
Non-monotone Submodular Maximization
under Matroid and Knapsack Constraints

Jon Lee
IBM T. J. Watson Research
Yorktown Heights, NY, USA

jonlee@us.ibm.com

Vahab S. Mirrokni
Google Research

New York, NY, USA
mirrokni@gmail.com

Viswanath Nagarajan
∗

Tepper School of Business
CMU, Pittsburgh, PA, USA

viswa@cmu.edu

Maxim Sviridenko
IBM T. J. Watson Research
Yorktown Heights, NY, USA

sviri@us.ibm.com

ABSTRACT
Submodular function maximization is a central problem in
combinatorial optimization, generalizing many important prob-
lems including Max Cut in directed/undirected graphs and
in hypergraphs, certain constraint satisfaction problems, max-
imum entropy sampling, and maximum facility location prob-
lems. Unlike submodular minimization, submodular max-
imization is NP-hard. In this paper, we give the first
constant-factor approximation algorithm for maximizing any
non-negative submodular function subject to multiple ma-
troid or knapsack constraints. We emphasize that our results
are for non-monotone submodular functions. In particular,

for any constant k, we present a
“

1

k+2+ 1
k

+ε

”
-approximation

for the submodular maximization problem under k matroid
constraints, and a

`
1
5
− ε

´
-approximation algorithm for this

problem subject to k knapsack constraints (ε > 0 is any
constant). We improve the approximation guarantee of our
algorithm to 1

k+1+ 1
k−1+ε

for k ≥ 2 partition matroid con-

straints. This idea also gives a
“

1
k+ε

”
-approximation for

maximizing a monotone submodular function subject to k ≥
2 partition matroids, which improves over the previously
best known guarantee of 1

k+1
.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

∗Supported by an IBM graduate fellowship and NSF award
CCF-0728841. Work done while visiting IBM T.J. Watson
Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

General Terms
Algorithms

1. INTRODUCTION
In this paper, we consider the problem of maximizing a

nonnegative submodular function f , defined on a ground set
V , subject to matroid constraints or knapsack constraints. A
function f : 2V → R is submodular if for all S, T ⊆ V , f(S∪
T) + f(S ∩ T) ≤ f(S) + f(T). Throughout, we assume that
our submodular function f is given by a value oracle; i.e., for
a given set S ⊆ V , an algorithm can query an oracle to find
its value f(S). Furthermore, all submodular functions we
deal with are assumed to be non-negative. We also denote
the ground set V = [n] = {1, 2, · · · , n}.

We emphasize that our focus is on submodular functions
that are not required to be monotone (i.e., we do not re-
quire that f(X) ≤ f(Y) for X ⊆ Y ⊆ V). Non-monotone
submodular functions appear in several places including cut
functions in weighted directed or undirected graphs or even
hypergraphs, maximum facility location, maximum entropy
sampling, and certain constraint satisfaction problems.

Given a weight vector w for the ground set V , and a knap-
sack of capacity C, the associated knapsack constraint is that
the sum of weights of elements in the solution S should not
exceed the capacity C, i.e,

P
j∈S wj ≤ C. In our usage, we

consider k knapsack constraints defined by weight vectors
wi and capacities Ci, for i = 1, . . . , k.

We assume some familiarity with matroids [41] and asso-
ciated algorithmics [46]. Briefly, for a matroidM, we denote
the ground set ofM by E(M), its set of independent sets by
I(M), and its set of bases by B(M). For a given matroid
M, the associated matroid constraint is S ∈ I(M) and the
associated matroid base constraint is S ∈ B(M). As is stan-
dard, M is a uniform matroid of rank r if I(M) := {X ⊆
E(M) : |X| ≤ r}. A partition matroid is the direct sum
of uniform matroids. Note that uniform matroid constraints
are equivalent to cardinality constraints, i.e, |S| ≤ k. In our
usage, we deal with k matroids M1, . . . ,Mk on the com-
mon ground set V := E(M1) = · · · = E(Mk) (which is also
the ground set of our submodular function f), and we let
Ii := I(Mi) for i = 1, . . . , k.

Background. Optimizing submodular functions is a cen-

323

tral subject in operations research and combinatorial op-
timization [36]. This problem appears in many important
optimization problems including cuts in graphs [19, 42, 26],
rank function of matroids [12, 16], set covering problems [13],
plant location problems [9, 10, 11, 2], certain satisfiability
problems [25, 14], and maximum entropy sampling [32, 33].
Other than many heuristics that have been developed for op-
timizing these functions [20, 21, 27, 44, 31], many exact and
constant-factor approximation algorithms are also known for
this problem [39, 40, 45, 26, 15, 50, 18]. In some settings
such as set covering or matroid optimization, the relevant
submodular functions are monotone. Here, we are more in-
terested in the general case where f(S) is not necessarily
monotone.

Unlike submodular minimization [45, 26], submodular func-
tion maximization is NP-hard as it generalizes many NP-
hard problems, like Max-Cut [19, 14] and maximum facility
location [9, 10, 2]. Other than generalizing combinatorial op-
timization problems like Max Cut [19], Max Directed Cut [4,
22], hypergraph cut problems, maximum facility location [2,
9, 10], and certain restricted satisfiability problems [25, 14],
maximizing non-monotone submodular functions have ap-
plications in a variety of problems, e.g, computing the core
value of supermodular games [47], and optimal marketing
for revenue maximization over social networks [23]. As an
example, we describe one important application in the sta-
tistical design of experiments. Let A be the n-by-n covari-
ance matrix of a set of Gaussian random variables indexed
by [n]. For S ⊆ [n], let A[S] denote the principal submatrix
of A indexed by S. It is well known that the entropy1 of the
random variables indexed by S is

f(S) =
1 + ln(2π)

2
|S|+ 1

2
ln det A[S] .

Certainly |S| is non-negative, monotone and (sub)modular
on [n]. It is also well known that ln detA[S] is submodular
on [n], but ln detA[S] is not even approximately monotone
(see [30, Section 8.2]): For example, for

A =

„
δ

√
δ − 1√

δ − 1 1

«
,

with δ > 1, it is clear that ln detA[{1, 2}] = 0, while
ln det A[{1}] = ln(δ) can be made arbitrarily large, by tak-
ing δ large. So the entropy f(S) is submodular but not
generally monotone. The maximum entropy sampling prob-
lem, introduced in [48], is to maximize f(S) over subsets
S ⊆ [n] having cardinality s fixed. So the maximum en-
tropy sampling problem is precisely one of maximizing a
non-monotone submodular function subject to a cardinality
constraint. Of course a cardinality constraint is just a ma-
troid base constraint for a uniform matroid. The maximum
entropy sampling problem has mostly been studied from a
computational point of view (often in the context of locating
environmental monitoring stations), focusing on calculating
optimal solutions for moderate-sized instances (say n < 200)
using mathematical programming methodologies (e.g, see
[32, 33, 34, 29, 6, 5]), and our results provide the first set
of algorithms with provable constant-factor approximation
guarantee (for cases in which the entropy is non-negative).

Recently, a 2
5
-approximation was developed for maximiz-

ing non-negative non-monotone submodular functions with-

1sometimes also referred to as differential entropy or con-
tinuous entropy

out any side constraints [15]. This algorithm also provides
a tight 1

2
-approximation algorithm for maximizing a sym-

metric2 submodular function [15]. However, the algorithms
developed in [15] for non-monotone submodular maximiza-
tion do not handle any extra constraints.

For the problem of maximizing a monotone submodular
function subject to a matroid or multiple knapsack con-
straints, tight

`
1− 1

e

´
-approximations are known [39, 7, 51,

49, 28]. Maximizing monotone submodular functions over k

matroid constraints was considered in [40], where a
“

1
k+1

”
-

approximation was obtained. This bound is currently the
best known ratio, even in the special case of partition ma-
troid constraints. However, none of these results generalize
to non-monotone submodular functions.

Better results are known either for specific submodular
functions or for special classes of matroids. A 1

k
- approxi-

mation algorithm using local search was designed in [43] for
the problem of maximizing a linear function subject to k
matroid constraints. Constant factor approximation algo-
rithms are known for the problem of maximizing directed
cut [1] or hypergraph cut [3] subject to a uniform matroid
(i.e. cardinality) constraint.

Hardness of approximation results are known even for the
special case of maximizing a linear function subject to k par-
tition matroid constraints. The best known lower bound is
an Ω(k

log k
) hardness of approximation [24]. Moreover, for

the unconstrained maximization of non-monotone submod-
ular functions, it has been shown that achieving a factor
better than 1

2
cannot be done using a subexponential num-

ber of value queries [15].

Our Results. In this paper, we give the first constant-
factor approximation algorithms for maximizing a non mono-
tone submodular function subject to multiple matroid con-
straints, or multiple knapsack constraints. More specifically,
we give the following new results (below ε > 0 is any con-
stant).

(1) For every constant k ≥ 1, we present a
“

1

k+2+ 1
k

+ε

”
-

approximation algorithm for maximizing any non-negative
submodular function subject to k matroid constraints. This

implies a
“

1
4+ε

”
-approximation algorithm for maximizing

non-monotone submodular functions subject to a single ma-

troid constraint. Moreover, this algorithm is a
“

1
k+2+ε

”
-

approximation in the case of symmetric submodular func-
tions. This algorithm involves a natural local search proce-
dure, that is iteratively executed k + 1 times. Asymptoti-
cally, this result is nearly best possible because there is an
Ω(k

log k
) hardness of approximation, even in the monotone

case [24].

(2) For every constant k ≥ 1, we present a
`

1
5
− ε

´
- ap-

proximation algorithm for maximizing any nonnegative sub-
modular function subject to a k-dimensional knapsack con-
straint. To achieve the approximation guarantee, we first
give a

`
1
4
− ε

´
-approximation algorithm for a fractional re-

laxation (similar to the one used in [51]). This is again based

2The function f : 2V → R is symmetric if for all S ⊆ V ,
f(S) = f(V \ S). For example, cut functions in undi-
rected graphs are well-known examples of symmetric (non-
monotone) submodular functions

324

on a local search procedure, that is iterated twice. We then
use a simple randomized rounding technique to convert a
fractional solution to an integral one. A similar approach
was recently used in [28] for maximizing a monotone sub-
modular function over multiple knapsack constraints. How-
ever their algorithm for the fractional relaxation uses the
‘continuous greedy’ algorithm of Vondrák [51] that requires
a monotone function; moreover, even their rounding method
is not directly applicable to non-monotone submodular func-
tions.

(3) For submodular maximization under k ≥ 2 partition ma-
troid constraints, we obtain improved approximation guar-

antees. We give a

„
1

k+1+ 1
k−1+ε

«
-approximation algorithm

for maximizing non-monotone submodular functions subject

to k partition matroids. Moreover, our idea gives a
“

1
k+ε

”
-

approximation algorithm for maximizing a monotone sub-
modular function subject to k ≥ 2 partition matroid con-
straints. This is an improvement over the previously best
known bound of 1

k+1
from [40].

(4) Finally, we study submodular maximization subject to
a matroid base constraint. We give a

`
1
3
− ε

´
-approximation

in the case of symmetric submodular functions. Our result
for general submodular functions only holds for special ma-
troids: we obtain a (1

6
− ε)-approximation when the matroid

contains two disjoint bases. In particular, this implies a`
1
6
− ε

´
-approximation for the problem of maximizing any

non-negative submodular function subject to an exact car-
dinality constraint. Previously, only special cases of directed
cut [1] or hypergraph cut [3] subject to an exact cardinality
constraint were considered.

Due to lack of space, in this paper we only present (1)
general matroid constraints in Section 2, and (2) knapsack
constraints in Section 3. Details of the other two results can
be found in the full version [35].

All our algorithms run in time nO(k), where k is the num-
ber of matroid or knapsack constraints.

Our main technique for the above results is local search.
Our local search algorithms are different from the previously
used variant of local search for unconstrained maximiza-
tion of a non-negative submodular function [15], or the local
search algorithms used for Max Directed Cut [4, 22]. In the
design of our algorithms, we also use structural properties
of matroids, a fractional relaxation of submodular functions,
and a randomized rounding technique.

2. MATROID CONSTRAINTS
In this section, we give an approximation algorithm for

submodular maximization subject to k matroid constraints.
The problem is as follows: Let f be a non-negative submod-
ular function defined on ground set V . Let M1, · · · ,Mk

be k arbitrary matroids on the common ground set V . For
each matroid Mj (with j ∈ [k]) we denote the set of its
independent sets by Ij . We consider the following problem:

max
n

f(S) : S ∈ ∩k
j=1Ij

o
. (1)

We give an approximation algorithm for this problem us-
ing value queries to f that runs in time nO(k). The starting
point is the following local search algorithm. Starting with

S = ∅, repeatedly perform one of the following local im-
provements:

• Delete operation. If e ∈ S such that f(S \ {e}) >
f(S), then S ← S \ {e}.

• Exchange operation. If d ∈ V \ S and ei ∈ S ∪ {∅}
(for 1 ≤ i ≤ k) are such that (S \ {ei}) ∪ {d} ∈ Ii for
all i ∈ [k] and f((S \ {e1, · · · , ek})∪{d}) > f(S), then
S ← (S \ {e1, · · · , ek}) ∪ {d}.

When dealing with a single matroid constraint (k = 1),
the local operations correspond to: delete an element, add
an element (i.e. an exchange when no element is dropped),
swap a pair of elements (i.e. an element from outside the
current set is exchanged with an element from the set). With
k ≥ 2 matroid constraints, we permit more general exchange
operations, involving adding one element and dropping up
to k elements.

Note that the size of any local neighborhood is at most
nk+1, which implies that each local step can be performed
in polynomial time for a constant k. Let S denote a locally
optimal solution. Next we prove a key lemma for this local
search algorithm, which is used in analyzing our algorithm.
Before presenting the lemma, we state a useful exchange
property of matroids (see [46]). Intuitively, this property
states that for any two independent sets I and J , we can
add any element of J to the set I , and remove at most one
element from I while keeping the set independent. More-
over, each element of I is allowed to be removed by at most
one element of J .

Theorem 1. Let M be a matroid and I, J ∈ I(M) be
two independent sets. Then there is a mapping π : J \ I →
(I \ J) ∪ {∅} such that:

1. (I \ π(b)) ∪ {b} ∈ I(M) for all b ∈ J \ I.

2. |π−1(e)| ≤ 1 for all e ∈ I \ J.

Proof. We outline the proof for completeness. We pro-
ceed by induction on t = |J \ I |. If t = 0, there is nothing to
prove; so assume t ≥ 1. Suppose there is an element b ∈ J \I
with I ∪ {b} ∈ I(M). In this case we apply induction on
I and J ′ = J \ {b} (where |J ′ \ I | = t − 1 < t). Since
I \J ′ = I \J , we obtain a map π′ : J ′ \I → (I \J)∪{∅} sat-
isfying the two conditions. The desired map π for 〈I, J〉 is
then π(b) = ∅ and π(b′) = π′(b′) for all b′ ∈ J\I\{b} = J ′\I .

Now we may assume that I is a maximal independent set
in I ∪ J . Let M′ ⊆M denote the matroid M restricted to
I∪J ; so I is a base inM′. We augment J to some base J̃ ⊇ J
inM′ (since any maximal independent set inM′ is a base).

Thus we have two bases I and J̃ in M′. Theorem 39.12
from [46] implies the existence of elements b ∈ J̃ \ I and e ∈
I \ J̃ such that both (J̃ \b)∪{e} and (I \e)∪{b} are bases in

M′. Note that J ′ := (J\{b})∪{e} ⊆ (J̃ \{b})∪{e} ∈ I(M);
also I \ J ′ = (I \ J) \ {e} and J ′ \ I = (J \ I) \ {b}. By
induction on I and J ′ (since |J ′ \ I | = t− 1 < t) we obtain
map π′ : J ′ \ I → I \ J ′ satisfying the two conditions. The
map π for 〈I, J〉 is then π(b) = e and π(b′) = π′(b′) for
all b′ ∈ (J \ I) \ {b} = J ′ \ I . The first condition on π is
satisfied by induction (for elements (J \ I) \ {b}) and since
(I \ e) ∪ {b} ∈ I(M) (see above). The second condition on
π is satisfied by induction and the fact that e �∈ I \ J ′. ��

325

Lemma 1. For a local optimal solution S and any C ∈
∩k

j=1Ij , (k+1) ·f(S) ≥ f(S∪C)+k ·f(S∩C). Additionally
for k = 1, if S ∈ I1 is any locally optimal solution under
only the swap operation, and C ∈ I1 with |S| = |C|, then
2 · f(S) ≥ f(S ∪ C) + f(S ∩ C).

Proof. The following proof is due to Jan Vondrák [52].
Our original proof [35] was more complicated– we thank Jan
for letting us present this simplified proof.

For each matroid Mj (j ∈ [k]), because both C, S ∈ Ij

are independent sets, Theorem 1 implies a mapping πj :
C \ S → (S \ C) ∪ {∅} such that:

1. (S \ πj(b)) ∪ {b} ∈ Ij for all b ∈ C \ S.

2. |π−1
j (e)| ≤ 1 for all e ∈ S \ C.

When k = 1 and |S| = |C|, Corollary 39.12a from [46] im-
plies the stronger condition that π1 : C \ S → S \ C is in
fact a bijection.

For each b ∈ C \S, let Ab = {π1(b), · · · , πk(b)}. Note that
(S \Ab)∪{b} ∈ ∩k

j=1Ij for all b ∈ C \S. Hence (S \Ab)∪{b}
is in the local neighborhood of S, and by local optimality
under exchanges:

f(S) ≥ f ((S \ Ab) ∪ {b}) , ∀b ∈ C \ S. (2)

In the case k = 1 with |S| = |C|, these are only swap oper-
ations (because π1 is a bijection here).

By the property of mappings {πj}kj=1, each element i ∈
S \ C is contained in ni ≤ k of the sets {Ab | b ∈ C \ S};
and elements of S ∩ C are contained in none of these sets.
So the following inequalities are implied by local optimality
of S under deletions.

(k−ni) ·f(S) ≥ (k−ni) ·f(S\{i}), ∀i ∈ S\C. (3)

Note that these inequalities are not required when k = 1
and |S| = |C| (then ni = k for all i ∈ S \ C).

For any b ∈ C \ S, we have (below, the first inequality is
submodularity and the second is from (2)):

f(S ∪ {b})− f(S) ≤ f ((S \Ab) ∪ {b}) − f (S \ Ab)

≤ f(S)− f (S \Ab)

Adding this inequality over all b ∈ C \S and using submod-
ularity,

f(S ∪ C)− f(S) ≤
X

b∈C\S

[f(S ∪ {b}) − f(S)]

≤
X

b∈C\S

[f(S)− f (S \ Ab)]

Adding to this, the inequalities (3), i.e. 0 ≤ (k − ni) ·
[f(S)− f(S \ {i})] for all i ∈ S \ C,

f(S ∪ C)− f(S) ≤
X

b∈C\S

[f(S)− f (S \ Ab)]

+
X

i∈S\C

(k − ni) · [f(S)− f(S \ {i})]

=
λX

l=1

[f(S)− f (S \ Tl)] (4)

where λ = |C \ S| + P
i∈S\C(k − ni) and {Tl}λl=1 is some

collection of subsets of S\C such that each i ∈ S\C appears
in exactly k of these subsets. We simplify the expression (4)
using the following claim.

Claim 1. Let f : 2V → R+ be any submodular function
and S′ ⊆ S ⊆ V . Let {Tl}λl=1 be a collection of subsets of
S \ S′ such that each element of S \ S′ appears in exactly k
of these subsets. Then,

λX
l=1

[f(S) − f (S \ Tl)] ≤ k · `f(S)− f(S′)
´

Proof. Let s = |S| and |S′| = c; number the elements
of S as {1, 2, · · · , s} = [s] such that S′ = {1, 2, · · · , c} = [c].
Then for any T ⊆ S\S′, by submodularity: f(S)−f(S\T) ≤P

p∈T [f([p]) − f([p− 1])]. Using this we obtain:

λX
l=1

[f(S)− f (S \ Tl)] ≤
λX

l=1

X
p∈Tl

[f([p])− f([p− 1])]

= k
sX

i=c+1

[f([i]) − f([i− 1])]

= k · `f(S)− f(S′)
´

The second equality follows from S \C = {c+1, · · · , s} and
the fact that each element of S \ C appears in exactly k of
the sets {Tl}λl=1. The last equality is due to a telescoping
summation. ��

Setting S′ = S ∩ C in Claim 1 to simplify expression (4),
we obtain (k + 1) · f(S) ≥ f(S ∪ C) + k · f(S ∩ C).

Observe that when k = 1 and |S| = |C|, we only used the
inequalities (2) from the local search, which are only swap
operations. Hence in this case, the statement also holds for
any solution S that is locally optimal under only swap op-
erations. In the general case, we use both inequalities (2)
(from exchange operations) and inequalities (3) (from dele-
tion operations). ��

A simple consequence of Lemma 1 implies bounds anal-
ogous to known approximation factors [40, 43] in the cases
when the submodular function f has additional structure.

Corollary 1. For a locally optimal solution S and any
C ∈ ∩k

j=1Ij the following inequalities hold:

1. f(S) ≥ f(C)/(k + 1) if function f is monotone,

2. f(S) ≥ f(C)/k if function f is linear.

The local search algorithm defined above could run for an
exponential amount of time until it reaches a locally opti-
mal solution. To ensure polynomial runtime, we follow the
standard approach of an approximate local search under a
suitable (small) parameter ε > 0, as described in Figure 1.
The following Lemma 2 is a simple extension of Lemma 1
for approximate local optimum.

Lemma 2. For an approximately locally optimal solution
S (in procedure B) and any C ∈ ∩k

j=1Ij , (1+ε)(k+1)·f(S) ≥
f(S ∪ C) + k · f(S ∩ C) where ε > 0 the parameter used
in the procedure B (Figure 1). Additionally for k = 1, if
S ∈ I1 is any locally optimal solution under only the swap
operation, and C ∈ I1 with |S| = |C|, then 2(1 + ε) · f(S) ≥
f(S ∪ C) + f(S ∩ C).

Proof. The proof of this lemma is almost identical to the
proof of the Lemma 1 the only difference is that left-hand
sides of inequalities (2) and inequalities (3) are multiplied

326

Approximate Local Search Procedure B:

Input: Ground set X of elements and value oracle access to submodular function f .

1. Set v ← arg max{f(u) | u ∈ X} and S ← {v}.
2. While one of the following local operations applies, update S accordingly.

• Delete operation on S. If e ∈ S such that f(S \ {e}) ≥ (1 + ε
n4)f(S), then S ← S \ {e}.

• Exchange operation on S. If d ∈ X \ S and ei ∈ S ∪ {∅} (for 1 ≤ i ≤ k) are such that
(S \ {ei}) ∪ {d} ∈ Ii for all i ∈ [k] and f((S \ {e1, · · · , ek}) ∪ {d}) ≥ (1 + ε

n4)f(S), then
S ← (S \ {e1, · · · , ek}) ∪ {d}.

Figure 1: The approximate local search procedure.

Algorithm A:

1. Set V1 = V .

2. For i = 1, · · · , k + 1, do:

(a) Apply the approximate local search procedure B on the ground set Vi to obtain a solution
Si ⊆ Vi corresponding to the problem:

max{f(S) : S ∈ ∩k
j=1Ij , S ⊆ Vi}. (5)

(b) Set Vi+1 = Vi \ Si.

3. Return the solution corresponding to max{f(S1), · · · , f(Sk+1)}.

Figure 2: Approximation algorithm for submodular maximization under k matroid constraints.

by 1 + ε
n4 . Therefore, after following the steps in Lemma 1,

we obtain the inequality:

(k + 1 +
ε

n4
λ) · f(S) ≥ f(S ∪ C) + k · f(S ∩ C).

Since λ ≤ (k + 1)n (see Lemma 1) and we may assume that
n4 >> (k + 1)n, we obtain the lemma. ��

We now present the main algorithm (Figure 2) for sub-
modular maximization over matroid constraints. This per-
forms the approximate local search procedure B iteratively
k + 1 times, and outputs the best solution found.

Theorem 2. Algorithm A in Figure 2 is a
“

1

(1+ε)(k+2+ 1
k

)

”
-

approximation algorithm for maximizing a non-negative sub-
modular function subject to any k matroid constraints, run-
ning in time nO(k).

Proof. Bounding the running time of Algorithm A is
easy. The parameter ε > 0 in Procedure B is any value
such that 1

ε
is at most a polynomial in n. Note that using

approximate local operations in the local search procedure
B (in Figure 1) makes the running time of the algorithm
polynomial. The reason is as follows: one can easily show
that for any ground set X of elements, the value of the
initial set S = {v} is at least Opt(X)/n, where Opt(X) is
the optimal value of problem (1) restricted to X. Each local
operation in procedure B increases the value of the function
by a factor 1+ ε

n4 . Therefore, the number of local operations

for procedure B is at most log1+ ε
n4

Opt(X)
Opt(X)

n

= O(1
ε
n4 log n),

and thus the running time of the whole procedure is 1
ε
·nO(k).

Moreover, the number of procedure calls of Algorithm A for
procedure B is k+1, and thus the running time of Algorithm
A is also polynomial.

Next, we prove the performance guarantee of Algorithm
A. Let C denote the optimal solution to the original problem
max{f(S) : S ∈ ∩k

j=1Ij , S ⊆ V }. Let Ci = C∩Vi for each
i ∈ [k +1]; so C1 = C. Observe that Ci is a feasible solution
to the problem (5) solved in the ith iteration. Applying
Lemma 2 to problem (5) using the local optimum Si and
solution Ci, we obtain for all 1 ≤ i ≤ k + 1:

(1 + ε)(k + 1) · f(Si) ≥ f(Si ∪ Ci) + k · f(Si ∩ Ci), (6)

Using f(S) ≥ maxk+1
i=1 f(Si), we add these k + 1 inequalities

and simplify inductively as given in the following claim.

Claim 2. For any 1 ≤ l ≤ k + 1, we have:

(1 + ε)(k + 1)2 · f(S)

≥ (l − 1) · f(C) + f(∪l
p=1Sp ∪ C1) +

k+1X
i=l+1

f(Si ∪ Ci)

+

l−1X
p=1

(k − l + p) · f(Sp ∩ Cp) + k ·
k+1X
i=l

f(Si ∩ Ci).

Proof. We argue by induction on l. The base case l = 1
is trivial, by just considering the sum of the k+1 inequalities
in statement (6) above. Assuming the statement for some
value 1 ≤ l < k + 1, we prove the corresponding statement
for l + 1, using the simplification in Figure 3.

327

(1 + ε)(k + 1)2 · f(S)

≥ (l − 1) · f(C) + f(∪l
p=1Sp ∪ C1) +

k+1X

i=l+1

f(Si ∪Ci) +

l−1X

p=1

(k − l + p)f(Sp ∩ Cp) + k ·
k+1X

i=l

f(Si ∩ Ci) (7)

= (l − 1) · f(C) + f(∪l
p=1Sp ∪ C1) + f(Sl+1 ∪ Cl+1) +

k+1X

i=l+2

f(Si ∪ Ci) +

l−1X

p=1

(k − l + p)f(Sp ∩ Cp) + k ·
k+1X

i=l

f(Si ∩Ci)

≥ (l − 1) · f(C) + f(∪l+1
p=1Sp ∪ C1) + f(Cl+1) +

k+1X

i=l+2

f(Si ∪Ci) +

l−1X

p=1

(k − l + p)f(Sp ∩ Cp) + k ·
k+1X

i=l

f(Si ∩ Ci) (8)

= (l − 1) · f(C) + f(∪l+1
p=1Sp ∪ C1) + f(Cl+1) +

lX

p=1

f(Sp ∩Cp) +

k+1X

i=l+2

f(Si ∪Ci)

+

lX

p=1

(k − l− 1 + p)f(Sp ∩ Cp) + k ·
k+1X

i=l+1

f(Si ∩ Ci)

≥ l · f(C) + f(∪l+1
p=1Sp ∪C1) +

k+1X

i=l+2

f(Si ∪ Ci) +
lX

p=1

(k − l− 1 + p)f(Sp ∩Cp) + k ·
k+1X

i=l+1

f(Si ∩ Ci). (9)

Figure 3: Inequalities used in the inductive step for Claim 2.

Inequality (7) is the induction hypothesis, inequality (8)
follows from submodularity using:“

∪l
p=1Sp ∪ C1

”
∩ (Sl+1 ∪ Cl+1) = Cl+1,

and inequality (9) is by submodularity since
`∪l

p=1Sp ∩ Cp

´∪
Cl+1 = C. ��

Using the statement of Claim 2 when l = k +1, we obtain
(1 + ε)(k + 1)2 · f(S) ≥ k · f(C). ��

Finally, we give an improved approximation algorithm for
symmetric submodular functions f , that satisfy f(S) = f(S)
for all S ⊂ V . Symmetric submodular functions have been
considered widely in the literature [17, 42], and it appears
that symmetry allows for better approximation results and
thus deserves separate attention.

Theorem 3. There is a
“

1
(1+ε)(k+2)

”
-approximation al-

gorithm for maximizing a non-negative symmetric submod-
ular functions subject to k matroid constraints.

Proof. The algorithm for symmetric submodular func-
tions is much simpler. In this case, we only need to perform
one iteration of the approximate local search procedure B
(as opposed to k + 1 in Theorem 2). Let C denote the op-
timal solution, and S1 the result of the local search (on V).
Then Lemma 1 implies:

(1 + ε)(k + 1) · f(S1) ≥ f(S1 ∪ C) + k · f(S1 ∩ C)

≥ f(S1 ∪ C) + f(S1 ∩ C).

Because f is symmetric, we also have f(S1) = f(S1). Adding
these two inequalities,

(1 + ε)(k + 2) · f(S1) ≥ f(S1) + f(S1 ∪ C) + f(S1 ∩ C)

≥ f(C \ S1) + f(S1 ∩ C) ≥ f(C) .

Thus we have the desired approximation guarantee. ��

3. KNAPSACK CONSTRAINTS
In this section, we give an approximation algorithm for

submodular maximization subject to multiple knapsack con-
straints. Let f : 2V → R+ be a submodular function, and
w1, · · · , wk be k weight-vectors corresponding to knapsacks
having capacities C1, · · · , Ck respectively. The problem we
consider in this section is:

max{f(S) :
X
j∈S

wi
j ≤ Ci, ∀1 ≤ i ≤ k, S ⊆ V }. (10)

By scaling each knapsack, we assume that Ci = 1 for all
i ∈ [k]; we also assume that all weights are rational. We
denote fmax = max{f(v) : v ∈ V }. We assume without
loss of generality that for every i ∈ V , the singleton solution
{i} is feasible for all the knapsacks (otherwise such elements
can be dropped from consideration). To solve the above
problem, we first define a fractional relaxation of the sub-
modular function, and give an approximation algorithm for
this fractional relaxation (Section 3.2). Then, we show how
to design an approximation algorithm for the original inte-
gral problem using the solution for the fractional relaxation
(Section 3.3). Let F : [0, 1]n → R+, the fractional relaxation
of f , be the ‘extension-by-expectation’ [7],

F (x) =
X
S⊆V

f(S) · Πi∈Sxi ·Πj �∈S(1− xj).

Note that F is a multi-linear polynomial in variables x1, · · · , xn,
and has continuous derivatives of all orders. Furthermore,

as shown in Vondrák [51], for all i, j ∈ V , ∂2

∂xj∂xi
F ≤ 0 ev-

erywhere on [0, 1]n; we refer to this condition as continuous
submodularity.

3.1 Extending function f on scaled ground sets
Let si ∈ Z+ be arbitrary values for each i ∈ V . Define a

new ground-set U that contains si ‘copies’ of each element
i ∈ V ; so the total number of elements in U is

P
i∈V si. We

will denote any subset T of U as T = ∪i∈V Ti where each Ti

328

Input: Knapsack weights {ws}ks=1, variable upper bounds {ui ∈ [0, 1]}ni=1, discretization G, parameter ε,
and value oracle access to submodular function f .

1. Set a← arg max{ua · f({a}) | a ∈ X}.
2. If ua · f({a}) ≤ f(∅), set y(i)← 0 for all i ∈ V ; else set

y(i) =

j
ua i = a
0 i ∈ V \ {a}

3. While the following local operation applies, update y accordingly.

• Let A,D ⊆ [n] with |A|, |D| ≤ k. Decrease the variables y(D) to any values in G and increase
variables y(A) to any values in G such that the resulting solution y′ still satisfies all knapsacks
and y′ ∈ U . If F (y′) > (1 + ε) · F (y) then set y ← y′.

4. Output y as the local optimum.

Figure 4: The approximate local search procedure for Problem (11).

consists of all copies of element i ∈ V from T . Now define

function g : 2U → R+ as g(∪i∈V Ti) = F (· · · , |Ti|
si

, · · ·). The

following lemma is Lemma 2.3 from [37].

Lemma 3 ([37]). Set function g is a submodular func-
tion on ground set U .

3.2 Solving the fractional relaxation
We now present an algorithm for obtaining a near-optimal

fractional feasible solution for maximizing a non-negative
submodular function over k knapsack constraints. Let {ws}ks=1

denote the weight-vectors in each of the k knapsacks; recall
that all knapsacks have capacity one. For ease of exposition,
it is useful to consider a more general problem where each
variable has additional upper bounds {ui ∈ [0, 1]}ni=1, i.e.,

max{F (y) : ws · y ≤ 1 ∀s ∈ [k], 0 ≤ yi ≤ ui ∀i ∈ V }.
(11)

We first define a local search procedure for problem (11),
and prove some properties of it (Lemmas 4 and 5). Then
we present the approximation algorithm for solving the frac-
tional relaxation when all upper-bounds are one (Theorem 4).

3.2.1 Local search for problem (11)

Denote the region U := {y : 0 ≤ yi ≤ ui ∀i ∈ V }. For the
local search, we only consider values for each variable from a
discrete set of values in [0, 1], namely G = {p·ζ : p ∈ N, 0 ≤
p ≤ 1

ζ
} where ζ = 1

8n4 . Using standard scaling methods, we

assume (at the loss of 1 + o(1) factor in the optimal value
of (11)) that all upper bounds {ui}i∈V ⊆ G. Let ε > 0 be a
parameter to be fixed later. The local search procedure for
Problem (11) is given in Figure 4. Note that the size of each

local neighborhood is nO(k). The following simple lemma
bounds the runtime of the local search procedure.

Lemma 4. The local search procedure (Figure 4) termi-
nates in O(1

ε
log n) iterations.

Proof. Observe that the initial solution yo chosen in
Step 2 satisfies F (yo) ≥ max{ua · f({a}), f(∅)}, where a
is the index chosen in Step 1. Submodularity implies that
f(R) ≤ P

e∈R f({e}) for any ∅ � R ⊆ [n]. Thus for any

x ∈ U (using linearity of expectation),

F (x) ≤
nX

i=1

xi · f({i}) + f(∅) ≤
nX

i=1

ui · f({i}) + f(∅)

≤ (n + 1) · F (yo)

Since the F -value increases by a 1+ε factor in each iteration,
the number of iterations of this local search is bounded by
O(1

ε
log n). ��

Define fmax := max{f(∅), max{f({v}) : v ∈ V }}; by
submodularity, maxS⊆[n] f(S) ≤ n · fmax. Let ỹ ∈ U ∩ Gn

denote a local optimal solution obtained upon running the
local search in Figure 4. We also need the following simple
claim based on the discretization G (see [35] for proof).

Claim 3. Suppose α, β ∈ [0, 1]n are such that each has
at most k positive coordinates, y′ := ỹ − α + β ∈ U, and y′

satisfies all knapsacks. Then F (y′) ≤ (1+ε)·F (ỹ)+ 1
4n2 fmax.

For any x, y ∈ Rn, we define x∨y (meet operator) and x∧y
(join operator) by (x ∨ y)j := max(xj, yj) and (x ∧ y)j :=
min(xj , yj) for all j ∈ [n].

Lemma 5. For local optimal ỹ ∈ U ∩ Gn and any x̃ ∈ U
satisfying the knapsack constraints, we have (2 + 2n · ε) ·
F (ỹ) ≥ F (ỹ ∧ x̃) + F (ỹ ∨ x̃)− 1

2n
· fmax.

Proof. For the sake of analysis, we add the following
k dummy elements to the ground-set: for each knapsack
s ∈ [k], element ds has weight 1 in knapsack s and zero in
all other knapsacks, and upper-bound of 1. The function f
remains the same: it only depends on the original variables
V . Let W := V ∪{ds}ks=1 denote the new ground-set. Using
the dummy elements, any fractional feasible solution can be
augmented to another of the same F -value, while satisfying
all knapsacks at equality. We augment ỹ and x̃ using dummy
elements to obtain y and x, that both satisfy all knapsacks
at equality. Clearly F (y) = F (ỹ), F (y ∧ x) = F (ỹ ∧ x̃) and
F (y∨x) = F (ỹ∨ x̃). Let y′ = y−(y∧x) and x′ = x−(y∧x).
Note that for all s ∈ [k], ws · y′ = ws ·x′ and let cs = ws ·x′.
We will decompose y′ and x′ into an equal number of terms
as y′ =

P
t αt and x′ =

P
t βt such that the αs and βs have

small support, and ws · αt = ws · βt for all t and s ∈ [k].

1. Initialize t← 1, γ ← 1, x′′ ← x′, y′′ ← y′.

329

Input: Knapsack weights {ws}ks=1, parameter η, and value oracle to submodular function f .

1. Set c← 16
η

, δ ← 1
8c3k4 and ε← 1

ck
.

2. Define an element e ∈ V as heavy if ws(e) ≥ δ for some knapsack s ∈ [k]. All other elements are
called light.

3. Enumerate over all feasible (under the knapsacks) sets consisting of up to k/δ heavy elements, to
obtain T1 having maximum f -value.

4. Restricting to only light elements, solve the fractional relaxation (problem (11)) with all upper-
bounds one, using the algorithm in Section 3.2.2 (with parameter η/2). Let x denote the fractional
solution found.

5. Obtain random set R as follows: Pick each light element e ∈ V into R independently with
probability (1− ε)xe.

6. If R satisfies all knapsacks, set T2 ← R; otherwise set T2 ← ∅.
7. Output arg max{f(T1), f(T2)}.

Figure 5: Approximation algorithm for submodular maximization under k knapsacks.

2. While γ > 0, do:

(a) Consider LPx := {z ≥ 0 : z · ws = cs, ∀s ∈ [k]}
where the variables are restricted to indices i ∈ [n]
with x′′

i > 0. Similarly LPy := {z ≥ 0 : z · ws =
cs, ∀s ∈ [k]} where the variables are restricted to
indices i ∈ [n] with y′′

i > 0. Let u ∈ LPx and v ∈ LPy

be extreme points.

(b) Set δ1 = max{χ : χ · u ≤ x′′} δ2 = max{χ : χ · v ≤
y′′}, and δ = min{δ1, δ2}.

(c) Set βt ← δ · u, αt ← δ · v, γ ← γ − δ, x′′ ← x′′ − βt,
and y′′ ← y′′ − αt.

(d) Set t← t + 1.

We first show that this procedure is well-defined. A simple
induction shows that at the start of every iteration, ws ·
x′′ = ws · y′′ = γ · cs for all s ∈ [k]. Thus in step 2a, LPx

(resp. LPy) is non-empty: x′′/γ (resp. y′′/γ) is a feasible
solution. From the definition of LPx and LPy it also follows
that δ > 0 in step 2b and at least one coordinate of x′′ or y′′

is zeroed out in step 2c. This implies that the decomposition
procedure terminates in r ≤ 2n steps.

At the end of the procedure, we have decompositions x′ =Pr
t=1 βt and y′ =

Pr
t=1 αt. Furthermore, each αt (resp.

βt) corresponds to an extreme point of LPy (resp. LPx) in
some iteration: hence the number of positive components
in any of {αt, βt}rt=1 is at most k, and all these values are
rational. Finally note that for all t ∈ [r], ws · αt = ws · βt

for all knapsacks s ∈ [k]. Note that x, y, x′, y′, αs and βs are
vectors over W .

For each t ∈ [r], define α̃t (resp. β̃t) to be αt (resp.
βt) restricted to the original variables V . From the above
decomposition, it is clear that ỹ = ỹ ∧ x̃ +

Pr
t=1 α̃t and

x̃ = ỹ ∧ x̃ +
Pr

t=1 β̃t, where the α̃s and β̃s are non-negative.

Thus for any t ∈ [r], ỹ − α̃t + β̃t ∈ U . Furthermore, for
any t ∈ [r], y − αt + βt ≥ 0 coordinate-wise and satisfies all
knapsacks at equality; hence dropping the dummy variables,
we obtain that ỹ − α̃t + β̃t satisfies all knapsacks (perhaps
not at equality). Now observe that Claim 3 applies to ỹ, α̃t

and β̃t (for any t ∈ [r]) because each of α̃t, β̃t has support-

size at most k, and (as argued above) ỹ − α̃t + β̃t ∈ U and

satisfies all knapsacks. Thus:

F (ỹ − α̃t + β̃t) ≤ (1 + ε) · F (ỹ) +
fmax

4n2
∀t ∈ [r] . (12)

Let M ∈ Z+ be large enough so that Mα̃t and Mβ̃t are
integral for all t ∈ [r]. In the rest of the proof, we consider
a scaled ground-set U containing M copies of each element
in V . We define function g : 2U → R+ as g(∪i∈V Ti) =

F (· · · , |Ti|
M

, · · ·) where each Ti consists of copies of element
i ∈ V . Lemma 3 implies that g is submodular. Corre-
sponding to ỹ we have a set P = ∪i∈V Pi consisting of the
first |Pi| = M · ỹi copies of each element i ∈ V . Similarly,
x̃ corresponds to set Q = ∪i∈V Qi consisting of the first
|Qi| = M · x̃i copies of each element i ∈ V . Hence P ∩ Q
(resp. P ∪ Q) corresponds to x̃ ∧ ỹ (resp. x̃ ∨ ỹ) scaled
by M . Again, P \ Q (resp. Q \ P) corresponds to scaled
version of ỹ − (ỹ ∧ x̃) (resp. x̃ − (ỹ ∧ x̃)). The decompo-
sition ỹ = (ỹ ∧ x̃) +

Pr
t=1 α̃t from above suggests disjoint

sets {At}rt=1 such that ∪tAt = P \ Q; i.e. each At cor-
responds to α̃t scaled by M . Similarly there are disjoint
sets {Bt}rt=1 such that ∪tBt = Q \ P . Observe also that

g((P \At) ∪Bt) = F (ỹ − α̃t + β̃t), so (12) corresponds to:

g((P \At)∪Bt) ≤ (1 + ε) · g(P) +
fmax

4n2
∀t ∈ [r] . (13)

Adding all these r inequalities to g(P) = g(P), we obtain
(r+ε ·r+1)g(P)+ r

4n2 fmax ≥ g(P)+
Pr

t=1 g((P \At)∪Bt).
Using submodularity of g and the disjointness of families
{At}rt=1 and {Bt}rt=1, this simplifies to (r+ ε · r+1) ·g(P)+

r
4n2 fmax ≥ (r − 1) · g(P) + g(P ∪ Q) + g(P ∩ Q). Hence
(2 + ε · r) · g(P) ≥ g(P ∪ Q) + g(P ∩ Q) − r

4n2 fmax. This
implies the lemma because r ≤ 2n. ��
3.2.2 Approximation algorithm for Problem (11) with

all upper-bounds one
This algorithm is similar to the way Algorithm A in Sec-

tion 2 uses the local search Procedure B. The algorithm
takes as input a parameter δ, and proceeds as follows.

1. Set T0 to be one of ∅, {1}, {2}, · · · , {n} having maxi-
mum f -value.

330

2. Choose ε ← δ/8n as the parameter for local search
(Figure 4).

3. Run the local search (Figure 4) with all upper bounds
at 1, to get local optimum y1.

4. Run the local search in Figure 4 again, with upper-
bound 1 − y1(i) for each i ∈ [n], to obtain local opti-
mum y2.

5. Output arg max{f(T0), F (y1), F (y2)}.
The proof of the following theorem can be found in the

full version [35].

Theorem 4. For any 1
n
� δ < 1

4
, the above algorithm is

a (1
4
− δ)-approximation algorithm for the fractional knap-

sack problem (11) when upper bounds ui = 1, ∀i ∈ V .

3.3 Rounding the fractional knapsack
Figure 5 describes our algorithm for submodular maxi-

mization subject to k knapsack constraints (problem (10)).
The following theorem is proved in the full version [35].

Theorem 5. For any constant η > 0, the algorithm in
Figure 5 is a (1

5
− η)-approximation algorithm for maximiz-

ing non-negative submodular functions over k knapsack con-
straints.

Note that the running time of the algorithm Figure 5 is
polynomial for any fixed k: the enumeration in Step 3 takes
nO(k/δ) time, and the algorithm for light elements from Sec-
tion 3.2.2 is also polynomial-time.

Acknowledgment: The proof of Lemma 1 presented in
this paper is due to Jan Vondrák. Our original proof [35]
was more complicated — we thank Jan for letting us present
this simplified proof.

4. REFERENCES
[1] A. Ageev, R. Hassin and M. Sviridenko, An

0.5-approximation algorithm for MAX DICUT with
given sizes of parts. SIAM J. Discrete Math. 14
(2001), no. 2, 246–255 (electronic).

[2] A. Ageev and M. Sviridenko. An 0.828 Approximation
algorithm for the uncapacitated facility location
problem, Discrete Applied Mathematics 93(2-3):
149–156 (1999).

[3] A. Ageev and M. Sviridenko, Pipage rounding: a new
method of constructing algorithms with proven
performance guarantee. J. Comb. Optim. 8 (2004), no.
3, 307–328.

[4] P. Alimonti. Non-oblivious local search for MAX
2-CCSP with application to MAX DICUT, In
Proceedings of the 23rd International Workshop on
Graph-theoretic Concepts in Computer Science, 1997.

[5] K. M. Anstreicher, M. Fampa, J. Lee and J. Williams.
Using continuous nonlinear relaxations to solve
constrained maximum-entropy sampling problems.
Mathematical Programming, Series A, 85:221-240,
1999.

[6] S. Burer and J. Lee. Solving maximum-entropy
sampling problems using factored masks.
Mathematical Programming, Volume 109, Numbers
2-3, 263-281, 2007

[7] G. Calinescu, C. Chekuri, M. Pál and J. Vondrák.
Maximizing a monotone submodular function under a
matroid constraint, IPCO 2007.

[8] V. Cherenin. Solving some combinatorial problems of
optimal planning by the method of successive
calculations, Proc. of the Conference of Experiences
and Perspectives of the Applications of Mathematical
Methods and Electronic Computers in Planning (in
Russian), Mimeograph, Novosibirsk (1962).

[9] G. Cornuéjols, M. Fischer and G. Nemhauser.
Location of bank accounts to optimize oat: An
analytic study of exact and approximation algorithms,
Management Science, 23 (1977), 789–810.

[10] G. Cornuéjols, M. Fischer and G. Nemhauser. On the
uncapacitated location problem, Annals of Discrete
Math 1 (1977), 163–178.

[11] G. P. Cornuéjols, G. L. Nemhauser and L. A. Wolsey.
The uncapacitated facility location problem. In
Discrete Location Theory (1990), 119–171.

[12] J. Edmonds. Matroids, submodular functions, and
certain polyhedra, Combinatorial Structures and Their
Applications (1970), 69–87.

[13] U. Feige. A threshold of ln n for approximating set
cover. Journal of ACM 45 (1998), 634–652.

[14] U. Feige and M. X. Goemans. Approximating the
value of two-prover systems, with applications to
MAX-2SAT and MAX-DICUT. Proc. of the 3rd Israel
Symposium on Theory and Computing Systems, Tel
Aviv (1995), 182–189.

[15] U. Feige, V. Mirrokni and J. Vondrák. Maximizing
non-monotone submodular functions, FOCS 2007.

[16] A. Frank. Matroids and submodular functions,
Annotated Biblographies in Combinatorial
Optimization (1997), 65–80.

[17] S. Fujishige. Canonical decompositions of symmetric
submodular systems, Discrete Applied Mathematics 5
(1983), 175–190.

[18] M. Goemans, N. Harvey, S. Iwata, V. Mirrokni.
Approximating submodular functions everywhere. In
SODA 2009.

[19] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite
programming, Journal of ACM 42 (1995), 1115–1145.

[20] B. Goldengorin, G. Sierksma, G. Tijsssen and M. Tso.
The data correcting algorithm for the minimization of
supermodular functions, Management Science, 45:11
(1999), 1539–1551.

[21] B. Goldengorin, G. Tijsssen and M. Tso. The
maximization of submodular Functions: Old and new
proofs for the correctness of the dichotomy algorithm,
SOM Report, University of Groningen (1999).

[22] E. Halperin and U. Zwick. Combinatorial
approximation algorithms for the maximum directed
cut problem. Proc. of 12th SODA (2001), 1–7.

[23] J. Hartline, V. Mirrokni and M. Sundararajan.
Optimal marketing strategies over social networks,
World Wide Web Conference (WWW), 2008, 189–198.

[24] E. Hazan, S. Safra and O. Schwartz. On the
complexity of approximating k-set packing.
Computational Complexity, 15(1), 20–39, 2006.

331

[25] J. H̊astad. Some optimal inapproximability results.
Journal of ACM 48 (2001): 798–869.

[26] S. Iwata, L. Fleischer and S. Fujishige. A
combinatorial, strongly polynomial-time algorithm for
minimizing submodular functions, Journal of ACM
48:4 (2001), 761–777.

[27] V. R. Khachaturov, Mathematical Methods of
Regional Programming, Nauka, Moscow (in Russian),
1989.

[28] A. Kulik, H. Shachnai and T. Tamir. Maximizing
submodular functions subject to multiple linear
constraints. Proc. of SODA, 2009.

[29] C.-W. Ko, J. Lee and M. Queyranne. An exact
algorithm for maximum entropy sampling. Operations
Research 43(4):684-691, 1995.

[30] A. Krause, A. Singh and C. Guestrin. Near-optimal
sensor placements in Gaussian processes: Theory,
efficient algorithms and empirical studies, Journal of
Machine Learning Research 9 (2008) 235–284.

[31] H. Lee, G. Nemhauser and Y. Wang. Maximizing a
submodular function by integer programming:
Polyhedral results for the quadratic case, European
Journal of Operational Research 94, 154–166.

[32] J. Lee. Maximum entropy sampling. In: A.H.
El-Shaarawi and W.W. Piegorsch, editors,
”Encyclopedia of Environmetrics”. Wiley, 2001.

[33] J. Lee. Semidefinite programming in experimental
design. In: H. Wolkowicz, R. Saigal and L.
Vandenberghe, editors, ”Handbook of Semidefinite
Programming”, International Series in Operations
Research and Management Science, Vol. 27, Kluwer,
2000.

[34] J. Lee. Constrained maximum-entropy sampling.
Operations Research, 46:655-664, 1998.

[35] J. Lee, V. Mirrokni, V. Nagarajan and M. Sviridenko.
Maximizing Non-Monotone Submodular Functions
under Matroid and Knapsack Constraints. IBM
Research Report RC24679, 2008.

[36] L. Lovász. Submodular functions and convexity. In: A.
Bachem et. al., eds, “Mathematical Programmming:
The State of the Art, ” 235–257.

[37] V. Mirrokni, J. Vondrák and M. Schapira. Tight
Information-Theoretic Lower Bounds for Welfare
Maximization in Combinatorial Auctions. Proc. of
EC, 2008, 70-77.

[38] R. Motwani and P. Raghavan. Randomized
Algorithms, Cambridge University Press, 1995.

[39] G. L. Nemhauser, L. A. Wolsey and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions I. Mathematical Programming 14 (1978),
265–294.

[40] G. L. Nemhauser, L. A. Wolsey and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions II. Mathematical Programming Study 8
(1978), 73–87.

[41] J. G. Oxley, “Matroid theory,” Oxford Science
Publications. The Clarendon Press, Oxford University
Press, New York, 1992.

[42] M. Queyranne. A combinatorial algorithm for
minimizing symmetric submodular functions,
ACM-SIAM Symposium on Discrete Algorithms
(1995), 98–101.

[43] J. Reichel and M. Skutella, Evolutionary algorithms
and matroid optimization problems, in Proceedings of
the 9th Genetic and Evolutionary Computation
Conference (GECCO’07), 947–954, 2007.

[44] T. Robertazzi and S. Schwartz, An accelated
sequential algorithm for producing D-optimal designs.
SIAM Journal on Scientific and Statistical Computing
10, 341–359.

[45] A. Schrijver. A combinatorial algorithm minimizing
submodular functions in strongly polynomial time,
Journal of Combinatorial Theory, Series B 80 (2000),
346–355.

[46] A. Schrijver. “Combinatorial Optimization,” Volumes
A-C. Springer-Verlag, Berlin, 2003.

[47] A. Schulz, N. Uhan, Encouraging Cooperation in
Sharing Supermodular Costs, APPROX-RANDOM
2007: 271–285

[48] M. C. Shewry, H. P. Wynn, Maximum entropy
sampling. J. Appl. Stat. 14 (1987), 165–170.

[49] M. Sviridenko. A note on maximizing a submodular
set function subject to knapsack constraint.
Operations Research Letters 32 (2004), 41–43.

[50] Z. Svitkina and L. Fleischer. Submodular
approximation: Sampling-based algorithms and lower
bounds. In FOCS 2008.

[51] J. Vondrák. Optimal approximation for the
submodular welfare problem in the value oracle model.
In STOC, 2008.

[52] J. Vondrák, Personal communication, 2008.

332

