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ABSTRACT 

This paper combines linear sparse coding and non- 
negative matrix factorization into sparse non-negative 
matrix factorization. In contrast to non-negative matrix 
factorization, the new model can leam much sparser 
representation via imposing sparseness constraints 
explicitly; in contrast to a close model - non-negative 
sparse coding, the new model can learn parts-based 
representation via fully multiplicative updates because of 
adapting a generalized Kullback-Leibler divergence 
instead of the conventional mean square error for 
approximation error. Experiments on MIT-CBCL training 
faces data demonstrate the effectiveness of the proposed 
method. 

1. INTRODUCTION 

One primary goal of visual neuroscience is to understand 
processing of early visual system. Many experiments have 
concemed the mammalian primary visual cortex known as 
VI. Neurons in VI are divided into two families: simple 
and complex cells. Linear sparse coding is an influential 
model to receptive fields of simple cells in V1 [9,4]. 
Parts-based representation by non-negative matrix 
factorization (NMF) [ l ]  is proposed for visual sensory 
coding. In this model, non-negative training data are 
arranged as a matrix, and the same non-negative 
constraints are composed to its matrix factors. It has been 
widely applied to pattem recognition [3] such as image 
representation, document analysis [I]  although it is 
claimed that non-negativity is not reasonable [7]. 
Furthermore, L. K. Saul and D. D. Lee’s work shows that 
sparseness of training data controls the speed of learning 
[IO]. There the sparseness of the training data is measured 
by the lis, where the value of s is the maximum sum of 
features. In fact, although the non-negativity yields 
sparseness to some extent, much sparser representation 
can he leaned. 
Recently, P. 0. Hoyer combined non-negative matrix 
factorization and sparse coding into non-negative sparse 
coding (NNSC) [4]. We found that this NNSC model can 
only work well in simplex case, such as the binary bar 
images shown in the experiments of [4]. Adapting the 

projected gradient descent, it has the disadvantage of 
being sensitive to the choice of iterative step size which 
can only be set experientially. In addition, it is not 
guaranteed to make every element of factor matrices non- 
negative. Then it resorts to one ‘forcible’ step to set 
negative elements to zeros for non-negative constraints. 
This is not fully multiplicative update rule as that in NMF. 
In this paper we simply combine sparse coding and non- 
negative matrix factorization into sparse non-negative 
matrix factorization (SNMF) which can leam both parts- 
based representation and much sparser representation. 
The rest of this paper is organized as follows. In section 2 
we recall some basic theory of sparse coding, NMF and 
NNSC and discuss their relationships. In section 3 we 
introduce the proposed method - SNMF. We made some 
experiments on MIT-CBCL training faces data using NMF, 
NNSC, and SNMF for contrast in Section 4 and in Section 
5 we give our conclusion. 

2. SPARSE CODING, NMF AND NNSC 

2.1. SPARSE CODING 

The idea of linear sparse coding model is as follows: The 
observed data is a linear superposition of some basis 
vectors (called basis images in the case of image data), and 
the coefficients based on these basis vectors (images) 
stand for new feature vectors for further analysis. The 
sparse coding strategy assumes that these hidden variables 
exhibit sparseness. Then it maximizes sparseness via 
seeking a specific form of low-entropy code in which the 
probability densities are highly peaked around zero and 
have heavily long tails [9,4]. 
As noted in [9], let I(x, y) denote an image, which is 
assumed as the following linear superposition of a set of 
hasis functions lXx. v) 

where a, is the coefficients. As stated above, the linear 
sparse coding can be modeled as an optimization problem 
by minimizing the following cost function [9]: 

F = - [preserve information] - A  [sparseness of a,] (2) 
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where the positive value of A controls the preserve 
information, usually measured by the approximation error 
between the actual data and the reconstructed data, and the 
sparseness. 

2.2. NMF 

NMF is a linear multivariate analysis method in the 
following manner [2]. Let X denote an n X m matrix, each 
column of which contains an n-dimension observed data 
vector with non-negative values. In order to compress data 
or reduce dimensionality, we can find two non-negative 
matrix factors B and H such that 

where B is an n X r  matrix and H an r X m  matrix. The 
value of r is smaller than both n and m. We call the r 
columns of B basis images (vectors) and the columns of H 
encoding coefficients. We can consider the observed data 
matrix X as original features, and the encoding matrix H 
new features based on the basis matrix B. 
In order to complete approximate factorization (3), we 
need to define some cost functions that quantify the quality 
of the approximation. Two algorithms for NMF are 
proposed in [2] using the simple and efficient 
multiplicative update rules. In [ 1,5], NMF is camed out to 
solve the following optimization problem: 

X = BH (3) 

nin WIBH, = ~(xJogcx,/Y,>xq+) 
(4) 

ii 

s.t B,H>O,zbjk=l 

where y, = [BH], for simplicity. In fact, this objective 
function is also called as generalized Kullback-Leihler 
divergence [Z]. 
According to work in [lo], the sparseness of the leamed 
feature vectors for further analysis, which controls the 
speed of leaming algorithm, is measured by 
1 / m a x ( x h k j )  where he are learned by NMF as above. 

This is one criteria for the following experiment 
performance. 
It is claimed that the exact form of  the objective function 
is not crucial in [ l ]  hut we can find here, that different 
objective function or cost function will provide different 
factorizations. 

2.3. NNSC 

Inspired by linear sparse coding [9],  P. 0. Hoyer suggests 
that it is important to impose both the non-negativity and 
the sparseness for leaning parts-based representations [4]. 
He used the mean square function of error as the loss 

J k  

D(X /I BH) = /IX-BHIr/2. (5) 

Then his NNSC model of a non-negative data matrix can 
he defined as the following optimization problem [4] 

min C(B,H) = I(X-BHJV12 +Axh,  

s.t B,H 2 O,Ilb.kII =l,Vk . 
( 6 )  k , i  

There are two parameters in its leaming algorithm, i.e. the 
positive constant A and iterative step size for the 
projected gradient descent; see [4] for more details. In fact, 
the update rule of NNSC is not fully multiplicative and 
this leads to some disadvantages discussed above. 

3. SPARSENMF 

Although NMF yields sparseness for its non-negativity to 
some extent, We believe that much sparser representation 
can he leamed by imposing sparseness constraints on 
matrix factors. So simply from the viewpoint of linear 
sparse coding, we combine sparse coding and NMF to 
Spare NMF (SNMF). Here we select the generalized 
Kullhack-Leihler divergence between X and BH to 
measure the approximation error. 
Then we get our SNMF as formulated the following 
optimization problem 

k i  

s.t &H20,xbik=1 . 
where y, = [BH], for convenience as above, and a is 
similar to A in (6). Now we can interpret our SNMF both 
from sparse coding and NMF. For the former, we select 
different approximation emor in contrast to that of NNSC. 
For the latter, we impose constraint on encoding 
coefficients for sparseness explicitly via minimizing the 
sum of all hk Then SNMF also is a variant of NMF. 
The multiplicative update rules for constrained 
optimization (7) are as follows: 
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In contrast to NNSC this algorithm has fully multiplicative 
update rules with one parameter. Set (Y =0, then SNMF 
reduces to NMF. For our proof, now we must briefly 
mention another variant of NMF by S. Z. Li and co- 
authors. Their method, called local NMF (LNMF), 
imposes additional constraints both on basis vectors and 
coefficient besides non-negativity [SI. Here we focus on 
sparse coding, and the relationships among NMF, NNSC, 
SNMF and LNMF are discussed in other paper. The proof 
of SNMF algorithm given in Appendix is following that in 
U, 51. 

4. EXPERIMENTS 

We investigated how SNMF can learn both sparse and 
parts representation in contrast to NMF and NNSC. We 
adapt the training set for faces of MIT-CBCL face 
database which was used in [I]. This training set contains 
2429 faces. Each face has 19X 19 pixels and has been 
histogram-equalized and normalized so that all pixel 
values are between 0 and 1 [6]. 
We compared NMF, NNSC, and our SNMF for learning 
the parts-based and representation with r = 5 X 5 ,  
7 X  7, ..., 13X 13. S e t 2  = 100 and step size equal to 1 for 
NNSC, and a = 100 for SNMF. In fact, it is difficult to 
set step size for NNSC in the experiment. This is one 
shortcoming of NNSC because of projected gradient 
descent. For comparison, we set maximum of iteration 
steps equal to 200. 
Firstly we investigate how SNMF can leam much sparser 
features than NMF according to the maximum sum of the 
feature vectors of training data. Table 1 shows the 
sparseness of the leamed feature vectors by NMF, SNMF 
and NNSC, respectively. We can find that SNMF can 
improve the sparseness of feature vectors from 0.0054 of 
NMF to 0.5548, where the ratio of the latter to the former 
is close to (Y . Here we find that NNSC can leam the 
sparsest features, which can arrive to 1.1536e20S. 
In contrast to NMF, SNMF can leam much sparser 
features because additional sparseness constraint is 
imposed on encoding coefficient matrix explicitly. 

Table 1 Sparseness of learned feature vectors 

NMF 1.0054 /.0054 1.0054 1.0054 1.0054 
NNSC(le205)/.0054 1.0192 1.061 7 I. I391 11. IS36 

However we found that the learned basis images via 
NNSC doesn’t has the property of ‘parts-based’ occurred 
both in the cases of NMF and SNMF as shown in Figure 2. 
As mentioned above, there is one ‘forcible’ step in the 
learning algorithm, i.e. setting negative elements to zero. 

This update rule is not fully multiplicative as that of NMF 
and SNMF. This implies that NNSC can’t learn ‘parts- 
based’ representation in complex cases, such as faces, 
although it works well in simple case as reported in [4]. 

Figure 2 Basis images leamed by NMF (left), 
SNMF (middle) and NNSC (right). 

Now we can conclude that the proposed SNMF can leam 
both sparse and parts-based presentation in contrast to 
NMF and NNSC as in Table 2. 

Table 2 Comparison of learned hasis images and sparse 
features by NMF, NNSC and SNMF. 

Parts-based 
eneral 

SNMF more 

5. CONCLUSION 

We combine sparse coding and non-negative matrix 
factorization into sparse non-negative matrix. It is a new 
variant of linear spare coding model based on non- 
negative matrix. We compared three methods of non- 
negative matrix factorization on MIT-CBCL training faces 
data. The proposed SNMF method, simply from the 
viewpoint of sparse coding like NNSC, can leam not only 
much sparser representation than NMF, but also parts- 
based representation as NMF, in contrast to NNSC which 
can’t leam parts-based representation in complex cases. 
SNMF overcomes the shortcomings of NNSC. It implies 
that different objective functions lead to different results. 
One future work is to use leamed features via SNMF for 
further analysis such as classification and clustering and to 
investigate how the sparseness affects the accuracy. 
Another further work is to investigate other objective 
functions for matrix factorization and constraints on 
matrix factors. 

APPENDIX 

Because the objective function of SNMF is similar to that 
of NMF and LNMF, the proof will follow closely the 
proof given in [2,.5], which makes use of an auxiliary 
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function technique as the EM algorithm [XI. We can take 
turns updating H and B and get our leaming algorithm. 
Updating H: H is updated by minimizing L(H) = F(B, H)  
with B fixed. Following [2, SI, We define the auxiliary 
hnction for L(H) here as 
@K H’) = 5, l w ,  

‘J  

Firstly it is obviously to prove G(H,H) = L(H). Then we 
can prove G(H,H’) 2 L(H). Because -log is a convex 
function, for any k non-negative numbers summing up to 
one ( C u ,  = 11, we get the foliowing 

k 

Let 

btkh U,. = 
‘Ik x l b i , h ‘ b  

then 

so G(H,H’) b L(H) holds. 
In order to minimize L(H), w e  can update H by following 
iterative rule 

H‘“ = argminG(H,H‘) (15) 
H 

= 0. Because 
aG(H, H’) 

and such H can be found by 

we eet 

. . -. 

For update rule, all variables h’, are the results of 
previous step. Then we get the rule (8). 
Updating B: B is updated through minimizing L(B) = F(B, 
H) with H fixed. We here define the auxiliary function for 
L(B) as 

-& + C Y ,  + a s ,  
Id 2.1 h i  

As above G(B,B) = L(B) and G(B,B’) 2 L(B) hold. Let 

and set all variables b;, as the results of previous step, we 
can easily get the rule (9). 
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