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Non-monotonic pressure dependence
of the thermal conductivity of boron arsenide
Navaneetha K. Ravichandran1 & David Broido1

Recent experiments demonstrate that boron arsenide (BAs) is a showcase material to study

the role of higher-order four-phonon interactions in affecting heat conduction in semi-

conductors. Here we use first-principles calculations to identify a phenomenon in BAs and a

related material - boron antimonide, that has never been predicted or experimentally

observed for any other material: competing responses of three-phonon and four-phonon

interactions to pressure rise cause a non-monotonic pressure dependence of thermal con-

ductivity, κ, which first increases similar to most materials and then decreases. The resulting

peak in κ shows a strong temperature dependence from rapid strengthening of four-phonon

interactions relative to three-phonon processes with temperature. Our results reveal pressure

as a knob to tune the interplay between the competing phonon scattering mechanisms in BAs

and similar compounds, and provide clear experimental guidelines for observation in a readily

accessible measurement regime.
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U
nderstanding thermal transport through semiconductors
and insulators, where heat is carried by quantized lattice
vibrations called phonons1,2, has been a topic of intense

research interest over the past century. Of particular interest is the
behavior of the thermal conductivity, κ, of non-metallic solids
under the application of hydrostatic pressure, which has been
experimentally investigated for almost 100 years3. Over these
years, the pressure dependence of κ for numerous non-metals
including alkali halides4–6, ice7,8, and those residing in the Earth’s
interior, such as magnesium oxide (MgO)9, magnesium silicate
(MgSiO3)10, mica11, and quartz12–14 has been reported in the
literature. In all of these materials, κ was found to increase
monotonically with pressure except near a structural transition
where it could decrease monotonically (e.g., see ref. 15 for κ of
copper chloride under pressure).

From a theoretical perspective, the observed monotonic pres-
sure dependence of κ has been typically described using simple
parameterized models4–14. Only recently have first-principles
calculations been developed that are able to capture the changes
in κ with pressure quantitatively16–18, and they have also found
that κ changes monotonically with pressure for these materials.

The intrinsic thermal resistance in non-metallic crystals arises
from the mutual interactions among phonons1,2. Typically, it has
been assumed that the lowest-order interactions among three
phonons are sufficient to predict the thermal conductivity of
materials1,2, and the higher-order phonon–phonon interactions
are neglected. This is also the case with the aforementioned ab
initio calculations16–18 for the pressure dependence of κ. While
this three-phonon scattering limited ab initio framework has been
demonstrated to work well to describe the thermal conductivity of
many compounds19–25, a recent ab initio calculation26 has pre-
dicted that the semiconductor, boron arsenide (BAs), should have
unusually weak three-phonon interactions leading to an uncon-
ventionally ultra-high κ at ambient pressure, and a subsequent ab
initio work27 predicted that higher-order four-phonon interac-
tions can be of comparable strength to three-phonon processes,
thus lowering κ. These predictions of the important role played
by four-phonon scattering in affecting κ of BAs have also been
confirmed by three recent independent experimental works28–30.
Thus, it is unclear if the apparent universal monotonic pressure
dependence of κ, supported by measurements on dozens of
materials, will hold for BAs.

In this work, we show from first-principles calculations that
opposing responses of three-phonon and four-phonon scattering
strengths to hydrostatic pressure cause a non-monotonic pressure
dependence of κ in BAs and a related material, boron antimonide
(BSb)—a phenomenon that has never been predicted or observed
experimentally for any other material. We show that these
opposing responses first increase and then decrease κ with
increasing pressure, and the resulting κ-peak position also shows
striking dependencies on temperature from rapid strengthening
of four-phonon processes. Our results show that the unusual
microscopic features of phonons and their mutual interactions in
BAs and similar compounds are responsible for the competition
that results in the unique pressure and temperature dependencies
of κ, and they shed light on the important role played by higher-
order phonon processes in semiconductors and insulators.

Results
Pressure-driven changes to thermal conductivity of solids. To
calculate κ of a solid as a function of pressure and temperature,
we have implemented a predictive, first-principles approach with
no adjustable parameters, that has demonstrated good agreement
with the measured lattice expansion, temperature-dependent
phonon frequencies, and thermal conductivity of diamond and

sodium chloride31, and the ultra-high thermal conductivity of
BAs28, where both three-phonon and four-phonon scattering
are important. This recently developed approach goes beyond
the standard calculations by including higher-order four-phonon
scattering processes along with three-phonon processes in
describing phonon transport, thereby providing a new opportu-
nity to investigate the significance of higher-order processes and
their interplay with those of lower order on the thermal prop-
erties of materials. The details of this unified first-principles
computational framework are summarized in the Methods sec-
tion. These calculations present major computational challenges,
and we have developed several efficiencies in our code to over-
come them, as described in the Methods section.

In general, application of hydrostatic pressure increases the
phonon frequencies and group velocities of a material; hence
qualitatively one might expect κ to increase with pressure.
Figure 1a shows such stiffening of phonon modes for MgO with
pressure from our calculations which compare well with those
observed experimentally32–34. Good agreement with the mea-
sured pressure dependence of volume and phonon frequencies is
obtained for MgO and cubic boron nitride (cBN) [see
Supplementary Note 1]. Our κ calculations for MgO and cBN
show that κ indeed increases monotonically with pressure in
Fig. 1b, c, respectively, in-line with the conventional expectation.
In particular, Fig. 1b shows that our calculations for κ of MgO
with natural isotopic mix of the constituent elements is in
reasonable quantitative agreement with the experimental data9

[see Supplementary Note 9 for the effect of point defects on the
thermal conductivity of MgO]. Furthermore, the effect of four-
phonon scattering is weak in these materials, contributing to only
~5–15% reduction from the three-phonon limited κ for MgO and
~1–9% for cBN in the range of pressures considered in this work.

Although there are a few exceptions in the literature reporting
observations of monotonically decreasing thermal conductivity of

materials with pressure (P) rise (∂κ
∂P
<0 in e.g., ref. 15 for copper

chloride), these anomalous observations are mostly associated
with the proximity of the experimental conditions to structural
phase transitions. The commonly used Leibfried–Schlomann (LS)
theory has been found to be useful in providing trends to the
behavior of κ under pressure6,7,9,35. According to the LS theory36,

BT

κ

∂κ

∂P

� �

T

¼ g ð1Þ

where BT is the isothermal bulk modulus (BT > 0) and g is a
constant. Note that Eq. (1) admits no other possibility than a
monotonically increasing or decreasing κ with increasing
pressure. However, the LS theory was derived under many
approximations, and it is not predictive. In particular, it fails to
provide a correct picture for the pressure-dependent κ of BAs.
Specifically, it predicts that the κ of BAs increases monotonically
with increasing pressure18 contrary to our findings below.

Thermal conductivity of BAs under pressure. To examine the
pressure dependence of κ for BAs, we begin by calculating from
first principles, κ(3), the thermal conductivity of BAs including
only three-phonon scattering, as a function of pressure. Figure 2b
shows that κ(3) decreases monotonically with pressure for several
different temperatures between 200 K and 1000 K, contrary to the
prediction from LS theory, but consistent with the previously
reported first-principles calculations at 300 K18. It occurs because
of specific features of the phonon dispersions in BAs, shown in
Fig. 2a. At ambient pressure, the large frequency gap between
acoustic and optic phonons combined with the small bandwidth
of optic phonon frequencies prevents three-phonon scattering
of the heat carrying acoustic phonons by optic phonons26.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08713-0

2 NATURE COMMUNICATIONS |          (2019) 10:827 | https://doi.org/10.1038/s41467-019-08713-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Also, three-phonon scattering among acoustic phonons is
reduced because phonon frequencies of the three acoustic phonon
branches are bunched closer together than in most materials
(note e.g., the proximity of the higher transverse acoustic (TA)
branch and the longitudinal acoustic (LA) branch along the Γ → K
direction at 0 GPa in Fig. 2a)26. With increasing pressure, the
optic and the LA phonon branches of BAs show stiffening with
pressure in Fig. 2a similar to the phonon dispersions of MgO in
Fig. 1a, while the TA branches show weaker pressure dependence.
As a result, the three-phonon scattering channels involving
acoustic and optic phonons are still forbidden, and the increased
separation of LA and TA phonons with pressure decreases the
bunching effect18,26, increases the phase space for three-phonon
scattering between acoustic phonons and decreases κ(3). Since the
zinc-blende structure of BAs is known to be stable to above 100

GPa at room temperature37, the prediction of ∂κ
ð3Þ

∂P
<0 even around

atmospheric pressure is already a strong deviation from obser-
vations in literature for other materials4–6,9,11, and highlights the
importance of carefully accounting for phonon–phonon scatter-
ing phase space effects in the theories for κ.

When four-phonon scattering is included, the 3+ 4-phonon
limited thermal conductivity, κ(3+4) (Fig. 2c), shows three stark

qualitative and quantitative differences from κ(3) (Fig. 2b). First,
with increasing pressure, the κ(3+4) curves initially increase and
then decrease, resulting in a κ(3+4)-peak for each temperature.
Second, the position of the κ(3+4)-peak shifts to higher pressures
as the temperature is increased. Third, the percentage enhance-
ment in κ(3+4) from the zero-pressure value at the κ(3+4)-peak is
larger at higher temperatures. These three features are unique to
BAs (and also to a related material, BSb, as we show later) and
have never been experimentally observed or computationally
predicted in any other material. The value for κ(3+4) at ambient
pressure is in good agreement with measured data on high quality
BAs crystals28–30 [similar results were obtained on BAs with
naturally occurring isotopic mix of the constituent atoms, see
Supplementary Note 2].

Pressure-driven competition among scattering channels. The
non-monotonic behavior of κ(3+4) in BAs is caused by the
competing responses of three-phonon and four-phonon scatter-
ing rates as the hydrostatic pressure increases, as elucidated
in Fig. 3a–d, where the total three-phonon and process-wise
classified four-phonon scattering rates versus phonon frequency
are compared at different pressures at 300 K. First observe that in
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Fig. 3a, the frequency range where the three-phonon scattering
rates are the weakest at zero pressure is exactly where the
dominant four-phonon scattering rates involving two acoustic
and two optic phonons (AAOO), are the strongest. In this fre-
quency region, the three-phonon and AAOO four-phonon scat-
tering rates have comparable strengths. This region contributes
the most to the κ(3+4) of BAs28, as shown by the spectral κ(3) and
κ(3+4) in Fig. 3e. In this region, marked by the oval in Fig. 3a,
inclusion of four-phonon scattering increases the total
phonon–phonon scattering rates significantly, reducing the cal-
culated κ(3+4) by about a factor of two at room temperature and
ambient pressure, and more at higher temperatures compared to
κ(3), as elucidated in refs. 27,28 [see Supplementary Note 4 for
details on the absolute strength of the four-phonon scattering
channels].

As explained above, the three-phonon scattering rates in BAs,
which involve almost exclusively scattering among three acoustic
phonons (AAA processes)18,26, increase with pressure [Fig. 3a–d],
resulting in a decreasing κ(3) with pressure rise. On the other
hand, pressure rise has the opposite effect on the AAOO four-
phonon scattering processes, which are the dominant four-
phonon scattering channels up to ~20 GPa at 300 K. The
reduction in AAOO four-phonon scattering rates with pressure
rise comes in part from a decreasing scattering phase space and
increasing optic phonon frequencies (which causes a reduction in
the scattering matrix elements and Bose factors that determine
the strength of the scattering channels) with pressure rise [see
Supplementary Note 5 for details on the pressure dependence
of three-phonon and four-phonon scattering phase space].
Initially, the reduction in AAOO scattering rates has a larger
effect on κ(3+4) than does the increase in AAA scattering strength
with pressure. Therefore, the total scattering rates initially

weaken, resulting in an increasing κ(3+4) with pressure. Then,
as the lowest three-phonon scattering rates continue to increase
with pressure, they eventually dominate the total scattering rates
(Fig. 3b–d). Thus, κ(3+4) starts decreasing, as in Fig. 2c, which
results in a κ(3+4)-peak for all temperatures at and above 300 K.
The opposite responses of three-phonon and four-phonon
scattering rates to pressure rise are caused by the unique
dispersion of BAs and do not occur for most other materials
[e.g., see Supplementary Note 1 for three-phonon and four-
phonon scattering rates of MgO and cBN with pressure at 300 K].

Temperature-driven shift of the thermal conductivity peak.
The second interesting feature of the pressure dependence of
κ(3+4) in BAs is that the pressure at which κ(3+4) peaks, increases
with increasing temperature. Figure 4a shows a pressure-
temperature contour plot of the distribution of κ(3+4) scaled

by the value at zero pressure and the same temperature κ
ð3þ4Þ
0

� �

along with the changing position of the κ(3+4)-peak at different
temperatures. The root cause of this unusual behavior in BAs is
related to the larger four-phonon scattering rates relative to three-
phonon scattering at elevated temperatures, as shown in Fig. 4 (b)
[also see Supplementary Note 6 for the full temperature
dependence of the scattering rates]. Compared to 300 K, the
four-phonon scattering rates at zero pressure and 750 K are sig-
nificantly stronger than the three-phonon scattering rates in the
region of maximum spectral contribution to κ(3+4) (4 to 8 THz).
As a result, when pressure is increased at 750 K, the relevant
three-phonon scattering rates do not exceed the four-phonon
scattering rates until much higher pressure than is the case at
300 K. This phenomenon also gives rise to the third interesting
feature: since the cross-over point between three-phonon and
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four-phonon scattering is delayed until higher pressures at higher
temperatures, the κ(3+4) below the cross-over point keeps
increasing with pressure rise. Thus, the percentage enhancement
in κ(3+4) at the κ(3+4)-peak from the zero-pressure value is larger
at elevated temperatures.

We have also computed κ(3+4) for BSb, which was also
predicted to possess ultra-high κ(3) in ref. 26. Since BSb has
the same features in its phonon dispersions as does BAs, four-
phonon scattering is expected to play a role in reducing its
thermal conductivity. As shown in the Supplementary Note 7,
both isotopically pure BSb and BSb with natural isotopic mix
show a strong suppression in κ from four-phonon scattering at
zero-pressure and show a κ(3+4) peak in the pressure dependence
(Fig. 5), which is qualitatively similar to that in BAs.

Discussion
In summary, we have used rigorous first-principles calculations to
predict an unusual feature in the thermal conductivity of non-
metals, unique to BAs and BSb, that has never been experimen-
tally observed or predicted theoretically: the competing responses
of three-phonon and four-phonon scattering to pressure rise
results in a non-monotonic pressure dependence of κ. The
resulting peak in κ shifts in position to higher pressure with
increasing temperature because of the more rapid strengthening
of the four-phonon processes compared to three-phonon pro-
cesses. Furthermore, this difference in the temperature depen-
dence of three-phonon and four-phonon processes also results in
a larger percentage enhancement of κ from its zero-pressure
value, at higher temperatures.

Apart from the ultra-high thermal conductivity of BAs at
ambient conditions, existing literature has also predicted that
BAs possesses excellent electron and hole mobilities as well38,
and that the application of hydrostatic pressure could enhance
its electronic properties further39. These studies have also pre-
dicted enhanced carrier mobilities in BSb at ambient conditions
and under pressure, for the same reasons as in BAs. Our results
reveal the unusual way in which pressure tunes the ultra-high
thermal conductivity of BAs and BSb, and also emphasize the
importance of including higher-order phonon processes to
explore new heat transfer regimes that upend conventional
understanding. With the recent advances in the growth and

characterization of large high quality single crystals of BAs28–30,
the predictions presented here are readily accessible in experi-
ments for BAs, and present a clear route forward following
successful synthesis of BSb to realize its impressive thermal and
electronic properties, predicted from first principles in this
work and other studies as well38,39. More broadly, the approach
and results presented here should also find impact in geophysical
studies of heat conduction in the earth’s lower mantle where
temperatures can reach 4000 K and pressures can exceed
100 GPa40–43. One might expect that at such extreme tempera-
tures higher-order phonon–phonon processes should play
an important role in governing thermal transport. Since
obtaining experimental data at lower mantle depths is challen-
ging, the predictive approach presented here could be used
to obtain important new insights into the nature of heat
flow at the high temperature and pressure conditions deep in
the earth.
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Methods
Computational methodology. The thermal conductivity tensor, καβ, of an insu-
lator is given by,

καβ ¼
X

λ

Cλvλ;αvλ;βτ
ðfullÞ
λ;β ð2Þ

where the sum is over the phonon modes λ ≡ (qj) with wave vector q and
polarization j, Cλ is the volumetric heat capacity of the phonon mode λ, vλ,α is the

group velocity of the phonon mode λ in the Cartesian direction α and τ
ðfullÞ
λ;β is the

transport lifetime of the phonon mode λ obtained by iteratively solving the
Peierls–Boltzmann equation (PBE) for phonon transport including three-phonon,
four-phonon and phonon-isotope scattering terms, given by28,31:

Fλ ¼ F0λ þ τ
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λλ1λ2

þ 1
2
W

�ð Þ
λλ1λ2

h i

is the three-phonon scattering rate, 1=τ
4phð Þ
λ ¼

P

λ1λ2λ3
1
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Y

1ð Þ
λλ1λ2λ3

þ 1
2
Y
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λλ1λ2λ3

þ 1
2
Y

3ð Þ
λλ1λ2λ3

h i

is the four-phonon scattering rate and

1=τ
isoð Þ
λ ¼

P

λ1
Wiso

λλ1
is the phonon-isotope scattering rate of the phonon mode λ,

W
±ð Þ

λλ1λ2
are the three-phonon scattering probabilities, Y

1;2;3ð Þ
λλ1λ2λ3

are the four-phonon

scattering probabilities, W iso
λλ1

are the phonon-isotope scattering probabilities, and

F0λ ¼ �hωλvλτ
totð Þ
λ =kBT

2 with ωλ being the frequency and vλ being the phonon group
velocity of the phonon mode λ and kB is the Boltzmann constant. The expressions
for the three-phonon, four-phonon and phonon-isotope scattering rates are pro-

vided in the Supplementary Note 10. The transport lifetime τ
ðfullÞ
λ;β

� �

is obtained

from Fλ as τ
ðfullÞ
λ;β ¼ kBT

2Fλ;β=ð�hωλvλ;βÞ. It is worth noting that by solving the full

PBE including three-phonon, four-phonon, and phonon-isotope scattering, we
properly account for the difference between momentum-conserving Normal and
resistive Umklapp scattering processes both at the three-phonon and the four-
phonon level1,2.

Using this procedure, we calculated from first principles the κ(3) and κ(3+4) of
BAs and BSb as a function of temperature and pressure, and the κ(3) and κ(3+4) of
MgO and cBN as a function of pressure at room temperature, for this study. The
solution of the PBE requires the harmonic (second-order) and anharmonic (third
and fourth-order) inter-atomic force constants (IFCs) as inputs to determine
phonon modes and phonon–phonon scattering rates. We determined the
harmonic IFCs under the framework of density functional perturbation theory
(DFPT) implemented in the Quantum ESPRESSO (QE) package44. We obtained
the anharmonic IFCs using the thermal snapshot IFC fitting technique developed
in ref. 28,31, which also accounts for the effects of the temperature-dependent
atomic displacements, the zero-point motion of atoms and the polar effects of the
optic phonons on the anharmonic IFCs as well. In this thermal snapshot IFC fitting
technique, the harmonic forces are subtracted out from the force-displacement
dataset using the short and long-range harmonic IFCs from QE-DFPT, and only
the anharmonic IFCs are fit to the remaining forces [for additional details, see
Appendix A of ref. 31]. We obtained the required force-displacement dataset for the
thermal snapshot IFC fitting technique under the framework of the density
functional theory as implemented in QE.

We also included the renormalization of the harmonic and anharmonic IFCs
developed in our prior work31 to ensure that the phonon quasiparticles are well-
defined, particularly at high temperatures, where the anharmonicity of materials
could be strong. The renormalized harmonic IFCs (Ψαβ(Nν, Pπ)) are obtained from
the bare (unrenormalized) IFCs (Φαβ(Nν, Pπ) and Φαβγδ(Nν, Pπ, Qη, Rρ)) through
the following equation31:

Ψαβ Nν; Pπð Þ ¼ Φαβ Nν; Pπð Þ þ �h
4N0

P

QR

P

ηρ

P

γδ

P

qs

Φαβγδ Nν; Pπ;Qη;Rρð Þ

´

Wγ η;qsð ÞW�
δ
ρ;qsð Þ

Ωqs

ffiffiffiffiffiffiffiffiffi

MηMρ

p eiq� R Qð Þ�R Rð Þð Þ 2nqs þ 1
� � ð4Þ

Here, the renormalized phonon frequencies (Ωqs) and the renormalized
eigenvectors (W(ν, qs)) depend on the renormalized harmonic IFCs (Ψαβ(Nν, Pπ)).
Therefore, Eq. (4) has to be solved iteratively in a self-consistent manner. Note that
Eq. (4) does not contain the bare cubic IFCs (Φαβγ(Nν, Pπ, Qη)) [see Appendix C in
ref. 31 for the derivation of Eq. (4)]. Once Ψαβ(Nν,Pπ) are obtained, the
renormalized anharmonic IFCs (Ψαβγ(Nν, Pπ, Qη) and Ψαβγδ(Nν, Pπ, Qη, Rρ)) are
obtained by refitting the original force-displacement data using Ψαβ(Nν, Pπ) as
input [see Supplementary Note 8 and 9 for comparisons between renormalized and
bare/unrenormalized calculations]. We obtained the pressure in our calculations by
taking the derivative of the fourth-order anharmonic Helmholtz free energy
F4th�orderð Þ with respect to volume (V) at each temperature (T) as

PðaÞ ¼ � ∂F
4th�order

∂V
jT;a � � F

4th
ðaþΔaÞ�F

4th
ða�ΔaÞ

VðaþΔaÞ�Vða�ΔaÞ jT , where a is the lattice constant and

Δa~0.05% of a. The expression for the fourth-order anharmonic Helmholtz free
energy is given in the Supplementary Note 10.

Convergence parameters. We used norm-conserving pseudopotentials under the
local density approximation for all the elements in our calculations in this
manuscript [see Supplementary Note 3 for the temperature and pressure-
dependent κ-calculations for BAs using PBEsol pseudopotentials]. We system-
atically checked for convergence of various computational parameters used in our
first-principles framework, and the converged values of the parameters are listed in
Table 1.

For the force-displacement calculations, we used thermal snapshots on 5 × 5 ×
5 supercells of atoms (250 atoms per supercell). Using the computational
parameters listed in Table 1, the total energy converged to less than 9 × 10−4 Ry per
unit cell, the total stress converged to less than 0.8 kbar per unit cell and the forces
on atoms converged to less than 10−5 Ry/au. The phonon frequencies and
eigenvectors were unchanged by adding one more shell of harmonic IFCs. All
reported thermal conductivity values are converged with respect to the number of
snapshots, number of nearest neighbors of the anharmonic (cubic and quartic)
IFCs and the q-grid for all materials in this work. For example, Table 2 shows the
convergence of the thermal conductivity of isotopically pure BAs with respect to
these parameters at four different pressure-temperature conditions.

Computational challenges and code efficiency to reduce cost. To mitigate the
computational cost of obtaining the anharmonic IFCs and solving the 3+ 4-
phonon PBE on a pressure-temperature grid, we have developed several compu-
tational efficiencies and leveraged the advances in the hardware architecture of the
computer processors, without comprising accuracy. Notably,

1. To obtain the cubic and quartic IFCs in a computationally efficient manner,
we have developed a thermal snapshot technique in our earlier work31 which
requires force-displacement calculations using only about 200 snapshots of
thermally relevant configurations of atoms in the supercell for each point on
the pressure-temperature grid. Furthermore, our thermal snapshot technique
seamlessly includes the effects of the zero-point motion of atoms and polar

Table 1 Converged values of the first-principles computational parameters

Property BAs BSb MgO cBN

Kinetic energy cutoff for wave functions (Ry) 90 90 125 110

Kinetic energy cutoff for charge density (Ry) 360 360 500 440

Electronic k-grid for energy 123 63-shifted 33-shifted 43-shifted

Electronic k-grid for force-displacement Γ-shifted Γ-shifted Γ-shifted Γ-shifted

Phonon q-grid for DFPT 73 73 73 73

No. of snapshots for anharmonic IFCs 200 200 200 200

Phonon q-grid for κ 173 173 173 173

No. of nearest neighbor shells for harmonic IFCs 11 11 11 11

No. of nearest neighbor shells for cubic IFCs 7 7 6 7

No. of nearest neighbor shells for quartic IFCs 3 3 3 3
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effects (splitting between the longitudinal and transverse optic phonons at the
Γ-point) on the anharmonic IFCs, and also the temperature dependence of the
anharmonic IFCs, without any ad-hoc adjustments to the formulation. In
contrast, the widely-used technique that holds most atoms in the supercell at
their classical equilibrium positions27 cannot capture these effects, and
requires force-displacement calculations on several hundreds to a few
thousands of supercells for each point on the pressure-temperature grid,
particularly for the quartic IFCs, making it prohibitively expensive for studies
of the temperature and pressure dependence of four-phonon scattering in
semiconductors.

2. As described in our earlier work31, to solve the PBE (Eq. 3) on a grid of q-
points in the Brillouin zone, the main challenge is to efficiently compute

and store the four-phonon matrix elements Ψλλ1λ2λ3

� �

. For example, for

each point on the pressure-temperature grid, and for a 173 Brillouin zone
grid (q-grid) used in this study, there are about 175 million three-phonon

matrix elements Ψλλ1λ2

� �

in the irreducible Brillouin zone for the phonon

mode λ ~ (q, j), while there are about 5.2 trillion four-phonon matrix elements

Ψλλ1λ2λ3

� �

, a factor of thirty-thousand larger (all materials in this study

have two atoms in each unit cell, thus have 6 phonon polarizations for
each q-point). Furthermore, since Eq. (3) is solved iteratively in this study,

the four-phonon matrix elements Ψλλ1λ2λ3

� �

must not only be computed,

but also stored in files for use in subsequent iterations. Fortunately, since
the analytical tetrahedron scheme used to calculate the energy-conserving
δ-functions in the expression for the scattering rates (see Supplementary
Note 10) provides higher accuracy than the widely-used adaptive Gaussian
smearing scheme (see e.g., ref. 22) or the non-adaptive Lorentzian scheme27,
a 173 q-grid has been sufficient for the convergence of κ(3) and κ(3+4) for
the materials in this study, as described in the Methods section. Furthermore,
we reduce the cost of computing the three-phonon matrix elements by
50% and the four-phonon matrix elements by 83% by invoking the
following transposition symmetries of the matrix elements: Ψλλ1λ2

¼ Ψλλ2λ1

and Ψλλ1λ2λ3
¼ Ψλλ1λ3λ2

¼ Ψλλ2λ1λ3
¼ Ψλλ2λ3λ1

¼ Ψλλ3λ1λ2
¼ Ψλλ3λ2λ1

45 (We do

not invoke the transposition symmetries on the first phonon mode λ in these
matrix elements, since λ is restricted to the irreducible q-grid). Finally, we
also mitigate the computational load by eliminating three-phonon and four-
phonon processes that have vanishing phase space (i.e., the energy conserving
δ-functions in the expressions for the scattering rates in Supplementary
Note 10) beforehand, and improve the performance of our code by leveraging
vectorized computation and optimized cache memory usage.

Code availability. All formulations and algorithms necessary to reproduce the
results of this study are described in the Methods section, in the Supplementary
Information and in ref. 31.

Data availability
The data supporting the findings of this work are available from the corresponding

author upon reasonable request.

Received: 28 September 2018 Accepted: 25 January 2019

References
1. Peierls, R. E. Quantum theory of solids (Oxford University Press, Oxford,

1955).
2. Ziman, J. M. Electrons and phonons: the theory of transport phenomena in

solids (Oxford university press, Oxford, 2001).
3. Bridgman, P. The thermal conductivity and compressibility of several rocks

under high pressures. Am. J. Sci. 7, 81–102 (1924).

4. Andersson, P. Thermal conductivity under pressure and through phase
transitions in solid alkali halides. I. Experimental results for KCl, KBr, KI,
RbCl, RbBr and RbI. J. Phys. C: Solid State Phys. 18, 3943–3955 (1985).

5. Gerlich, D. & Andersson, P. Temperature and pressure effects on the thermal
conductivity and heat capacity of CsCl, CsBr and CsI. J. Phys. C: Solid State
Phys. 15, 5211–5222 (1982).

6. Hakansson, B. & Andersson, P. Thermal conductivity and heat capacity of
solid NaCl and NaI under pressure. J. Phys. Chem. Solids 47, 355–362 (1986).

7. Chen, B., Hsieh, W.-P., Cahill, D. G., Trinkle, D. R. & Li, J. Thermal
conductivity of compressed H2O to 22 GPa: a test of the Leibfried-Schlomann
equation. Phys. Rev. B 83, 132301 (2011).

8. Andersson, O. & Inaba, A. Thermal conductivity of crystalline and amorphous
ices and its implications on amorphization and glassy water. Phys. Chem.
Chem. Phys. 7, 1441–1449 (2005).

9. Dalton, D. A., Hsieh, W.-P., Hohensee, G. T., Cahill, D. G. & Goncharov, A. F.
Effect of mass disorder on the lattice thermal conductivity of MgO periclase
under pressure. Sci. Rep. 3, 2400 (2013).

10. Ohta, K. et al. Lattice thermal conductivity of MgSiO3 perovskite and post-
perovskite at the core-mantle boundary. Earth. Planet. Sci. Lett. 349-350,
109–115 (2012).

11. Hsieh, W.-P., Chen, B., Li, J., Keblinski, P. & Cahill, D. G. Pressure tuning of
the thermal conductivity of the layered muscovite crystal. Phys. Rev. B 80,
180302 (2009).

12. Manthilake, G. M., Koker, N. d., Frost, D. J. & McCammon, C. A. Lattice
thermal conductivity of lower mantle minerals and heat flux from Earth's core.
Proc. Natl Acad. Sci. USA 108, 17901–17904 (2011).

13. Hofmeister, A. M. Pressure dependence of thermal transport properties. Proc.
Natl Acad. Sci. USA 104, 9192–9197 (2007).

14. Hofmeister, A. M. Mantle values of thermal conductivity and the geotherm
from phonon lifetimes. Science 283, 1699–1706 (1999).

15. Slack, G. A. & Andersson, P. Pressure and temperature effects on the thermal
conductivity of CuCl. Phys. Rev. B 26, 1873–1884 (1982).

16. Tang, X. & Dong, J. Lattice thermal conductivity of MgO at conditions of
Earth's interior. Proc. Natl Acad. Sci. USA 107, 4539–4543 (2010).

17. Dekura, H., Tsuchiya, T. & Tsuchiya, J. Ab initio lattice thermal conductivity
of MgSiO3 perovskite as found in Earth’s lower mantle. Phys. Rev. Lett. 110,
025904 (2013).

18. Lindsay, L., Broido, D. A., Carrete, J., Mingo, N. & Reinecke, T. L. Anomalous
pressure dependence of thermal conductivities of large mass ratio compounds.
Phys. Rev. B 91, 121202 (2015).

19. Broido, D. A., Malorny, M., Birner, G., Mingo, N. & Stewart, D. A. Intrinsic
lattice thermal conductivity of semiconductors from first principles. Appl.
Phys. Lett. 91, 231922 (2007).

20. Ward, A., Broido, D. A., Stewart, D. A. & Deinzer, G. Ab initio theory of the
lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009).

21. Lindsay, L., Broido, D. A. & Reinecke, T. L. Ab initio thermal transport in
compound semiconductors. Phys. Rev. B 87, 165201 (2013).

22. Li, W., Carrete, J., A. Katcho, N. & Mingo, N. ShengBTE: a solver of the
Boltzmann transport equation for phonons. Comput. Phys. Commun. 185,
1747–1758 (2014).

23. Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-
principles calculations. Phys. Rev. B 84, 085204 (2011).

24. Jain, A. & McGaughey, A. J. Effect of exchange-correlation on first-principles-
driven lattice thermal conductivity predictions of crystalline silicon. Comput.
Mater. Sci. 110, 115–120 (2015).

25. Lee, S., Esfarjani, K., Mendoza, J., Dresselhaus, M. S. & Chen, G. Lattice
thermal conductivity of Bi, Sb, and Bi-Sb alloy from first principles. Phys. Rev.
B 89, 085206 (2014).

26. Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of
ultrahigh thermal conductivity of boron arsenide: a competitor for diamond?
Phys. Rev. Lett. 111, 025901 (2013).

27. Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly
reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201
(2017).

Table 2 Convergence of the thermal conductivity of isotopically pure BAs

Property 300 K, 0 GPa 300 K, 17 GPa 1000 K, 0 GPa 1000 K, 76 GPa

Parameters in Table 1 1331 (3102) 1486 (2356) 154 (891) 186 (279)

150 snapshots 1329 (3107) 1489 (2342) 155 (895) 185 (279)

1 more cubic and quartic IFC shell 1349 (3183) 1460 (2335) 153 (923) 185 (283)

213 q-grid for κ 1333 (3099) 1491 (2360) 155 (891) 190 (284)

Convergence of κ(3) and κ
(3+4) of isotopically pure BAs with respect to the number of snapshots and number of nearest neighbors of the anharmonic (cubic and quartic) IFCs and the q-grid. From the

second row onwards, the property column indicates the change in the computational parameters from those listed in Table 1. The numbers outside parentheses are κ
(3+4) [W m−1 K−1], while the

numbers within parentheses are κ
(3) [W m−1 K−1]

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08713-0 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:827 | https://doi.org/10.1038/s41467-019-08713-0 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


28. Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk
crystals. Science 361, 582–585 (2018).

29. Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science
361, 579–581 (2018).

30. Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation
of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

31. Ravichandran, N. K. & Broido, D. Unified first-principles theory of thermal
properties of insulators. Phys. Rev. B 98, 085205 (2018).

32. Peckham, G. The phonon dispersion relation for magnesium oxide. Proc.
Phys. Soc. 90, 657–670 (1967).

33. Sangster, M. J. L., Peckham, G. & Saunderson, D. H. Lattice dynamics of
magnesium oxide. J. Phys. C: Solid State Phys. 3, 1026 (1970).

34. Ghose, S. et al. Lattice dynamics of MgO at high pressure: theory and
experiment. Phys. Rev. Lett. 96, 035507 (2006).

35. Gerlich, D. The pressure dependence of the thermal conductivity of
insulators-the Callaway integral versus the Leibfried-Schlomann formula.
J. Phys. C: Solid State Phys. 19, 2877–2882 (1986).

36. Slack, G. A. Solid State Physics, Vol. 34, Chapter 1 (Academic, New York,
1979).

37. Greene, R. G., Luo, H., Ruoff, A. L., Trail, S. S. & DiSalvo, F. J. Pressure
induced metastable amorphization of BAs: evidence for a kinetically frustrated
phase transformation. Phys. Rev. Lett. 73, 2476–2479 (1994).

38. Liu, T.-H. et al. Simultaneously high electron and hole mobilities in cubic
boron-V compounds: BP, BAs, and BSb. Phys. Rev. B 98, 081203 (2018).

39. Ge, Y., Wan, W. & Liu, Y. High phonon-limited mobility of BAs under
pressure. Preprint at http://arxiv.org/abs/1809.04303 (2018).

40. Spiliopoulos, S. & Stacey, F. D. The earth’s thermal profile: is there a mid-
mantle thermal boundary layer? J. Geodyn. 1, 61–77 (1984).

41. Shankland, T. J. & Brown, J. M. Homogeneity and temperatures in the lower
mantle. Phys. Earth Planet. Inter. 38, 51–58 (1985).

42. Anderson, O. L. The Earth’s core and the phase diagram of iron. Philos. Trans.
R. Soc. Lond. A 306, 21–35 (1982).

43. Hilst, R. D. v. d. et al. Seismostratigraphy and thermal structure of Earth’s
core-mantle boundary region. Science 315, 1813–1817 (2007).

44. Giannozzi, P. et al. Advanced capabilities for materials modelling with
quantum espresso. J. Phys. Condens. Matter 29, 465901 (2017).

45. Wallace, D. C. Thermodynamics of crystals (Courier Corporation,
Massachusetts, United States, 1998).

46. Mukhopadhyay, S. & Stewart, D. A. Polar effects on the thermal conductivity
of cubic boron nitride under pressure. Phys. Rev. Lett. 113, 025901 (2014).

Acknowledgements
This work was supported by the Office of Naval Research under a MURI, Grant No.

N00014-16-1-2436. We acknowledge the National Energy Research Scientific Computing

Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated

under Contract No. DE-AC02-05CH11231, the Extreme Science and Engineering

Discovery Environment (XSEDE), which is supported by National Science Foundation

grant number ACI-1548562, and the Boston College Linux clusters for the computational

resources and support.

Author contributions
N.K.R and D.B. originated the research. N.K.R. performed the ab initio calculations.

N.K.R. and D.B. analyzed the results and wrote the manuscript. Both authors studied,

commented on, and edited the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

019-08713-0.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Journal peer review information: Nature Communications thanks Zlatan Aksamija,

Davide Donadio and the other anonymous reviewer for their contribution to the peer

review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08713-0

8 NATURE COMMUNICATIONS |          (2019) 10:827 | https://doi.org/10.1038/s41467-019-08713-0 | www.nature.com/naturecommunications

http://arxiv.org/abs/1809.04303
https://doi.org/10.1038/s41467-019-08713-0
https://doi.org/10.1038/s41467-019-08713-0
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Non-monotonic pressure dependence of�the�thermal conductivity of boron arsenide
	Results
	Pressure-driven changes to thermal conductivity of solids
	Thermal conductivity of BAs under pressure
	Pressure-driven competition among scattering channels
	Temperature-driven shift of the thermal conductivity peak

	Discussion
	Methods
	Computational methodology
	Convergence parameters
	Computational challenges and code efficiency to reduce cost
	Code availability

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


