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Abstract

Recently Non-negative Matrix Factorization (NMF) has
received a lot of attentions in information retrieval, com-
puter vision and pattern recognition. NMF aims to find
two non-negative matrices whose product can well approx-
imate the original matrix. The sizes of these two matrices
are usually smaller than the original matrix. This results in
a compressed version of the original data matrix. The so-
lution of NMF yields a natural parts-based representation
for the data. When NMF is applied for data representa-
tion, a major disadvantage is that it fails to consider the
geometric structure in the data. In this paper, we develop a
graph based approach for parts-based data representation
in order to overcome this limitation. We construct an affin-
ity graph to encode the geometrical information and seek a
matrix factorization which respects the graph structure. We
demonstrate the success of this novel algorithm by applying
it on real world problems.

1. Introduction

The techniques of matrix factorization have become pop-
ular in recent years for data representation. In many prob-
lems in information retrieval, computer vision and pattern
recognition, the input data matrix is of very high dimen-
sion. This makes learning from example infeasible. One
hopes then to find two or more lower dimensional matrices
whose product provides a good approximation to the origi-
nal matrix. The canonical matrix factorization techniques
include LU-decomposition, QR-decomposition, Cholesky
decomposition, and Singular Value Decomposition (SVD).
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SVD is one of the most frequently used matrix factor-
ization tool. A singular value decomposition of an m × n
matrix X is any factorization of the form

X = USVT

where U is an m × m orthogonal matrix, V is an n × n
orthogonal matrix, and S is an m× n diagonal matrix with
Sij = 0 if i �= j and Sii ≥ 0. The quantities Sii are called
the singular values of X, and the columns of U and V are
called left and right singular vectors, respectively. By re-
moving those singular vectors corresponding to sufficiently
small singular value, we get a natural low-rank approxima-
tion to the original matrix. This approximation is optimal in
the sense of reconstruction error and thus optimal for data
representation when Euclidean structure is concerned. For
this reason, SVD has been applied to various real world ap-
plications, such as face recognition (Eigenface, [26]) and
document representation (Latent Semantic Indexing, [8]).

Previous studies have shown there is psychological and
physiological evidence for parts-based representation in hu-
man brain [23], [27], [20]. The Non-negative Matrix Fac-
torization (NMF) algorithm is proposed to learn the parts
of objects like human faces and text documents [22], [14].
NMF aims to find two non-negative matrices whose product
provides a good approximation to the original matrix. The
non-negative constraints lead to a parts-based representa-
tion because they allow only additive, not subtractive, com-
binations. NMF has been shown to be superior to SVD in
face recognition [16] and document clustering [29]. NMF is
optimal for learning the parts of objects. However, it fails to
consider the geometrical structure of the data space which
is essential for data clustering and classification problems.

In this paper, we propose a novel algorithm, called Graph
regularized Non-negative Matrix Factorization (GNMF), to
overcome the limitation of NMF. We encode the geometri-
cal information of the data space by constructing a nearest
neighbor graph. One hopes then to find a new representation
space in which two data points are sufficiently close to each



other if they are connected in the graph. To achieve this,
we design a new matrix factorization objective function and
incorporates the graph structure into it. We also develop an
optimization scheme to solve the objective function based
on iterative updates of the two factor matrices. This leads
to a new parts-based data representation which respects the
geometrical structure of the data space. The convergence
proof of our optimization scheme is provided.

The rest of the paper is organized as follows: in Section
2, we give a brief review of NMF. Section 3 introduces our
algorithm and give a convergence proof of our optimization
scheme. Extensive experimental results on clustering are
presented in Section 4. Finally, we provide some conclud-
ing remarks and suggestions for future work in Section 5.

2. A Brief Review of NMF

Non-negative Matrix Factorization (NMF) [14] is a ma-
trix factorization algorithm that focuses on the analysis of
data matrices whose elements are nonnegative.

Given a data matrix X = [x1, · · · , xn] ∈ R
m×n, each

column of X is a sample vector. NMF aims to find two non-
negative matrices U = [uij ] ∈ R

m×k and V = [vij ] ∈
R

n×k which minimize the following objective function:

O = ‖X− UVT ‖2F (1)

where ‖ · ‖F denotes the matrix Frobenius norm1.
Although the objective function O in Eqn. (1) is convex

in U only or V only, it is not convex in both variables to-
gether. Therefore it is unrealistic to expect an algorithm to
find the global minimum of O. Lee & Seung [15] presented
an iterative update algorithm as follows:

ut+1
ij = ut

ij

(
XV

)
ij(

UVT V
)
ij

(2)

vt+1
ij = vt

ij

(
XT U

)
ij(

VUT U
)
ij

(3)

It is proved that the above update steps will find a local
mimimum of the objective function O [15].

In reality, we have k � m and k � n. Thus, NMF
essentially try to find a compressed approximation of the
original data matrix, X ≈ UVT . We can view this approxi-
mation column by column as

xi ≈
k∑

j=1

ujvij (4)

where uj is the j-th column vector of U. Thus, each data
vector xi is approximated by a linear combination of the

1One can use other cost functions to measure how good UVT approx-
imates X[15]. In this paper, we will only focus on the Frobenius norm
because of the space limitation.

columns of U, weighted by the components of V. Therefore
U can be regarded as containing a basis that is optimized for
the linear approximation of the data in X. Since relatively
few basis vectors are used to represent many data vectors,
good approximation can only be achieved if the basis vec-
tors discover structure that is latent in the data [15].

The non-negative constraints on U and V only allow ad-
dictive combinations among different basis. This is the most
significant difference between NMF and other other ma-
trix factorization methods, e.g., SVD. Unlike SVD, no sub-
tractions can occur in NMF. For this reason, it is believed
that NMF can learn a parts-based representation [14]. The
advantages of this parts-based representation has been ob-
served in many real world problems such as face analysis
[16], document clustering [29] and DNA gene expression
analysis [4].

3. Graph Regularized Non-negative Matrix
Factorization

By using the non-negative constraints, NMF can learn
a parts-based representation. However, NMF performs this
learning in the Euclidean space. It fails to to discover the in-
trinsic geometrical and discriminating structure of the data
space, which is essential to the real applications. In this
Section, we introduce our Graph regularized Non-negative
Matrix Factorization (GNMF) algorithm which avoids this
limitation by incorporating a geometrically based regular-
izer.

3.1. The Objective Function

Recall that NMF tries to find a basis that is optimized for
the linear approximation of the data which are drawn ac-
cording to the distribution PX . One might hope that knowl-
edge of the distribution PX can be exploited for better dis-
covery of this basis. A natural assumption here could be that
if two data points xi, xj are close in the intrinsic geometry
of the data distribution, then the representations of this two
points in the new basis are also close to each other. This as-
sumption is usually referred to as manifold assumption [2],
which plays an essential rule in developing various kinds of
algorithms including dimensionality reduction algorithms
[2] and semi-supervised learning algorithms [3, 32, 31].

Let fk(xi) = vik be function that produce the mapping
of the original data point xi onto the axis uk, we use ‖fk‖2M
to measure the smoothness of fk along the geodesics in the
intrinsic geometry of the data. When we consider the case
that the data is a compact submanifoldM⊂ R

m, a natural
choice for ‖fk‖2M is

‖fk‖2M =
∫

x∈M
‖∇Mfk‖2dPX(x) (5)

where ∇M is the gradient of fk along the manifoldM and



the integral is taken over the distribution PX .
In reality, the data manifold is usually unknown. Thus,

‖fk‖2M in Eqn. (5) can not be computed. Recent studies on
spectral graph theory [7] and manifold learning theory [1]
have demonstrated that ‖fk‖2M can be discretely approxi-
mated through a nearest neighbor graph on a scatter of data
points.

Consider a graph with n vertices where each vertex cor-
responds to a data point. Define the edge weight matrix W
as follows:

Wij =
{

1, if xi ∈ Np(xj) or xj ∈ Np(xi)
0, otherwise.

(6)

where Np(xi) denotes the set of p nearest neighbors of xi.
Define L = D−W, where D is a diagonal matrix whose en-
tries are column (or row, since W is symmetric) sums of W,
Dii =

∑
j Wij . L is called graph Laplacian [7], which is

a discrete approximation to the Laplace-Beltrami operator
�M on the manifold [1]. Thus, the discrete approximation
of ‖fk‖2M can be computed as follows:

Rk =
1
2

N∑
i,j=1

(fk(xi)− fk(xj))
2 Wij

=
N∑

i=1

fk(xi)2Dii −
N∑

i,j=1

fk(xi)fk(xj)Wij

=
N∑

i=1

v2
ikDii −

N∑
i,j=1

vikvjkWij

= vT
k Dvk − vT

k Wvk

= vT
k Lvk

(7)

Rk can be used to measure the smoothness of mapping
function fk along the geodesics in the intrinsic geometry
of the data set. By minimizingRk, we get a mapping func-
tion fk which is sufficiently smooth on the data manifold.
A intuitive explanation of minimizingRk is that if two data
points xi and xj are close (i.e.Wij is big), fk(xi) and fk(xj)
are similar to each other.

Our GNMF incorporates the Rk term and minimize the
objective function

O = ‖X− UVT ‖2F + λ

k∑
i=1

Rk

= ‖X− UVT ‖2F + λTr(VT LV)

(8)

with the constraint that uij and vij are non-negative. Tr(·)
denotes the trace of a matrix. The λ ≥ 0 is the regulariza-
tion parameter.

3.2. An Algorithm

The objective function O of GNMF in Eqn. (8) is not
convex in both U and V together. Therefore it is unrealistic

to expect an algorithm to find the global minimum of O.
In the following, we introduce an iterative algorithm which
can achieve a local minimum.

The objective function O can be rewritten as:

O = Tr
(
(X− UVT )(X− UVT )T

)
+ λTr(VT LV)

= Tr
(
XXT

)− 2Tr
(
XVUT

)
+ Tr

(
UVT VUT

)
+ λTr(VT LV)

(9)

where the second step of derivation uses the matrix property
Tr(AB) = Tr(BA) and Tr(A) = Tr(AT ). Let ψij and φij

be the Lagrange multiplier for constraint uij ≥ 0 and vij ≥
0 respectively, and Ψ = [ψij ], Φ = [φij ], the Lagrange L is

L = Tr
(
XXT

)− 2Tr
(
XVUT

)
+ Tr

(
UVT VUT

)
+ λTr(VT LV) + Tr(ΨUT ) + Tr(ΦVT )

(10)

The partial derivatives of L with respect to U and V are:

∂L
∂U

= −2XV + 2UVT V + Ψ (11)

∂L
∂V

= −2XT U + 2VUT U + 2λLV + Φ (12)

Using the KKT conditions ψijuij = 0 and φijvij = 0, we
get the following equations for uij and vij :

−(
XV

)
ij
uij +

(
UVT V

)
ij
uij = 0 (13)

−(
XT U

)
ij
vij +

(
VUT U

)
ij
vij + λ

(
LV

)
ij
vij = 0 (14)

These equations lead to the following update rules:

uij ← uij

(
XV

)
ij(

UVT V
)
ij

(15)

vij ← vij

(
XT U + λWV

)
ij(

VUT U + λDV
)
ij

(16)

Regarding these two update rules, we have the following
theorem:

Theorem 1 The objective function O in Eqn. (8) is nonin-
creasing under the update rules in Eqn. (15) and (16). The
objective function is invariant under these updates if and
only if U and V are at a stationary point.

Theorem 1 grantees that the update rules of U and V in Eqn.
(15) and (16) converge and the final solution will be a local
optimum. Please see the Appendix for a detailed proof.



4. Related Works

Several authors have noted the shortcomings of standard
NMF, and suggested extensions and modifications of the
original model.

One of the shortcomings of NMF is that it can only be
applied to data containing non-negative values. Ding et al.
[10] proposed a semi-NMF approach which relaxes the non-
negative constraint on U. Thus, semi-NMF can be used to
model data containing negative values. Xu & Gong [28]
proposed a Concept Factorization approach in which the in-
put data matrix is factorized into three matrix X ≈ XWVT .
Both W and V are non-negative. Such modification makes
it possible to kernelize concept factorization. This concept
factorization approach is also referred as convex-NMF [10].

Another shortcoming of NMF is that it does not always
result in parts-based representations. Several researchers
addressed this problem by incorporating the sparseness con-
straints on U and/or V [11], [19], [12]. These approaches
extended the NMF framework to include an adjustable
sparseness parameter. With a suitable sparseness parame-
ter, these approaches are guaranteed to result in parts-based
representations.

Besides the most well known multiplicative update algo-
rithm [15], there are many other optimization methods that
can solve the NMF problem in Eqn. (1). One of the most
promising approaches is projected gradient method. Lin
[18] shows that projected gradient method converges faster
than the popular multiplicative update algorithm. Moreover,
it is easy to use projected gradient method to solve the NMF
problem with sparse constraints [12].

The above extensions and modifications focus on the dif-
ferent aspects of the original NMF. However, they all fail to
consider the geometrical structure in the data. Our approach
discussed in this paper presents a new direction for extend-
ing NMF. For more discussions on the relationship between
various NMF extensions, please refer [17], [12], [6].

5. Experimental Results

Previous studies show that NMF is very powerful on
clustering [29, 24]. It can achieve similar or better per-
formance than most of the state-of-the-art clustering algo-
rithms, including the popular spectral clustering methods
[29]. In this section, we also evaluate our GNMF algorithm
on clustering problems.

Two data sets are used in the experiment. The first one is
COIL20 image library2, which contains 32×32 gray scale
images of 20 objects viewed from varying angles. The sec-
ond one is the CMU PIE face database3, which contains
32×32 gray scale face images of 68 persons. Each person
has 21 facial images under different light conditions.

2http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3http://www.ri.cmu.edu/projects/project 418.html

There are two parameters in our GNMF approach: the
number of nearest neighbors p and the regularization pa-
rameter λ. Throughout our experiments, we empirically set
the number of nearest neighbors p to 5, the value of the reg-
ularization parameter λ to 100.

5.1. Evaluation Metric

The clustering result is evaluated by comparing the ob-
tained label of each sample with that provided by the data
set. Two metrics, the accuracy (AC) and the normalized
mutual information metric (MI) are used to measure the
clustering performance [29][5]. Given a data point xi, let ri
and si be the obtained cluster label and the label provided
by the corpus, respectively. The AC is defined as follows:

AC =
∑n

i=1 δ(si,map(ri))
n

where n is the total number of samples and δ(x, y) is the
delta function that equals one if x = y and equals zero oth-
erwise, and map(ri) is the permutation mapping function
that maps each cluster label ri to the equivalent label from
the data corpus. The best mapping can be found by using
the Kuhn-Munkres algorithm [21].

LetC denote the set of clusters obtained from the ground
truth and C ′ obtained from our algorithm. Their mutual
information metric MI(C,C ′) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′j∈C′
p(ci, c′j) · log2

p(ci, c′j)
p(ci) · p(c′j)

where p(ci) and p(c′j) are the probabilities that a sample
arbitrarily selected from the data set belongs to the clusters
ci and c′j , respectively, and p(ci, c′j) is the joint probability
that the arbitrarily selected sample belongs to the clusters ci
as well as c′j at the same time. In our experiments, we use
the normalized mutual information MI as follows:

MI(C,C ′) =
MI(C,C ′)

max(H(C),H(C ′))

where H(C) and H(C ′) are the entropies of C and C ′, re-
spectively. It is easy to check that MI(C,C ′) ranges from
0 to 1. MI = 1 if the two sets of clusters are identical, and
MI = 0 if the two sets are independent.

5.2. Performance Evaluations and Comparisons

To demonstrate how the clustering performance can be
improved by our method, we compared GNMF with other
four popular clustering algorithms as follows:

• Canonical K-means clustering method (K-means in
short).



Table 1. Clustering performance on PIE

k
Accuracy (%) Normalized Mutual Information (%)

K-means PCA+K-means NCut NMF GNMF K-means PCA+K-means NCut NMF GNMF
4 48.8 54.6 99.0 69.9 98.4 42.1 47.5 98.6 63.6 98.4
6 43.2 50.9 94.7 76.1 97.2 48.3 54.7 96.4 76.3 98.0
8 41.3 44.4 86.5 78.9 91.0 50.2 53.2 92.3 81.8 95.6

10 40.8 41.4 80.3 78.3 88.4 53.0 53.9 89.6 83.6 94.9
12 40.1 40.9 79.6 78.3 85.9 55.8 55.8 89.5 85.1 94.0
14 38.4 39.2 79.3 76.5 85.0 56.1 56.9 89.6 85.1 93.9
16 37.7 38.6 78.4 77.4 85.1 57.3 58.2 89.4 86.5 94.3
18 38.3 38.8 73.9 77.9 82.2 59.2 59.6 87.6 87.4 93.1
20 37.1 37.5 77.0 77.0 80.7 59.1 59.3 88.4 87.4 92.8

Avg 40.6 42.9 83.2 76.7 88.2 53.5 55.5 91.3 81.9 95.0
k is the number of clusters
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Figure 1. (a) Accuracy (b) Normalized mutual information vs. the number of clusters on PIE database

• K-means clustering in the Principle Component sub-
space (PCA+K-means in short). Principle Component
Analysis (PCA) [13] is one of the most well known
unsupervised dimensionality reduction algorithms. It
is expected that the cluster structure will be more ex-
plicit in the principle component subspace. Interest-
ingly, Zha et al. [30] has shown that K-means clus-
tering in the PCA subspace has close connection with
Average Association [25], which is a popular spectral
clustering algorithm. They showed that if the inner
product is used to measure the similarity and construct
the graph, K-means after PCA is equivalent to average
association.

• Normalized Cut [25], one of the typical spectral clus-
tering algorithms (NCut).

• Nonnegative Matrix Factorization based clustering
(NMF in short). We implemented a normalized cut
weighted version of NMF as suggested in [29].

Table 1 and 2 show the evaluation results on the PIE data
set and the COIL20 data set, respectively. The evaluations
were conducted with the cluster numbers ranging from two
to ten. For each given cluster number k, 20 test runs were
conducted on different randomly chosen clusters. The aver-
age performance is reported in the tables.

These experiments reveal a number of interesting points:

• The ordinary NMF approach outperforms K-means
and PCA + K-means on PIE database while fails to get
good performance on COIL20 database. Our GNMF
approach gets significantly better performance than the
ordinary NMF. This shows that by considering the in-
trinsic geometrical structure of the data, GNMF can
learn a better compact representation in the sense of
semantic structure.

• Both NCut and GNMF consider the geometrical struc-
ture of the data and achieve better performance than
the other three algorithms. This suggests the impor-



Table 2. Clustering performance on COIL20

k
Accuracy (%) Normalized Mutual Information (%)

K-means PCA+K-means NCut NMF GNMF K-means PCA+K-means NCut NMF GNMF
2 90.0 90.3 95.0 88.4 96.7 70.0 71.0 86.9 64.0 90.8
3 84.8 85.1 90.0 79.4 92.8 71.9 72.3 84.2 64.9 88.4
4 81.7 82.0 89.0 78.7 92.7 74.3 74.9 87.4 71.1 90.3
5 75.9 76.7 83.0 72.1 91.1 71.7 72.3 82.0 67.2 89.1
6 76.5 76.9 82.2 72.1 91.0 74.4 75.0 83.3 70.3 91.5
7 72.9 74.0 77.3 68.8 87.4 72.4 72.7 80.1 67.7 89.5
8 71.8 72.4 77.9 70.2 85.2 74.0 74.6 81.9 71.6 89.1
9 69.4 70.5 75.9 68.3 86.1 72.8 73.8 82.6 71.5 89.2

10 69.3 70.7 77.8 70.3 85.0 74.8 75.4 83.5 73.9 89.6
Avg 76.9 77.6 83.1 74.3 89.8 72.9 73.6 83.5 69.1 89.7
k is the number of clusters
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Figure 2. (a) Accuracy (b) Normalized mutual information vs. the number of clusters on COIL20 database

tance of the geometrical structure in learning the hid-
den topic structure.

5.3. Parameters Selection

Our GNMF model has two essential parameters: the
number of nearest neighbors p and the regularization pa-
rameter λ. Figure 3 and Figure 4 show how the performance
of GNMF varies with the parameters λ and p, respectively.
As we can see, the GNMF is very stable with respect to both
the parameter λ and p. It achieves consistent good perfor-
mance with the λ varying from 50 to 1000 and p varying
from 3 to 6.

6. Conclusions and Future Work

We have presented a novel method for matrix factoriza-
tion, called Graph regularized Non-negative Matrix Factor-
ization (GNMF). GNMF models the data space as a sub-
manifold embedded in the ambient space and performs the
non-negative matrix factorization on this manifold in ques-

tion. As a result, GNMF can have more discriminating
power than the ordinary NMF approach which only consid-
ers the Euclidean structure of the data. Experimental results
on visual objects clustering show that GNMF provides bet-
ter representation in the sense of semantic structure.

Several questions remain to be investigated in our future
work:

1. There is a parameter λ which controls the smoothness
of our GNMF model. GNMF boils down to original
NMF when λ = 0. Thus, a suitable value of λ is crit-
ical to our algorithm. It remains unclear how to do
model selection theoretically and efficiently.

2. It would be very interesting to explore different ways
of constructing the graphes to model the semantic
structure in the data. There is no reason to believe that
the nearest neighbor graph is the only or the most nat-
ural choice. For example, for web page data it may be
more natural to use the hyperlink information to con-
struct the graph.
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Figure 3. The performance of GNMF vs. parameter λ. The GNMF is very stable with respect to the parameter λ. It achieves consistent
good performance with the λ varying from 50 to 1000.

References

[1] M. Belkin. Problems of Learning on Manifolds. PhD
thesis, University of Chicago, 2003.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps and
spectral techniques for embedding and clustering. In
Advances in Neural Information Processing Systems
14, pages 585–591. MIT Press, Cambridge, MA,
2001.

[3] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold reg-
ularization: A geometric framework for learning from
examples. Journal of Machine Learning Research,
7:2399–2434, 2006.

[4] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P.
Mesirov. Metagenes and molecular pattern discov-
ery using matrix factorization. Proceedings of the
National Academy of Sciences, 101(12):4164–4169,
2004.

[5] D. Cai, X. He, and J. Han. Document clustering us-
ing locality preserving indexing. IEEE Transactions

on Knowledge and Data Engineering, 17(12):1624–
1637, December 2005.

[6] M. Chu, F. Diele, R. Plemmons, and S. Ragni. Opti-
mality, Computation, and Interpretation of Nonnega-
tive Matrix Factoriaztions, October 2004.

[7] F. R. K. Chung. Spectral Graph Theory, volume 92
of Regional Conference Series in Mathematics. AMS,
1997.

[8] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. harshman. Indexing by latent se-
mantic analysis. Journal of the American Society of
Information Science, 41(6):391–407, 1990.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maxi-
mum likelihood from incomplete data via the em algo-
rithm. Journal of the Royal Statistical Society. Series
B (Methodological), 39(1):1–38, 1977.

[10] C. Ding, T. Li, and M. Jordan. Convex and
semi-nonnegative matrix factorizations for clustering
and low-dimension representation. Technical report,



2 3 4 5 6 7 8 9 10
0

20

40

60

80

p

A
cc

ur
ac

y 
(%

)

GNMF
K−means
PCA+K−means
NCut
NMF

(a) PIE

2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

p

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n 

(%
)

GNMF
K−means
PCA+K−means
NCut
NMF

(b) PIE

2 3 4 5 6 7 8 9 10

60

65

70

75

80

85

90

p

A
cc

ur
ac

y 
(%

)

GNMF
K−means
PCA+K−means
NCut
NMF

(c) COIL20

2 3 4 5 6 7 8 9 10

50

55

60

65

70

75

80

85

90

p

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n 

(%
)

GNMF
K−means
PCA+K−means
NCut
NMF

(d) COIL20
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Appendix (Proofs of Theorem 1):

The objective function O of GNMF in Eqn. (8) is cer-
tainly bounded from below by zero. To prove Theorem 1,
we need to show that O is nonincreasing under the update
steps in Eqn. (15) and (16). Since the second term of O is
only related to V, we have exactly the same update formula
for U in GNMF as the original NMF. Thus, we can use the

convergence proof of NMF to show that O is nonincreas-
ing under the update step in Eqn. (15). Please see [15] for
details.

Now we only need to prove that O is nonincreasing un-
der the update step in Eqn. (16). we will follow the similar
procedure described in [15]. Our proof will make use of an
auxiliary function similar to that used in the Expectation-
Maximization algorithm [9]. We begin with the definition
of the auxiliary function.

Definition G(v, v′) is an auxiliary function for F (v) if the
conditions

G(v, v′) ≥ F (v), G(v, v) = F (v)

are satisfied.

The auxiliary function is very useful because of the fol-
lowing lemma.

Lemma 2 IfG is an auxiliary function of F , then F is non-
increasing under the update

v(t+1) = arg min
v

G(v, v(t)) (17)

Proof

F (v(t+1)) ≤ G(v(t+1), v(t)) ≤ G(v(t), v(t)) = F (v(t))

Now we will show that the update step for V in Eqn. (16)
is exactly the update in Eqn. (17) with a proper auxiliary
function.

We rewrote the objective function O of GNMF in Eqn.
(8) as follows

O = ‖X− UVT ‖2F + λTr(VT LV)

=
m∑

i=1

n∑
j=1

(xij −
k∑

l=1

uilvjl)2 + λ
k∑

l=1

n∑
i=1

n∑
j=1

vjlLjivil

(18)

Considering any element vab in V, we use Fab to denote the
part of O which is only relevant to vab. It is easy to check
that

F ′
ab =

(
∂O
∂V

)
ab

=
(−2XT U + 2VUT U + 2λLV

)
ab

(19)
F ′′

ab = 2
(
UT U

)
bb

+ 2λLaa (20)

Since our update is essentially element-wise, it is sufficient
to show that each Fab is nonincreasing under the update step
of Eqn. (16).



Lemma 3 Function

G(v, v(t)
ab ) =Fab(v

(t)
ab ) + F ′

ab(v
(t)
ab )(v − v(t)

ab )

+

(
VUT U

)
ab

+ λ
(
DV)ab

v
(t)
ab

(v − v(t)
ab )2

(21)

is an auxiliary function for Fab, the part of O which is only
relevant to vab.

Proof Since G(v, v) = Fab(v) is obvious, we need only
show that G(v, v(t)

ab ) ≥ Fab(v). To do this, we compare the
Taylor series expansion of Fab(v)

Fab(v) =Fab(v
(t)
ab ) + F ′

ab(v
(t)
ab )(v − v(t)

ab )

+
[(

UT U
)
bb

+ λLaa

]
(v − v(t)

ab )2
(22)

with Eqn. (21) to find thatG(v, v(t)
ab ) ≥ Fab(v) is equivalent

to (
VUT U

)
ab

+ λ
(
DV)ab

v
(t)
ab

≥ (
UT U

)
bb

+ λLaa. (23)

We have

(
VUT U

)
ab

=
k∑

l=1

v
(t)
al

(
UT U

)
lb
≥ v(t)

ab

(
UT U

)
bb

(24)

and

λ
(
DV

)
ab

= λ
m∑

j=1

Dajv
(t)
jb ≥ λDaav

(t)
ab

≥ λ(
D−W

)
aa
v
(t)
ab = λLaav

(t)
ab

.

(25)

Thus, Eqn. (23) holds and G(v, v(t)
ab ) ≥ Fab(v).

We can now demonstrate the convergence of Theorem 1:

Proof of Theorem 1 Replacing G(v, v(t)
ab ) in Eqn. (17) by

Eqn. (21) results in the update rule:

v
(t+1)
ab = v

(t)
ab − v(t)

ab

F ′
ab(v

(t)
ab )

2
(
VUT U

)
ab

+ 2λ
(
DV

)
ab

= v
(t)
ab

(
XT U + λWV

)
ab(

VUT U + λDV
)
ab

(26)

Since Eqn. (21) is an auxiliary function, Fab is nonincreas-
ing under this update rule.


