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Abstract

Models of protein evolution currently come in two flavors: generalist and specialist. Generalist models (e.g. PAM, JTT, WAG)
adopt a one-size-fits-all approach, where a single model is estimated from a number of different protein alignments.
Specialist models (e.g. mtREV, rtREV, HIVbetween) can be estimated when a large quantity of data are available for a single
organism or gene, and are intended for use on that organism or gene only. Unsurprisingly, specialist models outperform
generalist models, but in most instances there simply are not enough data available to estimate them. We propose a
method for estimating alignment-specific models of protein evolution in which the complexity of the model is adapted to
suit the richness of the data. Our method uses non-negative matrix factorization (NNMF) to learn a set of basis matrices from
a general dataset containing a large number of alignments of different proteins, thus capturing the dimensions of important
variation. It then learns a set of weights that are specific to the organism or gene of interest and for which only a smaller
dataset is available. Thus the alignment-specific model is obtained as a weighted sum of the basis matrices. Having been
constrained to vary along only as many dimensions as the data justify, the model has far fewer parameters than would be
required to estimate a specialist model. We show that our NNMF procedure produces models that outperform existing
methods on all but one of 50 test alignments. The basis matrices we obtain confirm the expectation that amino acid
properties tend to be conserved, and allow us to quantify, on specific alignments, how the strength of conservation varies
across different properties. We also apply our new models to phylogeny inference and show that the resulting phylogenies
are different from, and have improved likelihood over, those inferred under standard models.
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Introduction

Empirical models of protein evolution, as pioneered by Dayhoff

and colleagues [1,2], have found wide use across varied domains:

sequence alignment [3], phylogenetics [4], and as baseline models

against which positive selection is detected [5]. These models

describe molecular evolution at the amino acid level by

quantifying the relative substitution rates between different amino

acids. Such rates are an aggregation over multiple distinct

phenomena: the structure of the genetic code, which renders

some mutations less likely to occur; and differences in the

physicochemical properties of the amino acids themselves, which,

along with the environment of the organism, will determine which

substitutions are deleterious, tolerated or adaptive.

The original approach by Dayhoff et al. used a maximum

parsimony procedure to reconstruct the ancestral sequences and

phylogeny for a collection of protein families and counted the

amino acid substitutions across this phylogeny. Their PAM (point

accepted mutation) matrices were derived from rates of amino acid

exchange estimated from these counts. Jones et al. [6] automated a

similar procedure which ran on a much larger dataset, producing

the JTT amino acid rate matrix. A further refinement to these

‘‘counting’’ methods was contributed by Kosiol and Goldman [7].

Whelan and Goldman [8] made use of a maximum likelihood

approach which, unlike the counting methods mentioned above,

finds the amino acid substitution matrix while simultaneously

optimizing the branch lengths of the phylogeny, thus incorporating

the possibility of multiple substitutions taking place along any

given branch. In constructing their WAG matrix, they applied an

approximation of this technique to a large dataset.

The above models are generalist in that they use the same set of

relative amino acid exchangeabilities for all genes and all

organisms. However, since these exchangeabilities can vary

considerably between genes and/or organisms, researchers have

also constructed specialist models. Such models are estimated from

– and intended for use on – a specific gene, organism or genetic

code. Adachi and Hasegawa [9] estimated an empirical amino

acid substitution rate matrix for mitochondrial DNA-encoded

proteins, using the maximum likelihood method on a dataset

consisting of mtDNA-encoded sequences from vertebrate species.

Yang et al. [10] used a similar technique to derive a substitution

rate matrix from the mtDNA mammalian dataset of Cao et al.

[11]. Both of these are intended for use only on mitochondrial

sequences. Dimmic et al. [12] optimized an amino acid
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substitution rate matrix via maximum likelihood, using a set of

retroviral pol protein sequences. Nickle et al. [13] derived two

substitution rate matrices with maximum likelihood, each using

different HIV protein sequence datasets. The first matrix

(HIVwithin) was derived by applying maximum likelihood to

pairs of within-individual protein sequences, while the second

(HIVbetween) made use of a set of consensus sequences obtained

from a population of individuals. In all cases, specialist models fit

alignments for their particular system better than generalist

models.

Specialist models are better than generalist ones, but specialist

models simply don’t exist for most alignments. If the alignment is

very large, one can estimate a fully parameterized general

reversible model (often referred to as REV), which involves

estimating 190 parameters. With most alignments, however, this

will be severely over-parameterized. Computational biologists who

want to analyze a single alignment for which a specialist model has

not been constructed are therefore forced to resort to using a

generalist model. This is the problem we seek to address:

constructing alignment-specific models of protein evolution

without over-fitting, allowing the model to be just as complex as

the data justify.

We investigate a compromise between generalist and specialist

models by first extracting, from a large dataset, the important

dimensions of variation in amino acid substitution rates, and then

using these to constrain our models. We propose the following

three step approach: First, we estimate a separate REV amino acid

rate matrix for each of a number of reasonably large alignments.

These provide a library of specialist models, each with 190 rate

parameters. Second, we apply non-negative matrix factorization –

a dimensionality reduction technique – to find a smaller set of

‘basis’ rate matrices, whose non-negative weighted combinations

best approximate the original REV estimates. Finally, for a new

alignment (which is not contained in the original dataset and may

be relatively small), we model the amino acid rate matrix as a

weighted combination of our set of basis matrices. During this final

step, we optimize over both the number of combination weights

and their values. NNMF is thus used to approximate the space of

useful models, reducing the number of parameters required to

explore it. Rate matrices for specific alignments are estimated by

searching within this lower-dimensional parameter space.

The basis matrices obtained by our NNMF procedure are

interesting in that they reveal a set of components from which the

eventual rate matrices are comprised – each alignment-specific

rate matrix is the sum of positive multiples of the basis matrices. By

measuring, for each basis matrix, the correlation between the

amino acid exchangeabilities and the strength of the different

physicochemical properties of the amino acids being exchanged,

we obtain an indication of how the degree of conservation of the

different properties varies between different alignments.

Using a separate test dataset, we show that models estimated

through our procedure outperform existing models in terms of

Akaike’s information criterion (AIC) on all but one of 50
alignments tested. Finally, we use our models to infer phylogenies

and show that this leads to phylogenetic trees that are structurally

different and have higher likelihood than maximum likelihood

trees obtained using standard methods.

Methods

We start by briefly reviewing phylogenetic models of protein

evolution. Substitutions along every branch of a phylogenetic tree

are described by a continuous time Markov process, defined by an

instantaneous rate matrix, Q. The elements qij are the rates of

substituting amino acid i with amino acid j. From the rate matrix

Q and the length of a branch in the phylogeny, t, a transition

probability matrix for that branch can be calculated using the

matrix exponential:

P(t)~eQt: ð1Þ

The constraint qii~{
P

Vj=i qij is required for Q to be a valid

Markov process generator. The (ij) elements of P(t) describe the

probabilities of substituting amino acid i with amino acid j after

time t. With these transition probabilities along the branches of a

phylogeny, the likelihood of an alignment can be calculated using

Felsenstein’s pruning algorithm [4].

We assume the Markov process is reversible: that is, Q can be

decomposed into the product of a symmetric matrix S and a

diagonal matrix P, where the elements of the diagonal of P, pj ,

are the equilibrium frequencies for the jth amino acid in the

Markov process defined by Q~SP, with
P

j pj~1. Throughout

this paper we adopt a common approximation by estimating the

equilibrium frequencies pj as the empirical amino acid frequencies

counted across all sites in the alignment.

S is the 20|20 symmetric amino acid exchangeability matrix.

Given the symmetry and the constraints on the diagonal elements,

this leaves 190 parameters that need to be specified to define the

model of protein evolution over a given phylogeny. Our focus in

this study is the estimation of these parameters.

Estimating reversible protein models
To characterize the important dimensions of relative substitu-

tion rate variation, we first estimate a general reversible (REV)

model – where the 190 parameters of S are estimated by

maximum likelihood – from each of a large number m of large

alignments. We use the procedure described in [13] to estimate a

REV model for each alignment. For computational reasons we use

a single rate class, ignoring site-to-site amino acid rate variation

(although we show that this can be added at a later stage of our

procedure).

Non-negative matrix factorization
Non-negative matrix factorization (NNMF) is a tool for

dimensionality reduction [14,15] of datasets in which the values,

like the rates in the rate matrix S, are constrained to be non-

negative. Instead of applying it to data, we use it to reduce the

dimensionality of our models. We start by arranging the

parameters of each specialist REV model into a vector of

dimension n~190. The set of m such vectors combine to form a

n|m matrix V (Figure 1, Table 1) representing the full set of

specialist rate matrices. For a given factorization rank r%n, the

NNMF procedure now finds an n|r matrix W and an r|m
matrix H such that WH&V . This is done by minimizing an

objective function: we chose to minimize the sum of squared

differences between WH and V .

W now represents a set of r basis matrices: each column

contains the 190 parameters of a single basis matrix, and the S
matrix for any of the training alignments can be reconstructed

(approximately) by forming a weighted sum over these basis

matrices. The weights in this sum are stored in the column of H
corresponding to the training alignment in question. One way of

interpreting the factorization is that the set of basis matrices in W
captures the dimensions of important variation between different

rate matrices representing the training alignments, so that they

form a set of components out of which any of the rate matrices can

Alignment-Specific Models of Protein Evolution
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be built up. Our key assumption is that this will also be the case for

alignments not in the training dataset: after paying the fixed cost of

learning the 190|r parameters in W from the training dataset,

we propose to represent any alignment using only r weight

parameters instead of 190 independent rate parameters (Figure 2).

NNMF proceeds by an iterative algorithm, converging on a local

minimum of the sum of squared error. It is thus potentially sensitive

to initial conditions. To ensure decent performance, we began with

20 different random initial conditions and optimized the factoriza-

tion for 2000 iterations each. The best resulting factorization was

then further refined for an additional 5000 iterations.

Fitting basis models to new data: optimizing over
combination weights

Given a collection of r basis exchangeability matrices, Bi (the

columns of W arranged as a reversible rate matrix), their

associated weights, wi, where i goes from 1 to r, a combined

exchangeability matrix S is parameterized by:

S~
Xr

i~1

wi|Bi ð2Þ

We add the constraint that
P

i wi~1: since rate and time are

confounded, and since the branch lengths are free parameters, this

does not entail loss of generality. With a new test alignment (that was

not included in the original factorization over the training data) and a

collection of basis rate matrices, we can now optimize the weights wi

(and branch lengths) to obtain the maximum likelihood combined

model for the alignment. This is in contrast to model selection

approaches such as ProtTest [16] which select a single model from a

collection of existing models. Importantly, the combined model can

itself be represented as a single numeric rate matrix, and can thus be

used by any application that allows for custom amino acid rate

matrices, such as HyPhy [17], PAML [18] or PhyML [19].

The flagship method presented in this paper applies this

approach to our NNMF-estimated basis matrices (we refer to this

method as ‘‘NNMF’’). We also introduce a method that uses the

same mixture approach, but differs from NNMF, in that it uses a

collection of existing numeric rate matrices for its basis matrices ,

and we name the resulting model the ‘Mixture of Existing Rates’

(MOER) model. For any given test alignment, both models use

mixture components that are fixed in advance, but NNMF obtains

these by factorizing a large dataset, while MOER uses existing

‘‘average’’ model estimates. The models we chose to combine in

MOER are those available by default in the HyPhy software

package: Dayhoff, JTT, WAG, rtREV, mtMAM, mtREV,

HIVwithin and HIVbetween. For both NNMF and MOER, the

equilibrium frequencies used when modeling the test alignments

are estimated from the amino acid counts.

These are also the fixed rate models we use as a comparison for

NNMF and MOER to asses the performance of our methods,

since they are standardly used in the literature. Under a fixed rate

model, the branch lengths are optimized to maximize the

likelihood, but the exchangeability matrix itself has no flexibility.

Each fixed rate model is a special case of MOER, when the

weights for all but a single matrix go to 0. MOER will thus always

obtain better likelihoods than any single fixed-rate model, but our

model comparison measure will penalize against the extra

parameters if they prove unnecessary.

Selecting the optimal factorization rank for a given
alignment

The NNMF decomposition requires the specification of a

factorization rank: the number of basis matrices to be estimated.

Since the optimal number of basis matrices for a new alignment

depends on the details of that alignment – larger alignments can

justify more parameters – no single factorization will suffice. Instead,

we obtain factorizations for a range of different ranks. To select the

best NNMF model for each new alignment, we maximize the

likelihood function for every rank, and select the model with the best

(minimum) AICc(Akaike’s information criterion with a small sample

correction [20]) score, which prevents over-fitting by penalizing the

inclusion of additional parameters:

AICc~{2Lz2pz
2p(pz1)

n{p{1
ð3Þ

Figure 1. Non-negative matrix factorization.
doi:10.1371/journal.pone.0028898.g001

Table 1. Interpretation of the matrix factorization in Figure 1.

m Number of training alignments

n Number of parameters per rate matrix (190)

r Number of basis matrices

Column of V Specialist REV model corresponding to one training alignment

V Library of specialist REV models

Column of W One basis matrix

W Set of r basis matrices

Column of H Set of weights with which to combine basis matrices to obtain model for one training alignment

H Set of weights for training dataset

doi:10.1371/journal.pone.0028898.t001
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where L is the log-likelihood, p is the number of parameters and n is

the number of observations. Counting the number of observations is

not straightforward: taking the total number of characters in the

alignment is problematic because amino acids at the same site are

extremely correlated. (If one were to do this, one could add

duplicate sequences which would increase the number of observa-

tions without being at all informative.) Instead, we use the number

of sites as the number of observations. This can lead to problems

when branch lengths are included as parameters, because as the

number of branches approaches the number of sites (specifically,

when p~n{1), the second order term becomes undefined. This is

not just a theoretical concern: it actually occurs for one of our test

alignments. To remedy this, we exclude branch lengths from our

model parameter count. Excluding branch lengths as parameters

when extra taxa are not counted as extra observations makes

intuitive sense: adding taxa increases the number of branch length

parameters to be estimated while providing the required informa-

tion to estimate those parameters, but is not correspondingly

informative for estimation of the other model parameters. For

further discussion of these issues, see [21].

Phylogeny comparison
To determine whether improvements in model fit would make a

difference to the topology of the inferred phylogeny, we compared

the best NNMF model to WAG, the existing amino acid model

with the best overall fit on our 50 test alignments. We constructed

50 phylogenies using WAG, and 50 using the best NNMF model.

Topology search was performed in PhyML [19] with nearest-

neighbor interchange plus subtree pruning and regrafting, and we

disallowed rate variation due to computational restrictions. We

compared topologies under the Robinson-Foulds symmetric

difference [22] using PHYLIP [23].

Data
Training and test alignments were selected from the Pandit

database [24], with the selection based on the size of the

alignments (Figure 3). For our training dataset (293 alignments

in total) we used all alignments with number of sequencesw50,

alignment lengthw200 and number of sequences|alignment

lengthw15000, with the exception of one very large alignment

(number of sequences|alignment length~989720) that exceeded

our computational resources. The number of sequences per

alignment ranged from 51 to 797, with a median of 95 and an

inter-quartile range (IQR) of 77. The alignment length ranged

from 201 to 1767, with a median of 339 and an IQR of 230.75. All

trees used to train the models were also obtained from the Pandit

database.

We then adjusted our size criteria to yield a test dataset

containing the 50 ‘‘next largest’’ alignments: number of

sequencesw45, alignment lengthw195, number of sequen-

ces|alignment lengthw11800, but excluding all training align-

ments. The number of sequences per alignment ranged from 46 to

182, with a median of 51 and an IQR of 12. The alignment length

ranged from 196 to 926, with a median of 249 and an IQR of 207.

Trees were again obtained from the Pandit database.

Implementation
HyPhy [17] was used to estimating the original 293 REV

models from the Pandit alignments, using code from [13]. The

non-negative matrix factorization was performed in Matlab.

Optimizing over basis matrix combination weights for all

factorization ranks was performed in HyPhy, as was the

comparison of protein models. HyPhy Batch Language (HBL)

code for optimizing over combination weights is available online

(www.cs.sun.ac.za/ bmurrell/nnmf/), along with the basis matri-

Figure 2. Learning models of protein evolution with NNMF. A schematic overview of the procedure.
doi:10.1371/journal.pone.0028898.g002
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ces. A web script for converting from this output to a rate matrix

that is usable by PAML and PhyML is also available at the same

url.

Results

The basis matrices
We first consider the set of basis matrices obtained on the

training alignments. Figure 4 shows that, as expected, the sum of

squared errors decreases as the number of basis matrices increases.

To investigate the first few sets of basis matrices, we use the Stanfel

classification [25] of amino acids according to their physicochem-

ical properties. Figure 5 shows the basis matrices obtained for the

first 5 ranks, with the amino acid ordering chosen so as to group

amino acids with similar properties together. We observe that,

when one or two rate classes are used, the larger rates (darker

squares) occur more frequently within the same class than between

classes. Thus these rate matrices capture the fact that, on average,

physicochemical properties tend to be conserved.

As more rate matrices are added, the variation between

different alignments becomes better resolved. By the third

factorization (r~3), a basis matrix occurs with larger rates

(involving Cysteine) occurring between classes. This reflects that,

in some alignments, these rates are accelerated while in other

alignments they are not: the NNMF analysis indicates that

whether these rates are high or low is an important dimension

of variation across the training alignments. We also notice that the

exchangeabilities of Cysteine with other amino acids are not

elevated independently: in alignments where the Cystei-

ne<Histidine exchangeability is elevated, the Cysteine<Leucine

and Cysteine<Arginine exchangeabilities also tend to be elevated.

This may reflect that the properties under conservation in these

alignments, along with the relative importances of these properties,

differ from those used to define the Stanfel classification; rather

than speculating about the underlying biochemistry, we restrict

ourselves to pointing out that the set of basis matrices provides a

far richer description of amino acid exchangeability, and how this

varies between alignments, than can be achieved by classifying the

amino acids into a predefined set of non-overlapping categories.

With r~5 we see that Tryptophan has increased exchange-

ability with most other amino acids in a subset of alignments. It

would be interesting to establish the underlying causes of such

effects; for now we merely note that they are easily observable.

Inspection of the basis matrices for larger values of r would lead to

many similar observations.

Figure 6 displays the correlations of the rates in the basis

matrices for the first 5 factorizations with 5 amino acid properties

(chemical composition, polarity, volume, isoelectric point and

hydropathy). The values for these properties were obtained from

[26]. Here we are correlating the rate of substitution between two

amino acids with the difference between their values of the

relevant property. As expected, negative correlations predominate:

amino acids with larger differences are less frequently exchanged.

The horizontal black line (at 20.169) indicates the threshold for

significant negative correlation (pv0:01, one-tailed correlation

test, n~190). The relationships between the chemical properties

and the basis matrices clearly vary across the factorizations. For

instance, the fifth basis matrix for r~5 (which as we saw

corresponds to an elevation of the overall exchangeability of

Tryptophan) corresponds with significant conservation of polarity,

isoelectric point and hydropathy (evidently, exchanging Trypto-

phan for another amino acid does not affect these properties very

much on average), but no conservation of chemical composition or

volume (Tryptophan substitutions do affect these properties).

NNMF consistently yields better models than other
approaches

For each of the 50 Pandit test alignments, we optimized the

weight vectors and computed the AICc scores for the first 40

factorizations (from 1 to 40 basis matrices; we stopped at 40
because finding weights by maximum likelihood is computation-

ally intensive, taking, for example, 2 to 3 hours to get up to 40

with datasets of around 600 codons and 50 sequences, but taking

substantially longer as larger numbers of basis matrices are

considered). The number of basis matrices that minimized the

AICc was dependent on the alignment. This optimal number

ranged from 11 to 40, with a median of 30.5 and an interquartile

range (IQR) of 11. Figure 7 shows the distribution of the optimal

number of basis matrices for the best NNMF model across all 50

test datasets.

From the 50 test datasets, we also computed AICc scores for the

MOER model, as well as for each named amino acid model

implemented in HyPhy, the REV model and the REV 1-step

model (which fixes to 0 the rates of all amino acid substitutions that

require more than one nucleotide change). Following Burnham

and Anderson [27], we compute DAICc scores, which are the

Figure 3. Selecting the larger Pandit alignments. Each blue dot
represents an alignment in the Pandit database. The green region
covers the alignments used in the training set, and the thin red region
covers those in the test set.
doi:10.1371/journal.pone.0028898.g003

Figure 4. Convergence of NNMF. The sum of squared error
decreases as more basis matrices are included.
doi:10.1371/journal.pone.0028898.g004
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AICc scores for each model minus the best AICc for that dataset.

The best model will thus have DAICc~0. Models with

DAICcw10 have ‘‘essentially no support’’ [27]. Table 2 summa-

rizes the frequency of each model’s DAICc scores. The NNMF

procedure for finding models appears to consistently outperform

the others, obtaining the best AICc on 49 of 50 datasets. REV won

on a single alignment, which, unsurprisingly, was the largest

alignment and thus able to justify the full 190 rate parameters. The

best NNMF model on this dataset had a DAICc of 0.34, which

indicates that it has only slightly less support than REV.

Our approach of selecting the factorization rank using AICc is

equivalent to selecting the best of the 40 NNMF models under

consideration. Such a model selection step arguably gives NNMF

an unfair advantage over the other models; although it is not

standard procedure in the AIC literature, it may be more correct

to add a penalty to the AICc scores of NNMF. Though not strictly

appropriate for this context, a Bayesian argument can be used to

estimate the appropriate size of this penalty: if we are comparing

NNMF as a whole procedure against a single other model and we

distribute the prior probability for NNMF uniformly over the 40

NNMF candidate models, we would introduce a penalty of at most

{ log
1

40
&3:7 to the resulting marginal likelihood for the NNMF

procedure. This would amount to a maximum AICc penalty of

approximately 7.4 to the scores for NNMF. Applying this penalty

in Table 2 does not substantially affect the results. Furthermore, if

we fix the number of basis matrices used (we picked 20) for all

alignments, we still outperform WAG (the best overall fixed model)

on all alignments with a median AICc improvement of 225 points.

This is despite removing the model’s ability to adapt its complexity

to suit the data. That the improvement remains is not surprising:

even a fixed amount of flexibility is better than none, as long as it

does not require too many parameters for any particular

alignment.

It is also interesting to look at the AICc scores excluding the

NNMF models (Table 3). Here we see MOER finding the best

model most often (21/50 times), with WAG a close second (15/50)

and REV and REV 1-step next with 8/50 and 6/50 respectively.

Predictably, most of the specialist models (mtMAM, mtREV 24,

HIVwithin and HIVbetween) perform badly on datasets they were

not intended for, with the exception of rtREV, which outperforms

both JTT and Dayhoff (38, 10 and 2 wins respectively).

Interestingly, in [13], rtREV was outperformed by generalist

models WAG and JTT on HIV alignments containing the reverse

transcriptase protein.

The use of constant rates across sites is an unrealistic

assumption. It is possible to incorporate rate variation in a

Random Effects Likelihood (REL) framework, where the rate at a

site is modeled as a random draw from a discretized distribution.

This incurs additional computational expense proportional to the

number of rate categories used. To demonstrate that our results

hold when rate variation is incorporated into all models, we

Figure 5. NNMF basis matrices. The set of NNMF basis matrices obtained for ranks ranging from 1 to 5. Amino acids are ordered according to
their Stanfel classification [25]. Rates are indicated in grayscale, with pure white being a rate of zero and pure black being the maximum rate in the
matrix.
doi:10.1371/journal.pone.0028898.g005
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randomly selected 10 test alignments and accounted for rate

variation using a discretized gamma distribution with 4 rate

categories. Table 4 displays the results for these 10 datasets. The

conclusions are unchanged, and NNMF yields the best models for

all 10 alignments.

NNMF models yield different phylogenies with better
likelihoods

The Robinson-Foulds distance between the trees found using

the WAG matrix and those found using the best NNMF model

ranged from 0 to 98, with a median of 19 and an IQR of 24. This

shows that the choice of model makes a difference to the estimated

phylogeny. The NMMF phylogenies also have much higher

likelihoods (and lower AICc scores) than the phylogenies estimated

using WAG. When using maximum likelihood as a criterion for

optimizing phylogenies, topologies and models that yield higher

likelihoods should be preferred. This is not direct evidence that the

NNMF procedure leads to more accurate trees (which would be

difficult to demonstrate for a convincingly large sample), but it

does suggest that we should expect such an improvement.

Bigger differences in likelihoods predict bigger differences in

phylogenies. Figure 8 shows the relationship between the mean

log-likelihood improvement per site for a given alignment and the

Robinson-Foulds distance between the two resulting topologies.

There is a strong positive correlation with r~0:657, p~2|10{6

(randomization test with 106 replicates). The slope of the best

fitting line is 38:1, indicating a Robinson-Foulds distance increase

of &38 for each log-likelihood per-site improvement.

Discussion

Model selection tools such as ModelTest [28] and its amino acid

counterpart ProtTest [16] have been widely adopted for selecting

the best fitting models for a given alignment. In this paper we show

that, rather than simply selecting the best from a list of existing

models, models of protein evolution can be tailored to specific

alignments. Our NNMF framework has two primary strengths: 1)

the model complexity adapts to fit the alignment, and 2) the

dimensions along which the model can vary and the trajectory

along which the complexity increases have been learnt, at least

approximately, from a large collection of real alignments.

Since NNMF finds higher quality exchangeability matrices, we

should expect it to benefit any application that uses such matrices.

In this paper, we demonstrate an impact on phylogeny inference.

Although we don’t demonstrate it here, these rate matrices can

also be used to construct scoring matrices for sequence alignments.

Figure 6. NNMF basis matrices correlate with amino acid properties. The correlations between amino acid properties and the basis matrices.
The horizontal black line (at 20.16867) indicates the threshold for significant negative correlation (pv0:01, one tailed, n~190).
doi:10.1371/journal.pone.0028898.g006

Figure 7. Distribution of the optimal number of basis matrices.
The number of basis matrices that minimized the AICc across 50 test
alignments.
doi:10.1371/journal.pone.0028898.g007
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A procedure for doing this, along with software for generating the

scoring matrices, is outlined in [13]. Given that an alignment is

required before NNMF can be used, an iterative procedure, in

which a guide alignment obtained from a standard scoring matrix

is used to estimate an NNMF model, would have to be adopted. A

scoring matrix based on this model can then be generated to refine

the alignment.

Using more basis matrices
On our test alignments, we explored up to 40 basis matrices.

This choice was motivated by computational considerations. The

histogram of the optimal number of basis matrices for each dataset

(Figure 7) suggests that using more basis matrices could lead to

further improvement on some alignments. We provide basis

matrices for the first 100 factorizations, so users can explore as

many dimensions as their computational restrictions allow. It is

worth pointing out that, when the number of basis matrices

becomes 190, the NNMF model is equivalent to the REV model.

This justifies the interpretation of the procedure as interpolating

between a model with no flexibility and a fully flexible one.

Other approaches
CodonTest [26] is a recently proposed approach to solving a

similar problem using a different approach, but at the codon

rather than amino acid level. A genetic algorithm is used to find an

optimal number of non-synonymous rate classes, as well as an

assignment of particular non-synonymous substitution rates to

these classes. The difference in the ‘level’ of modeling (codon vs

protein) is superficial: applying our approach to codon models

would be straightforward, though at some extra computational

expense. The approach of CodonTest is different, in that it

explores a much larger space of possible parameter clusters. While

the difference in levels prevents direct comparison, we expect the

NNMF approach to gain some additional leverage over that of

CodonTest, because the set of subspaces it explores is learnt from a

collection of training alignments, while CodonTest does not

incorporate this prior information.

During the final preparation of this manuscript we became

aware of recent work by Zoller and Schneider [29] in which a

similar problem is tackled using an approach based on

dimensionality reduction, again in the context of codon models

rather than amino acid models. They used principal components

analysis (PCA) to estimate a set of basis matrices, and, as in our

approach, constructed their final model as a linear combination of

these basis matrices. PCA has the advantage of being more

computationally efficient than NNMF, but it lacks the non-

negativity constraints. It is thus possible that certain linear

combinations of PCA basis matrices will yield rates that are

smaller than 0. Zoller and Schneider [29] circumvent this problem

by explicitly resetting all negative rates to 0. That their model is

applied to codon level data prevents a direct comparison, but

future work will surely necessitate comparing different methods of

dimensionality reduction for this task. We see their work as an

encouraging sign that there is fertile ground for applying

dimensionality reduction to phylogenetic models of evolution.

Practical recommendations
Our NNMF approach can be applied whenever a numeric

model of amino acid evolution is required. The following

procedure would appear sensible: First, estimate a guide tree

using a fixed protein model. Then use the NNMF HBL program

to find the best NNMF model. At this point, the model could be

used to re-estimate the guide tree and iterate the NNMF

procedure. Since each iteration should improve the model

selection criterion (which is also bounded), this procedure should

converge. Finally, the output can be converted to the form

appropriate for the remaining analysis (phylogeny estimation,

alignment etc). Some publicly available empirical rate matrices are

provided with a fixed set of equilibrium frequencies. Importantly,

our NNMF procedure used the empirical amino acid frequencies,

and there are no such frequencies associated with any of our rate

matrices, so any applications requiring equilibrium frequencies

should use either the empirical frequencies, or estimate the

equilibrium frequencies by maximum likelihood.

Rate variation may be introduced at any step. To save

computation, one could use the NNMF HBL script without rate

variation to obtain a rate matrix, and subsequently introduce rate

variation. With more computational resources, rate variation can

Table 2. DAICc scores for all models.

0 ƒ2 ƒ4 ƒ8 ƒ16 ƒ32 ƒ64 ƒ128 ƒ256 ƒ512 ƒ1024 ƒ2048 ƒ4096 ƒ?

NNMF 49 1

MOER 1 7 18 20 3 1

REV 1 2 4 7 4 6 5 21

REV-1 step 7 28 15

Equal Input 14 27 9

Dayhoff 8 25 16 1

JTT 2 11 24 12 1

WAG 6 16 23 5

rtREV 2 21 23 4

mtMAM 11 30 9

mtREV 24 11 30 9

HIVwithin 16 26 8

HIVbetween 6 29 14 1

Each table entry is the number of datasets with DAICc in that range. For any dataset, the best model has DAICc~0. A model with DAICcw10 has essentially no
support.
doi:10.1371/journal.pone.0028898.t002
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be included while optimizing over the combination weights. It is

an open question whether including rate variation when

estimating the original REV models (before the NNMF step)

would significantly improve subsequent steps that also include rate

variation. Results reported in [26] suggest that rate variation

should be mostly orthogonal to estimating the relative substitution

rates.

An approximate solution to a harder problem
Learning basis matrices by NNMF can be seen as an approxima-

tion to a more computationally challenging problem. It is possible to

express the likelihood function for the factorization directly:

P(Djh)~ P
m

i~1
P(Dij

Xr

j~1

wij|Bj) ð4Þ

where Di is the ith alignment in the training set, the likelihood

within the sum is computed, as usual, using Felsenstein’s pruning

algorithm [4], and h is the full collection of parameters, including

weights and basis matrices. In this formulation, the rates in the

basis matrices Bj and the combination weights wij could all be

optimized numerically to maximize the overall likelihood on the

training data. However, obtaining this optimal solution would be

computationally challenging – our NNMF procedure approxi-

mates this by finding separate REV models that maximize the

likelihood on each alignment, and then finding the factorization

that most closely recovers these REV models in the mean square

error sense. The implicit assumption is that this factorization will

also yield good likelihoods. The computational saving relative to

the full solution occurs in part because the REV models can be

optimized separately for each training alignment.

Table 3. DAICc scores without NNMF.

0 ƒ2 ƒ4 ƒ8 ƒ16 ƒ32 ƒ64 ƒ128 ƒ256 ƒ512 ƒ1024 ƒ2048 ƒ4096 ƒ?

MOER 21 2 6 7 2 4 2 5 1

REV 8 1 2 2 4 2 6 4 21

REV-1 step 6 1 4 4 18 13 4

Equal Input 18 24 8

Dayhoff 1 2 13 24 9 1

JTT 2 6 13 23 6

WAG 15 2 3 3 3 7 4 2 5 6

rtREV 1 3 18 18 9 1

mtMAM 17 25 8

mtREV 24 24 19 7

HIVwithin 1 17 24 8

HIVbetween 8 31 11

Each table entry is the number of datasets with DAICc in that range. For any dataset, the best model has DAICc~0. A model with DAICcw10 has essentially no
support.
doi:10.1371/journal.pone.0028898.t003

Table 4. DAICc for all models with gamma rate variation (4 categories).

0 ƒ2 ƒ4 ƒ8 ƒ16 ƒ32 ƒ64 ƒ128 ƒ256 ƒ512 ƒ1024 ƒ2048 ƒ4096 ƒ?

NNMF 10

MOER 1 3 4 2

REV 1 1 8

REV-1 step 9 1

Equal Input 7 2 1

Dayhoff 1 2 7

JTT 2 4 4

WAG 1 5 4

rtREV 2 6 2

mtMAM 8 2

mtREV 24 8 2

HIVwithin 6 3 1

HIVbetween 3 6 1

Each table entry is the number of datasets with DAICc in that range. For any dataset, the best model has DAICc~0. A model with DAICcw10 has essentially no
support.
doi:10.1371/journal.pone.0028898.t004
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Future avenues for research
Estimating a model of evolution that is specific to a single

alignment clearly improves on the generalist approach. It is still,

however, an incredibly coarse approximation to reality. The

constraints and selective pressures on each site are most likely

unique, but estimating a model for each site would be intractable,

both computationally and statistically. Goldman et al. [30] took early

steps in this direction, allowing the model of evolution to vary from

site to site by using a Hidden Markov Model to capture the

correlational structure across sites. Lartillot and Philippe [31]

introduce a model that allows each site to belong to one of a number

of classes, which differ in their equilibrium frequencies. A Dirichlet

process prior is adopted to accommodate uncertainty about the

number of classes, as well as the assignment of sites to classes. Le and

Gascuel [32] also allow the substitution matrices to vary across sites.

In their approach, they assume a small number (2 or 3) of distinct

substitution processes, and their model treats each site as a random

draw from one of these processes. This works well when clues about

which process belongs to which site are available, but when the whole

procedure is unsupervised the optimization appears to be difficult and

sensitive to initial conditions [32,33]. Developing unsupervised

approaches for estimating such models with larger numbers of

distinct processes is an intriguing avenue for future research.
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