any function 7 : IV ~ AN, A strategy 7 and an element d E D induce a 
chaotic iteration fir(d) = ( d i ) i E l V  of elements dl E D inductively defined by do = d 
and d i + l  = f.r(i)(di). A strategy 3' is called fair iff 

Vi, k E AN. (fk(di) # dl implies 3j > i.d~ # di) 

Fixpoint theorems usually require that the considered functions are monotone. In 
practice, however, functions are often not monotone, but satisfy the following weaker 
notion. 
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D e f i n i t i o n  2 De lay -Mono ton ic i t y .  Let (D; _E) be a partial order and ~" =dy (fk)kelV 
be a family of functions fk : D -4 D. Then ~c is called delay-monotone, if for all 
k E I V :  

d _E d' implies 3s E IV*. fk(d) U_ fs(d')  

If every fk is a monotone function in the usual sense, then ~" is delay-monotone. 
But note that delay-monotonicity in general does not carry over to proper subsets 
of ~r. 

Now we are prepared for our main result, which, in particular, yields that  LJ f~( •  
is independent of the choice of 7- 

T h e o r e m 3  C h a o t i c  F i x p o i n t  I t era t ions .  Let (D; _)  be a wellfounded partial 
order with least element .1_, Yr=d! (fk)keIv a delay-monotone family of increasing 
functions, and 7 : IV -~ IV a fair strategy. Then the least common f ~ o i n t  tJJ r of jc 
exists and is given by I I f ~ ( X ) . In particular, #2: is always reached within a finite 
number of iteration steps. 

Note that  the following counterexample shows that  "increasing" is essential. Let 
.l_ f- a, and fl(.l_)= f](a)=.l. ,  f2(.L)= f2(a)=a, both monotone, but f l  not in- 
creasing. Indeed, f l  and f2 have no common fixpoints. 

Theorem 3 suggests an iterative strategy for computing the least fixpoint of 9 v. 
One defines 7(i) at step i during the run of the algorithm. Whenever di is not 
yet a fixpoint of ~ ,  i.e. there is some k E IV where fk(dl) is strictly greater than 
di, one chooses 7(i) = k for an arbitrary such k. This idea is illustrated in the 
nondeterministic skeleton algorithm presented in Figure 1. 

d := J-; 
while 3 k e ~W. d ~ f~ (d) do 

choose  k E/~V where d U fk (d) in 
d := fk (d) 

ni 
od  

Fig. 1. The Nondeterministic 
Skeleton Algorithm 

3 S p e c i a l  C a s e :  V e c t o r  I t e r a t i o n s  

Let (C; _Ec) be a wellfounded partial order and D = C n for some n E IV, ordered by 
the pointwise extension __U of _c .  Now let f �9 D -+ D be a monotone function. Instead 
of iterating dl = f ( •  d2 = f (d l ) , . . ,  according to Tarski's theorem, one may pass 
over to a dissection of f to its components, fk ,  i.e. f(d) = ( f l ( d ) , . . .  , fn(d))  and 
perform selective updates. Here and in the sequel we use an upper index i at a vector 
of length n to select its i-th component. A vector iteration is an iteration of the form 
dl = fjo(.l-),d2 = f j l (d l )  . . . .  , where ,ll C {1 . . . . .  n} and 

f j (d) '  =dy { fi(d) if i E  .l 
otherwise 
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performs a selective update of the components specified by J. The set of common 
fixpoints of the function family y-=d] { f j  I J C {1, . . .  ,n}} is equal to the set of 
fixpoints of f .  Note that each f j  is monotone since f is monotone. 

Now let us demonstrate that the vector approach is modelled conveniently in our 
setting. To this end, we generalize the notion of a strategy to that of a set  strategy. 
A set  strategy is any function 7 : 1V ~ ~ ( { 1 , . . . ,  n}). The intended meaning being 
that  7(i) yields a set Ji of indices in {1,. . .  , n} of components to be updated at step 
i. A set strategy is called fair, iff 

Vi e IV, J C_ IV . ( f j (d i )  ~ di implies 3j  > i. dj # dl) 

The following result shows that for a monotone vector function f ,  every chaotic 
iteration sequence is a chain. 

L e m m a  4 V e c t o r  I terat ions .  Let (C; U_c) be a wellfounded partial order with 
least element -l-c, let n E IV, and let D = C n be ordered by the pointwise ex- 
tension E_ of ff-C. Let f = ( f l , . . .  , f n )  be a monotone funct ion on D,  and let 
Y=d] {fJ I J  C_ {1, . . .  ,n}} with functions f j  : D ---} D as defined above and 
7 : IV ~ g~({1,... ,n}) be a set strategy. Then every chaotic iteration fT(.l_) is 
a chain. 

Without loss of generality we may assume that D is the smallest set that contains 
.1_ and is closed under Y- and II. Then increasingness means exactly that every itera- 
tion yields a chain. In other words, for vector iterations the increasingness property 
is no real restriction. 

The following corollary is a special case of Theorem 3 for vector iterations and a 
consequence of Lemma 4. In particular, if ly-I = 1 our corollary reduces to Tarski's 
theorem in the case of wellfounded partial orders. 

Coro l l a ry  5 Chao t i c  Vector  I terat ions .  Let (C; E c )  be a wellfounded partial or- 
der with least element -kc, let n E IV, and let D = C n be ordered by the pointwise 
extension ff of ff__c. Let f = ( f l , . . .  , f n )  be a monotone function on D,  and let 
Y'=at {fJ I J c_ {1,. . .  ,n}}, and ~r be a fair set strategy. Then I If.r(.l_) is the least 
f izpoint p5 r of yr. In particular, I~Y- = l~f , and it is always reached within a finite 
number of iteration steps. 

4 A p p l i c a t i o n s  

In this section we demonstrate our Fixpoint Theorem 3 by proving the correctness 
and termination of a workset algorithm for data flow analysis, and by establishing 
terminating optimal program optimization on the basis of program transformations 
with second order effects. Whereas the first application can already be handled by 
Corollary 5, which reflects the scope of classical vector iteration approaches as they 
are common in practice, the second application requires the full strength of our main 
Theorem 3, as the component transformations of the optimization, the algorithm for 
partial dead code elimination of [KRS94b], are not even monotone on the relevant 
domain. Here, the new theorem is central for establishing the optimality of this 
algorithm, which is implemented in Version 4.0 of the Sun SPARCompiler language 
systems to be released at the end of 1995. 



111 

4.1 Data  Flow Analysis:  Workset  A l g o r i t h m s  

Data flow analysis (DFA) is concerned with the static analysis of programs in order 
to support the generation of efficient object code by "optimizing" compilers (cf. 
[Hec77, M J81]). For imperative languages, it provides information about the program 
states that may occur at a given program point during execution. Usually, this 
information is computed by means of some iterative workset algorithm, which can 
elegantly be modelled by the vector iteration approac~h. 

In DFA and program optimization (cf. Section 4.2) it is common to represent 
programs as directed flow graphs G = (N, E,  s, e) with node set N and edge set 
E.  Nodes n E N represent the statements, edges (n, m) E E the nondetermin- 
istic branching structure of the program under consideration, and s and e the 
unique start node and end node of G, which are assumed to possess no prede- 
cessors and successors, respectively. Moreover, preda(n)=dy { m l ( m , n  ) E E}  and 
succa(n)=dy { m l(n,m) E E}  denote the set of all immediate predecessors and 
successors of a node n, respectively. Finally, every node n E N is assumed to lie on 
a path  from s to e, i.e. every node n E N is reachable from s, and e is reachable 
from every node n E N. 

Theoretically wellfounded are DFAs that  are based on abstract interpretation (cf. 
[CC77, Mar93]). The point of this approach is to replace the "full" semantics of a 
program by a simpler more abstract version, which is tailored to deal with a specific 
problem. Usually, the abstract semantics is specified by means of a local semantic 
.hmctional 

[ ] : N ~  (C--*C) 

which gives abstract meaning to every program statement in terms of a monotone 
(or even continuous) transformation function on a wellfounded partial order (C; E) 
with least element _1_, whose elements express the DFA-information of interest. 

Given a program G and a local abstract semantics [ ], the goal of DFA is to 
annotate the program points of G with DFA-information that  properly reflect the 
run-time behaviour of G with respect to the problem under consideration. Formally, 
this annotation is defined by the least solution of Equation System 6 which specifies 
the consistency between pre-conditions of the statements of G expressed in terms of 
C with respect to some start information co E C. This annotation is known as the 
solution of the minimal fixpoint (MFP) approach in the sense of Kam and Ullman 
[KU77]. 

Equat ion  S y s t e m  6. 

co i f  n = s 
p r e ( n )  = I I{[m](pre(m))lm ~ preda(n) } o t h e r w i s e  

In practice the M_b-P-solution, which we denote by prec0 , is computed by means of 
some iterative workset algorithm (see Figure 2). 

We will see that  termination and correctness in this approach are a consequence 
of Corollary 5. To begin with, let G = (N, E, s, e) be the flow graph under consider- 
ation, and let [ ] : N -~ (C -~ C) be a local abstract semantics, such that  all semantic 
functions are monotone. Without loss of generality we identify in the following the 
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p ~ [ , ]  :=  co; 
forall n e N\{s} do pre[n] := _L od; 
workset:= N; 
while workset ~ 0 do 

choose n E workset in 
workset:= workset\ { n }; 
n e w : =  pre[n] u I1{[ m l(pre[m]) I m e preda(n)}; 
if new -1 pre[n] then 

pre[n] := new; 
workset := workset U suceo(n) 

fl 
nl 

od 

Fig. 2. A Workset 
Algorithm 

set of nodes of N with the set of natural numbers { 1 , . . . ,  n}, where n denotes the 
number of nodes of N. 

Now let us define D=d/C n equipped with the pointwise extension of _. One easily 
verifies that  D is a wellfounded partial order. A value d = (d l , . . .  , d ~) represents 
an annotation of the flow graph where the value d k is assigned to node k. 

For every node k of the flow graph we define a function fk : D ~ C by 

y k ( d l , . . . ,  d~)=dl d 'k 

where 
d"  = d k u U { [  m ] ( d " ) I ~  e predo(k)} 

Intuitively, fk describes the effect of a computation of the local semantics at node 
k. The following lemma states that  the DFA problem is modelled correctly. 

Lemma 7. For all d E D we have: d is a solution of Equation System 6 if and 
only if d is a fixpoint of f=4f ( f l , . . .  , fn).  

The workset algorithm of Figure 2 follows the general pattern of the nondeterministic 
skeleton algorithm of Figure 1 with ~ ' =  {f{k} I 1 < k < n}. It  profits from a set 
workset of indices which satisfies the invariant: workset D_ {k I f{k} (d) ~ d). One 
easily verifies that  f is monotone. Hence the premises of Corollary 5 are satisfied 
and we obtain the following theorem. 

Theorem 8 Correctness and Termination. Every run of the workset algorithm 
terminates with the MFP-solution prec0. 

4.2 Program Optimization: Partial Dead Code Elimination 

In this section we demonstrate an application of the Chaotic Fixpoint Iteration 
Theorem 3 in program optimization by proving the optimality of the partial dead 
code elimination algorithm of [KRS94b]. Intuitively, an assignment in a program 
is dead if its left hand side variable is dead immediately after its execution, i.e., if 
on every program continuation reaching the end of the program the first use of this 
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variable is preceded by a redefinition of it. Correspondingly, an assignment is partially 
dead, if it is dead along some program paths reaching the end of the program. 

Conceptually, the elimination Of partially dead occurrences of an assignment 
pattern a (for short: partially dead a-occurrences) can be decomposed into two 
steps. First, moving them as far as possible in the direction of the control flow, and 
second, removing all dead a-occurrences. In order to preserve the program semantics, 
both the sinking and the elimination steps must be admissible. This is defined in 
full detail in [KRS94b]. So, we here restrict the presentation to those parts that are 
essential for Theorem 3. 

The relevance of Theorem 3 for partial dead code elimination stems from the fact 
that assignment sinking and elimination steps in general have second order effects, 
i.e. they usually enable assignment sinking and elimination steps for other assignment 
patterns. For example, eliminating the partially dead occurrences of some assignment 
pattern is often the premise that occurrences of other assignment patterns can be 
eliminated at all. In [KlqS94b] this is taken care of by repeatedly applying admissible 
assignment sinking and elimination steps to the assignment patterns of the argument 
program until the program stabilizes, i.e. until a fixpoint is reached. The correctness 
of this iterative approach is a consequence of Theorem 3, as we are going to show in 
the remainder of this section, where we consider an arbitrary, but fixed program G. 

For a program G', we will write G' F-se G" if the flow graph G" results from 
G ~ by applying an admissible assignment sinking or elimination transformation. 
We denote the set of all admissible assignment sinking and dead code elimination 
functions by ,9 and E, respectively. Additionally, we abbreviate ,9 U E by 7". It  
consists of all functions fal ,c2 : G ~ ~ defined by 

G' I G2 if G' =G1 
VG' E ~. fc~,a2( )=dl G' otherwise 

where G1, G2 E G and G1 ~-,e G2. Alternatively to f(G') = G" we will also write 
G' ~-lse G'. Then, 

denotes the universe of programs resulting from G by partial dead code elimination. 
In order to compare the quality of different programs in ~, we introduce the 

relation "better" between programs of ~. Note that this relation is reflexive. In fact, 
at least as good would be the more precise but uglier notion. 

Definition 9 Optimality. 

1. Let G',G" E ~. Then G' is better than G", in signs G" U G', if and only if 
for every assignment pattern a and every program path p leading from the 
start  node to the end node of the argument program there are at most as many 
occurrences of a in G' as in G".5 

2. G" E G is optimal if and only if G* is better than any other program in ~. 

5 Partial dead code elimination preserves the branching structure of the argument program. 
Hence, starting from a path in G, we can easily identify corresponding paths in G' and 
G It . 
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I t  is easy to check that the relation ~ is reflexive, transitive, and wellfounded. Un- 
fortunately, it is not antisymmetric. Hence, there may be several programs being 
optimal in the sense of Definition 9. In order to apply Theorem 3, we thus con- 
sider the partial order I-:e instead of ~, but we are going to reconsider relation 
subsequently (cf. Theorem 18). 

In addition to S and E, we define the set of maximal assignment sinkings and 
eliminations, which are the functions involved in the partial dead code elimination 
algorithm of [KRS94b]. A function fa~,a~ E S (E) is called maximal, if for all 
functions fGa,Gs E ,S (~) there is a function fGs,G2 E T with lea,G2 = fGs,G2 o 
fa , ,as .  The set of all maximal sinking and elimination functions are denoted by 
S rnaz and E max, respectively, and T maz C T denotes the union of S rnaz and 
~rnaz. Finally, we denote the set of (maximal) admissible assignment sinkings and 
eliminations with respect to an assignment pattern a by Ta and 7-a ma2. As a first 
result we then obtain the Dominance Lemma 10, which follows immediately from 
the definitions of Ta rna~ and Ta. 

Lemma 10 D o m i n a n c e .  Let G1 E ~, let f ETa max and g E 7-a be corresponding 
functions, i.e. both sinking or both elimination functions, let G1 FUse G2, and G1 FYs e 
G3. Then we have: G2 ~-se G3. In particular: G3 ~ G1 if G2 ~ G1. 

The next lemma can be proven by a straightforward induction on the length of 
a derivation sequence. The point for proving the induction step is that  a program 
resulting from a transformation of T is at least as good as its argument with respect 
to ~. It  is in the same equivalence class after sinking and trivial elimination steps, 
i.e., elimination steps, where no assignment occurrence has been eliminated; and it 
is better otherwise. This follows immediately from the constraints that  are satisfied 
by admissible assignment sinkings and eliminations. 

L e m m a l l .  We have: G' ~ :e G" ~ G' ~ G" 

In other words, Lemma II says l-:e C ~. From the wellfoundedness of ~ and 
the definitions of ~'se and T max we immediately conclude: 

Lemma 12 Wel l foundedness  and Increasingness. 

1. The relation F:e is wellfounded. 
~. All functions f E T "~" are increasing. 

Next we are going to show that T is delay-monotone. This proof is supported by 
the following lemma, whose first part  is a consequence of the fact that  eliminating 
dead assignment occurrences does not reanimate other dead assignment occurrences, 
and whose second part  is a consequence of the admissibility of 9 and a simple 
program transformation supposed in [KRS94b] which is typical for code motion 
transformations (cf. [DRZ92, KRS92, KRS94a, RWZ88]), namely to insert in every 
edge leading from a node with more than one successor to a node with more than 
one predecessor a new 'synthetic' node. 

L e m m a  13. Let Ga, G2, G3 E ~, and g, h E T with G1 F~e G2 and Gl ~-~e G3. 
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1. I f  g E Ca, and gee an a-occurrence occurring both in G1 and G2, then we 
have: I f  gee is dead in G], then it is dead in G2. 

2. I f  g, h E Sa, oct an a-occurrence that has been moved by g into a node n 
of G2 with more than one predecessor, and occ' an a-occurrence that has been 
moved by h into a predecessor m of n, then we have: oct is dead in n iff oc~ 
is dead in m. 

Additionally, we have: 

L e m m a l 4 .  Let G1,G2 E O, let g E T, f E T max, and let a,~ E .4P be two 
different assignment patterns. Then we have: 

1. I f  f ,  9 E s then there are transformations f ' ,  g' E g such that the diagram in 
Figure 3 commutes. 

~. I f  f , g  E S, then there are transformations f ' , 9 '  E S such that the diagram in 
Figure 3 commutes. 

3. I f  g E s and f E Sa, then there are transformations g' E Ea and f '  E S a 
such that the diagram in Figure 3 commutes. 

4. I f  g E Sa and f E g~, then there are transformations g' E Sa and f '  E g a 
such that the diagram in Figure 3 commutes. 

g 

G1 J se G2 

~I  f g '  g l f t  

G 3 I se G4 

Fig. 3. Commuting Diagram 

Lemma 13 and Lemma 14 allow us to establish the following lemma, which is 
the key for proving the delay-monotonicity of 7". 

Lemma 15 Main Lemma. 
Vg E 7". G1 }-Sse G2 ::~ V f E T" 3 / 1 , . . .  , /n  ~ 7". f(G1) l'-sr fn o . . .  O f l (G2) 

The following theorem states the desired delay-monotonicity result. The reason- 
ing closely resembles the classical Newman Lemma [New42], saying that confluence 
follows from local confluence if the given relation is weUfounded. Note that mono- 
tonicity does not hold. 

Lemma 16 Delay-Monotonlclty.  
T is delay-monotone, i.e., 

V f E T.  G' ~-*,e G" ~ 3 f l , . . .  , f ,  E T. f (G ' )  ~-;e fn o . . .  o f ] ( G ' )  
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Finally, we have to show that the set of common fixpoints of T max and T 
coincide. Central for proving this result is the Dominance Lemma 10. Moreover, we 
have to check that the fixpoints of T are maximal in G. 

Theorem 17 Fixpoint Characterization. 

1. G' E ~ is a fixpoint of the functions of T if and only if G I is a fixpoint of the 
functions of T ma'. 

~. G' E G is a fixpoint of the functions of T if and only if G' is maximal in ~. 

Collecting our results we have: }-~e is a wellfounded (Lemma 12(1)) complete partial 
order on ~, whose least element is G itself; all functions f E T maz are increasing 
(Lemma 12(2)) and T is delay-monotone with respect to }-~e (Lemma 16). Hence, 
Theorem 3 is applicable. 

Moreover, the function families T maz and T have the same common fixpoints 
(Theorem 17(1)), and all of their fixpoints are maximal in ~-~e (Theorem 17(2)). 

Combining these results and applying Lemma 11 we obtain that there exists a 
terminating optimal program transformation [KRS94b]: 

Theorem 18 Optimal Partial Dead Code Elimination.  
has (up to local reorderings in basic blocks) a unique optimal element (with respect 

to ~ )  which can be computed by any fair sequence of function applications from 
T i T l e 2  �9 

We remark that the optimality of the partial faint code elimination algorithm which 
is also introduced in [KRS94b] as well as the optimality of the algorithm for the 
uniform elimination of partially redundant expressions and assignments in [KRS95] 
can be proven in exactly the same fashion. 

5 Conclusions  

We have presented a new fixpoint theorem, which gives a sufficient condition for the 
existence and computability of the least common fixpoint of a family of functions 
on a wellfounded partial order. The point of this theorem is that for weUfounded 
partial orders the usual monotonicity condition can be substantially weakened. This 
allows us to capture a new and interesting class of practically relevant applications. 
To characterize this class, we discussed applications in data flow analysis and pro- 
9ram optimization. Whereas the first application could still be treated by the known 
fixpoint theorems, the second application requires the generalization developed in 
this paper. Our new theorem is the key for proving the optimality of the partial dead 
code elimimation algorithm of [KRS94b], which is implemented in the new release of 
the Sun SPARCompiler language systems. Moreover, as our theorem only requires 
delay-monotonicity, a property being weaker than monoticity, algorithm designers 
gain greater flexibility in the construction process than in the classical setup. 
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A Proo f s  

P r o o f  of the New Fixpoint Theorem 3 
The wellfoundedness of ~,  the inereasingness of the functions of Y, and the fairness 
of the s t ra tegy directly imply tha t  U fT(_k) is a fixpoint and that  it is reached in a 
finite number  of i teration steps. Thus, we are left with showing tha t  U f~(-l-) is a 
lower bound for every common fix'point of Y. Let 6 be an arbi t rary fixed point of 
~' ,  i.e. fk(6) = 6 for all fk E ~" and as a consequence fa(6) = J for all s E ~W*. For 
(di)i~JN = fir(J-) we show di E 6 for all i E / V  by induction on i. For i = 0, we have 
do = _k _ & The  induction step, di+l = fT(i)(di) _ fs(~) = ~ for some s E IV*, 
then follows from the induction hypothesis di E J and delay-monotonicity. Hence 
d/ E 6 for all i and so LJ f~(_k) _E ~ by definition of U. 13 

P r o o f  o f  L e m m a  4 
Let 7 be  an arb i t ra ry  set s t ra tegy on {1, . . .  ,n}, and (dl)i~v be its induced chaotic 
i teration, s tar t ing from _L =dr ( J - c , . . -  , J-c) .  We have to show 

Vi ~ IV. d~ _ d~+l 

The  proof  is by induction on i. Let .jr =~, 7(i). By definition of fa the proper ty  

Vk E {1 , . . .  , n } \ J  Vd E D. f j (d )  k = d k 

holds. Therefore,  it suffices to show dki C_c fk(d~) k for all k E J.  The case d~ = J-c  
is trivial. Otherwise, d/k must  have been updated  in an earlier step. More precisely, 
d~ = f'KJ)(dJ) h where j is the greatest  index j < i such tha t  k E 7(J).  By induction 
hypothesis for each j~ = j , . . .  , i  - 1, we obtain dj, E dy+l ,  from which dj _ di 
follows by transi t ivi ty of _ .  By monotonicity of f~(j) then, d/k = fT(j)(dj) k Ec  
f-Kj)(d/) k = fk(di) = f j (di )  k = dki+l follows, and the proof  is done. 13 

P r o o f  o f  L e m m a  14 
For f E ga,  let elim~(f,G') denote the set of a-occurrences in G'  tha t  are elimi- 
nated by f .  Then,  the first pa r t  of Lemma 14 is proven by investigating two cases: 

In case ( la) ,  the maximal i ty  of f guarantees: elima(g, G1) C_ elirr~(f, G1). Ap- 
plying L e m m a  13(1) we obtain tha t  all a-occurrences in elin~(f, G1)\elira,~(g, G1) 


