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Abstract

Background: Non-negative matrix factorization (NMF) has been shown to be a powerful tool for clustering gene

expression data, which are widely used to classify cancers. NMF aims to find two non-negative matrices whose

product closely approximates the original matrix. Traditional NMF methods minimize either the l2 norm or the

Kullback-Leibler distance between the product of the two matrices and the original matrix. Correntropy was recently

shown to be an effective similarity measurement due to its stability to outliers or noise.

Results: We propose a maximum correntropy criterion (MCC)-based NMF method (NMF-MCC) for gene expression

data-based cancer clustering. Instead of minimizing the l2 norm or the Kullback-Leibler distance, NMF-MCC maximizes

the correntropy between the product of the two matrices and the original matrix. The optimization problem can be

solved by an expectation conditional maximization algorithm.

Conclusions: Extensive experiments on six cancer benchmark sets demonstrate that the proposed method is

significantly more accurate than the state-of-the-art methods in cancer clustering.

Background
Because cancer has been a leading cause of death in the

world for several decades, the classification of cancers is

becoming more and more important to cancer treatment

and prognosis [1,2]. With advances in DNA microarray

technology, it is now possible to monitor the expression

levels of a large number of genes at the same time. There

have been a variety of studies on analyzing DNA microar-

ray data for cancer class discovery [3-5]. Suchmethods are

demonstrated to outperform the traditional, morpholog-

ical appearance-based cancer classification methods. In

such studies, different cancer classes are discriminated by

their corresponding gene expression profiles [1].

Several clustering algorithms have been used to identify

groups of similar expressed genes. Non-negative matrix

factorization (NMF) was recently introduced to analyze

gene expression data and this method demonstrated supe-

rior performance in terms of both accuracy and stability
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[6-8]. Gao and Church [3] reported an effective unsuper-

vised method for cancer clustering with gene expression

profiles via sparse NMF (SNMF). Carmona et al. [9] pre-

sented a methodology that was able to cluster closely

related genes and conditions in sub-portions of the data

based on non-smooth non-negative matrix factorization

(nsNMF), which was able to identify localized patterns in

large datasets. Zheng et al. [5,7] applied penalized matrix

decomposition (PMD) to extract meta-samples from gene

expression data, which could captured the inherent struc-

tures of samples that belonged to the same class.

NMF approximates a given gene data matrix, X, as a

product of two low-rank nonnegative matrices, H and W,

as X ≈ HW . This is usually formulated as an optimiza-

tion problem, where the objective function is to minimize

either the l2 norm or the Kullback-Leibler (KL) distance

[10] betweenX andHW .Most of the improvedNMF algo-

rithms are also based on the minimization of these two

distances while adding the sparseness term [3], the graph

regularization term [11], etc. Sandler and Lindenbaum

[12] argued that measuring the dissimilarity ofW andHW

by either the l2 norm or the KL distance, even with addi-

tional bias terms, was inappropriate in computer vision

applications due to the nature of errors in images. Sandler
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and Lindenbaum [12] proposed a novel NMF with earth

mover’s distance (EMD) metric by minimizing the EMD

error betweenX andHW . The proposedNMF-EMD algo-

rithm demonstrated significantly improved performance

in two challenging computer vision tasks, i.e., texture clas-

sification and face recognition. Liu et al. [4] tested a family

of NMF algorithms using α-divergence with different α

values as dissimilarities between X and HW for clustering

cancer gene expression data.

It is widely acknowledged that DNAmicroarry data con-

tain many types of noise, especially experimental noise.

Recently, correntropy was shown to be an effective sim-

ilarity measurement in information theory due to its

stability to outliers or noise [13]. However, it has not

been used in the analysis of microarray data. In this

paper, we propose a novel form of NMF that maximizes

the correntropy. We introduce a new NMF algorithm

with a maximum correntropy criterion (MCC) [13] for

the gene expression data-based cancer clustering prob-

lem. We call it NMF-MCC. The goal of NMF-MCC is

to find a meta-sample matrix, H, and a coding matrix,

W, such that the gene expression data matrix, X, is

as correlative to the product of H and W as possible

under MCC.

Relatedworks

He et al. [13] recently developed a face recognition algo-

rithm, correntropy-based sparse representation (CESR),

based on MCC. CESR tries to find a group of sparse

combination coefficients to maximize the correntropy

between the facial image vector and the linear combina-

tion of faces in the database. He et al. [13] demonstrated

that CESR was much more effective in dealing with the

occlusion and corruption problems of face recognition

than the state-of-the-art methods. However, CESR learns

only the combination coefficients while the basis faces

(the faces in the database) are fixed. Comparing to CESR,

NMF-MCC can learn both the combination coefficients

and the basis vectors jointly, which allows the algorithm

to obtain more basis vectors for better representation of

the data points. Zafeiriou and Petrou [14] addressed the

problem of NMF with kernel functions instead of inner

products and proposed the projected gradient kernel

nonnegative matrix factorization (PGK-NMF) algorithm.

Both NMF-MCC and PGK-NMF employ kernel functions

to map the linear data space to a non-linear space. How-

ever, as we show later, NMF-MCC computes different

kernels for different features, while PGK-NMF computes

a single kernel for the whole feature vector. Thus, NMF-

MCC allows the algorithm to assign different weights to

different features and emphasizes the discriminant fea-

tures with high weights, thus achieving feature selection.

In contrast, like most kernel based methods, PGK-NMF

simply replaces the inner product by the kernel-function

and treats the features equally, thus there is no feature

selection function.

Methods
In this section, we first briefly introduce the traditional

NMF method. We then propose our novel NMF-MCC

algorithm by maximizing the correntropy in NMF. We

further propose a expectation conditional maximization-

based approach to solve the optimization problem.

Nonnegativematrix factorization

NMF is a matrix factorization algorithm that focuses on

the analysis of data matrices whose elements are nonneg-

ative. Consider a gene expression dataset that consists of

D genes in N samples. We denote it by a matrix X =

[ x1, · · · , xN ]∈ R
D×N of size D × N , and each column of

X is a sample vector containing D genes. NMF aims to

find two non-negative matrices, H =[ hdk]∈ R
D×K and

W =[wkn]∈ R
K×N , whose product closely approximates

the original matrix X:

X ≈ HW . (1)

Matrix H is of size D × K , with each of the K columns

defining a meta-sample and each entry, hdk , in H repre-

senting the expression level of gene d over meta-sample

k. Matrix W is of size K × N , with each of the n columns

representing the meta-sample expression pattern of the

corresponding sample, and each entry, wkn, representing

the coefficient of meta-sample k over sample n. Figure 1

shows an example of the factorization of a gene expres-

sion matrix X with D = 2308 genes and N = 83 samples

as the product of the meta-sample matrix H with K = 4

meta-samples and the coding matrixW.

The factorization is quantified by an objective function

that minimizes some distance measure, such as:

• l2 norm distance: One simple measure is the square
of the l2 norm distance (also known as the Frobenius

norm or the Euclidean distance) between two

matrices, which is defined as:

F l2 =

D∑

d=1

N∑

n=1

(
Xdn −

K∑

k=1

HdkWkn

)2

. (2)

• Kullback - Leibler (KL) divergence: The second

one is the divergence between two matrices [10],

which is defined as:

FKL =

D∑

d=1

N∑

n=1

(
Xdnln

Xdn

(HW )dn
− Xdn + (HW )nd

)
.

(3)
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Figure 1 The l2 norm distance-based non-negative matrix factorization on the SRBCT dataset [29]. The gene expression data matrix, X, is

factorized as the product of the meta-sample matrix, H, and the coding matrix,W .

Maximum correntropy criterion for NMF

Another thing that has to be changed is that the definition

of correntropy is not subject to the kernel being Gaussian

as they seem to imply through the text, so for instance

when they define they can say E(k(x-y)) and one of the

common choices of k is the Gaussian kernel giving....

Correntropy is a nonlinear similarity measure between

two random variables, x and y [13,15,16], defined as

Vσ (x, y) = E[ kσ (x − y)] , (4)

where kσ is a kernel that satisfies the Mercer theory and

E[ ·] is the expectation. One of the common choices of kσ

is the Gaussian kernel given as kσ (x − y) = exp(−
(x−y)2

2σ 2 ).

In practice, the joint probability density function of

x and y is unknown and only a finite amount of data

{(xi, yi)}, i = 1, · · · , I is available. Therefore, the sample

correntropy is estimated by

V̂σ (x, y) =
1

I

I∑

i=1

kσ (xi − yi), (5)

Based on Eq. (5), a general similarity measurement

between any two discrete gene expression vectors was

proposed [17]. They introduced the correntropy induced

metric (CIM) for any two gene sample vectors x =

[ x1, · · · , xD]
⊤ and y =[ y1, · · · , yD]

⊤, as:

CIM(x, y) =

(
kσ (0) +

1

D

D∑

d=1

kσ (xd − yd)

) 1
2

=

(
kσ (0) +

1

D

D∑

d=1

kσ (ed)

) 1
2

,

(6)

where ed = xd−yd is defined as the error. For adaptive sys-

tems, we can define the maximum correntropy criterion

(MCC) [18] as

max
�

D∑

d=1

kσ (xd − yd),

kσ (xd − yd) = exp

[
−

(xd − yd)
2

2σ 2

] (7)

where � is a parameter to be specified later. We must

notice the difference between MCC and common kernel

criterion used in [14]. The Gaussian kernel function of

vectors x and y is defined as

kσ (x − y) = exp

(
−

||x − y||2

2σ 2

)

= exp

[
−

∑D
d=1(xd − yd)

2

2σ 2

]
.

(8)

We can see that the kernel is applied to the entire fea-

ture vector, x, and each feature xd, d = 1 · · · ,D is treated

equally with the same kernel parameter. However, in (7),

kernel functions are applied to different functions. This

can allow the algorithm to learn different kernel parame-

ters as we will introduce later. In this way, we can assign

different weights to different features and thus implement

feature selection.

Our goal is to find a meta-sample matrix, H, and a

coding matrix, W, such that HW is as correlative to

X as possible under MCC as described in Eq. (7). To

extend MCC from vector space RD to matrix space RD×N ,

we replace ed = (xd − yd) with the l2 norm distance

between the samples of X and Y = HW as ed =√∑N
n=1(xdn − ydn)2, where ydn is the (d, n)-th item of Y,
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and ydn =
∑K

k=1 hdkwkn. Moreover, the factorization sys-

tem parameter should be set to � = (H ,W ) under the

framework of NMF-MCC. By substituting newly defined

ed and � to (7), we can formulate the problem of NMF-

MCC as the following optimization problem:

max
H,W

F(H ,W )

s.t. H ≥ 0, W ≥ 0.

F(H ,W ) =

D∑

d=1

kσ (ed)

=

D∑

d=1

kσ

⎛
⎝

√√√√
N∑

n=1

(xdn −

K∑

k=1

hdkwkn)
2

⎞
⎠

=

D∑

d=1

exp

(
−

∑N
n=1(xdn −

∑K
k=1 hdkwkn)

2

2σ 2

)
.

(9)

We should notice the significant difference betweenNMF-

MCC and CESR. As a supervised learning algorithm,

the CESR represents a test data point, xt , as a linear

combination of all the the training data points as xt ≈∑N
n=1 xnwnt = Xwt and wt =[w1t , · · · ,wNt]

⊤ is the com-

bination coefficient vector. CESR aims to find the optimal

wt to maximize the correntropy between xt and Xwt . Sim-

ilarly, NMF-MCC also tries to represent a data point xn
as a linear combination of some basis vectors as xn ≈∑K

k=1 hkwkn = Xwn and wn =[w1n, · · · ,wKn]
⊤ is the

combination coefficient vector. Differently from CESR,

NMF-MCC aims to find not only the optimal wn but

also the basis vectors in H to maximize the correntropy

between xn and Hwn, n = 1, · · · ,N . The internal differ-

ence between NMF-MCC and CESR lies in whether to

learn basis vectors or not.

In order to solve the optimization problem, we rec-

ognize that the expectation conditional maximization

(ECM) method [19] can be applied. Based on the the-

ory of convex conjugate functions [20], we can derive the

following proposition that forms the basis to solve the

optimization problem in (9):

Proposition 1. There exists a convex conjugate function

of g(z, σ) such that

g(z, σ) = sup
̺∈R−

(
̺

||z||2

σ 2
− ϕ(̺)

)
(10)

and for a fixed z, the supremum is reached at ̺ = −g(z, σ).

By substituting Eq. (10) into (9), we have the aug-

mented objective function in an enlarged parameter

space

max
H ,W ,ρ

F̂(H,W ,ρ)

s.t. H ≥ 0, W ≥ 0.

F̂(H,W ,ρ)=

D∑

d=1

(
ρd

N∑

n=1

(xdn−

K∑

k=1

hdkwkn)
2−ϕ(ρd)

)
,

(11)

where superscript ϕ is the convex conjugate function ϕ of

g(z) defined in Proposition 1, and ρ =[ ρ1, · · · , ρD]
⊤ are

the auxiliary variables.

According to Proposition 1, for fixed H and W, the

following equation holds:

F(H ,W ) = max
ρ

F̂(H ,W , ρ). (12)

It follows that

max
H,W

F(H ,W ) = max
H,W

[
max

ρ
F̂(H ,W , ρ)

]

= max
H,W ,ρ

F̂(H ,W , ρ).

(13)

That is, maximizing F(H ,W ) is equivalent to maximizing

the augmented function F̂(H ,W , ρ).

The NMF-MCC Algorithm

The traditional NMF can be solved by the expectation-

maximization (EM) algorithm [21]. However, in the case

of MCC-based NMF, EM must be replaced by ECM

because there is more than one parameter. Figure 2 shows

the outline of ECM, which is described in more detail

below.

1. E-Step: Compute ρ given the current estimations of
the meta-sample matrix H and the coding matrixW
as:

ρt
d = −g

⎛
⎜⎜⎝

√√√√√
N∑

n=1

(
xdn −

K∑

k=1

htdkw
t
kn

)2

, σ t

⎞
⎟⎟⎠ ,

(14)
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Figure 2 Outline of the ECM-based NMF-MCC algorithm.

where t means the t-th iteration. In this study, the

kernel size (bandwidth) σ 2t is computed by

σ 2t =
θ

2D

D∑

d=1

N∑

n=1

(
xdn −

K∑

k=1

htdkw
t
kn

)2

, (15)

where θ is a parameter to control the sparseness of ρt
d.

2. CM-steps: In the CM-step, given ρt
d , we try to

optimize the following function respect to H andW :

(Ht+1,W t+1) =argmax
H ,W

D∑

d=1

⎛
⎝ρt

d

N∑

n=1

(
xdn −

K∑

k=1

hdkwkn

)2
⎞
⎠

=argmax
H ,W

Trac
[
(X−HW )⊤diag(ρt)(X−HW )

]

s.t. H ≥ 0, W ≥ 0,

(16)

where diag(·) is an operator that converts the vector

ρ to a diagonal matrix.

By introducing a dual objective function,

O(H,W ) =Trac
[
(X − HW )⊤diag(−ρt)(X − HW )

]

=Trac
[
X⊤diag(−ρt)X

]
−2Trac

[
X⊤diag(−ρt)HW

]

+ Trac
[
W⊤H⊤diag(−ρt)HW

]
,

(17)

the optimal problem in (16) can be reformulated as
the following dual problem:

(H t+1,W t+1) =argmin
H,W

O(H ,W )

s.t. H ≥ 0, W ≥ 0.

(18)

Let φdk and ψkn be the Lagrange multiplier for

constraints hdk ≥ 0 and wkn ≥ 0, respectively, and
� =[ φdk] and � =[ψkn]. The Lagrange L is

L =Trac
[
X⊤diag(−ρt)X

]
− 2Trac

[
X⊤diag(−ρt)HW

]

+ Trac
[
W⊤H⊤diag(−ρt)HW

]
+ Trac

[
�H⊤

]

+ Trac
[
�W⊤

]
.

(19)

The partial derivatives of L with respect to H andW
are

∂L

∂H
= − 2diag(−ρt)XW⊤ + 2diag(−ρt)HWW⊤+�

(20)

and

∂L

∂W
= −2H⊤diag(−ρt)X + 2H⊤diag(−ρt)HW + �

(21)

Using the Karush-Kuhn-Tucker optimal conditions,

i.e., φdkhdk = 0 and ψknwkn = 0, we get the following
equations for hdk and wkn:

− 2(diag(−ρt)XW⊤)dkhdk

+ 2(diag(−ρt)HWW⊤)dkhdk = 0
(22)

and

− 2(H⊤diag(−ρt)X)knwkn

+ 2(H⊤diag(−ρt)HW )knwkn = 0
(23)

These equations lead to the following updating rules

to maximize the expectation in (13).
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• The meta-sample matrix H, conditioned on the

coding matrixW :

ht+1
dk ←− htdk

(diag(−ρ t)XW t⊤)dk

(diag(−ρt)H tW tW t⊤)dk

(24)

• The coding matrixW conditioned on the newly
estimated meta-sample matrix H t+1:

wt+1
kn ←− wt

kn

(H t+1⊤
diag(−ρt)X)kn

(H t+1⊤
diag(−ρt)H t+1W t)kn

(25)

We should note that if we exchange the numerator

and denominator in (24) and (25), new update
formulas will be yield. The new update rules are dual

for (24) and (25), and our experimental results show
that the dual update rules achieve similar clustering

performances as (24) and (25).

Algorithm 1 summarizes the optimization procedure.

Algorithm 1 NMF-MCC Algorithm.

Require: Input gene expression data matrix X;

Require: Initial meta-sample gene matrix H1 and coding

matrixW 1;

for t = 1, · · · ,T do

Update the auxiliary variables ρt as in (14);

Update the meta-sample matrix H t+1 as in (24);

Update the coding matrixW t+1 as in (25);

end for

Output H = HT+1 andW = WT+1.

Proof of convergence

In this section, we will prove that the objective function in

(16) is nonincreasing under the updating rules in (24) and

(25).

Theorem 1. The objective function in (16) is nonin-

creasing under the update rules (24) and (25).

To prove the above theorem, we first define an auxiliary

function.

Definition 1. G(w,w′) is an auxiliary function for F(w)

if the conditions

G(w,w′) ≥ F(w), G(w,w) = F(w) (26)

are satisfied.

The auxiliary function is quite useful because of the

following lemma:

Lemma 1. If G is an auxiliary function of F, then F is

nonincreasing under the update

wt+1 = argmin
w

G(w,wt). (27)

We refer the readers to [22] for the proof of this

lemma. Now, we show that the updating rule of (25)

is exactly the update in (27) with a proper auxil-

iary function. We denote the objective function in (16)

as O:

O =

D∑

d=1

(
ρd

N∑

n=1

(xdn −

K∑

k=1

hdkwkn)
2

)

=Trac
[
(X − HW )⊤diag(ρt)(X − HW )

]
.

(28)

Considering any element, wkn, in W, we use Fkn to

denote the part of the objective function in (16) that is

relevant only to wkn. It is easy to check that

F ′
kn =

(
∂O

∂W

)

kn

=

(
−2H⊤diag(−ρt)X

+2H⊤diag(−ρt)HW
)
kn

F ′′
kn =

(
∂2O

∂2W

)

kn

= 2
(
H⊤diag(−ρt)H

)
kk

(29)

Since the updating rule is essentially based on elements,

it is sufficient to show that each Fkn is nonincreasing under

the update step of (25).

Table 1 Summary of the six cancer gene expression datasets used to test the NMF-MCC algorithm

Dataset name Diagnostic task Samples (N ) Genes (D) Cancer Classes (K ) Ref

Leukemia Acute myelogenous leukemia 72 5327 3 [25]

Brain Tumor 5 human brain tumor types 90 5920 5 [26]

Lung Cancer 4 lung cancer types and normal tissues 203 12600 5 [27]

9 Tumors 9 various human tumor types 60 5726 9 [28]

SRBCT Small, round blue cell tumors 83 2308 4 [29]

DLBCL Diffuse large B-cell lymphomas 77 5469 2 [24]
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Lemma 2. Function

G(w,wt
kn) = Ft

kn(w
t
kn) + F ′

kn(w
t
kn)(w − wt

kn)

+
(H⊤diag(−ρt)HW )kn

wt
kn

(w − wt
kn)

2
(30)

is an auxiliary function for Fkn, which is relevant only

to wkn.

Proof. Since G(w,w) = Fkn(w) is obvious, we only need

to show that G(w,wt
kn) ≥ Fkn(w). To do this, we compare

the Taylor series expansion of Fkn(w),

Fkn(w) = Fkn(w
t
kn) + F ′

kn(w
t
kn)(w − wt

kn)

+
1

2
F ′′
kn(w

t
kn)(w − wt

kn)
2

= Fkn(w
t
kn) + F ′

kn(w
t
kn)(w − wt

kn)

+

(
H⊤diag(−ρt)H

)
kk

(w − wt
kn)

2

(31)

with (30) to find that G(w,wt
kn) ≥ Fkn(w) is equivalent to

(H⊤diag(−ρt)HW )kn

wt
kn

≥

(
H⊤diag(−ρt)H

)
kk

(H⊤diag(−ρt)HW )kn ≥

(
H⊤diag(−ρt)H

)
kk
wt
kn

(32)

We have

(H⊤diag(−ρt)HW )kn =

K∑

l=1

(H⊤diag(−ρt)H)klwlnw
t

≥

(
H⊤diag(−ρt)H

)
kk
wt
kn.

(33)

Thus, (32) holds and G(w,wt
kn) ≥ Fkn(w).

We can now demonstrate the convergence of

Theorem 1.

Figure 3 The boxplots of the clustering accuracies for NMF with different loss functions over 100 runs on the six gene expression

datasets: (a) Leukemia, (b) Brain Tumor, (c) Lung Cancer, (d) 9 Tumors, (e) SRBCT, (f) DLBCL.
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Proof of Theorem 1. Replacing G(w,wt) in (27) by (30)

results in the update rule

wt+1
kn = wt

kn − wt
kn

F ′
kn(w

t
kn)

2(H⊤diag(−ρ)HW t)kn

= wt
kn

(H⊤diag(−ρ)X)kn

(H⊤diag(−ρ)HW t)kn
.

(34)

Since (30) is an auxiliary function, Fkn is nonincreasing

under this update rule as in (25).

Similarly, we can also show that O is nonincreasing

under the updating steps in (24).

Experiments
Datasets

To test the proposed algorithm, we carry out exten-

sive experiments on six cancer-related gene expression

datasets. The six datasets consist of five multi-class

sets as used in [4,23] and one binary class set [24].

The descriptions of the six datasets are summarized in

Table 1. In these datasets, besides the gene expression

data samples, the labels are also given. They were obtained

from the diagnosis results and reported in different

studies [23].

Performance metric

The proposed NMF-MCC algorithm will be used to rep-

resent gene expression data for k-means clustering. The

clustering results are evaluated by comparing the obtained

label of each sample with the label provided by the dataset.

The clustering accuracy is used to measure the cluster-

ing performance. Given a micro-array dataset containing

N samples that belong to K classes, we assume that K is

given in all the algorithms tested here. For each sample,

xn, let cn be the cluster label predicted by an algorithm and

rn be the cancer type label provided by the dataset. The

accuracy of the algorithm is defined as:

Accuracy =

∑N
n=1 I(rn, cn)

N
, (35)

where I(A,B) returns 1 if A = B and 0 otherwise.

Testedmethods

We first compared the MCC with other loss functions

between X and HW for the NMF algorithm on the

cancer clustering problem, including l2 norm distance,

KL distance [10], α-divergence [4], and earth mover’s

distance (EMC) [12]. We further compared the pro-

posed NMF-MCC algorithm with other NMF-based algo-

rithms, including the penalized matrix decomposition

Figure 4 The boxplots of the clustering accuracies for different versions of NMF algorithms over 100 runs on the six gene expression

datasets: (a) Leukemia, (b) Brain Tumor, (c) Lung Cancer, (d) 9 Tumors, (e) SRBCT, (f) DLBCL.
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Figure 5 The gene weight vector learned by NMF-MCC with −ρ

on the SRBCT dataset.

(PMD) algorithm [7], the original NMF algorithm [22], the

sparse non-negative matrix factorization (SNMF) algo-

rithm [3], the non-smooth non-negative matrix factoriza-

tion (nsNMF) algorithm [9] and the projected gradient

kernel nonnegative matrix factorization (PGK-NMF).

Results

Since the initial H and W are selected randomly, we per-

formed 100 independent trials and computed the average

and the standard deviations of the accuracy for each loss

function. The results from the comparison of MCC with

other loss functions are presented in Figure 3. As shown

in Figure 3, MCC consistently performed the best on

all the six datasets. The other loss functions performed

well on some datasets, but poorly on the others. It seems

that the improvement of MCC increased when the num-

ber of genes increased. The standard deviation on the

accuracy of MCC was much smaller than the standard

deviation on the other loss functions, indicating thatMCC

is the most stable. On the other hand, EMD, although

worked quite well in computer vision tasks [12], it did

not perform well on gene expression data due to the sig-

nificant difference between the image data and the gene

expression data.

The results of the comparison of NMF-MCC with

other related NMF methods are presented in Figure 4.

Figure 4 shows the performance of different algorithms

on the six datasets. The NMF-MCC algorithm outper-

formed the other algorithms on five out of the six datasets.

The NMF-MCC algorithm could correctly cluster more

than 88% and 78% of the samples in the Leukemia and

DLBCL datasets, respectively, in a completely unsuper-

vised manner. In contrast, the l2 norm distance-based

NMF algorithm performed even worse than the baseline

PMD algorithm on the Leukemia and DLBCL datasets,

i.e., an average accuracy of 73% and 67%, respectively.

This verifies that correntropy is a much better measure

of cancer clustering data. Note that NMF-MCC signif-

icantly outperformed the other algorithms on the Lung

Cancer dataset, which contains a large number of genes.

This implies that among the large number of genes,

only a small fraction is likely to be relevant to cancer-

ous tumor growth or spread. In NMF-MCC, the auxil-

iary variables −ρ acts as the feature selectors, we was

able to select the relevant genes. Although the SNMF

and nsNMF algorithms also improved on the perfor-

mance of the baseline NMF algorithm, the improvement

was much less than that of the NMF-MCC algorithm. A

possible reason is that many genes exhibit similar pat-

terns across all of the samples with only a few genes

differentiating different cancer classes. They are likely

to be sampled from a nonlinear manifold. Hence, the

loss function defined by a linear kernel with either the

Figure 6 Themeta-sample matrix,H, weighted by dig(−ρ) and the corresponding coding matrix,W , obtained from the NMF-MCC

algorithm for the SRBCT dataset.
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l2 norm or the KL distance could not capture them. In

contrast, the NMF-MCC algorithm had a loss function

that was defined by the correntropy and a Gaussian ker-

nel, which could capture the nonlinear manifold structure

much more effectively. By mapping the gene expression

data into the nonlinear dataspace by a Gaussian kernel,

the PGK-NMF outperformed the original NMF. How-

ever, our NMF-MCC could even further improve the

PGK-NMF by applying different kernels to different fea-

tures.

To understand what genes were selected by the NMF-

MCC algorithm, we drew the gene weight figure on the

SRBCT dataset (Figure 5). It can be seen that the −ρ

vector is sparse, which shows the significance of cer-

tain genes. The resulting meta-sample matrix weighted

by −ρ with the corresponding coding matrix is shown

in Figure 6. By comparing to the coding matrix learned

by the original NMF with the l2 norm distance in

Figure 1, we determine that the coding matrix learned by

the NMF-MCC algorithm is much more discriminative

among different cancer classes. On this dataset, the NMR-

MCC algorithm achieved an average clustering accuracy

of 63%.

Discussion
Traditional unsupervised learning techniques select fea-

tures with features selection algorithms and then do

clustering using the selected features. The NMF-MCC

algorithm proposed here achieves both goals simulta-

neously. The learned gene weight vector reflects the

importance of the genes in the gene clustering task, and

the coding matrix encodes the clustering results for the

samples.

Our experimental results demonstrate that the improve-

ment of NMR-MCC over the other methods increases

when the number of genes increases. This shows the

ability of the proposed algorithm to effectively select

the important genes and cluster samples. This is an

important property because high-dimensional data anal-

ysis has become increasingly frequent and important in

diverse fields of sciences and engineering, and social sci-

ences, ranging from genomics and health sciences to

economics, finance and machine learning. For instance,

in genome-wide association studies, hundreds of thou-

sands of SNPs are potential covariates for phenotypes

such as cholesterol level or height. The large number

of features presents an intrinsic challenge to many clas-

sical problems, where usual low-dimensional methods

no longer apply. The NMF-MCC algorithm has been

demonstrated to work well on the datasets with small

numbers of samples but large numbers of features. It

can therefor provide a powerful tool to study high-

dimensional problems, such as genome-wide association

studies.

Conclusion
We have proposed a novel NMF-MCC algorithm for

gene expression data-based cancer clustering. Experi-

ments demonstrate that correntropy is a better measure

than the traditional l2 norm and KL distances for this task,

and the proposed algorithm significantly outperforms the

existing methods.
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