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Non-Negative Multilinear Principal Component
Analysis of Auditory Temporal Modulations

for Music Genre Classification
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Abstract—Motivated by psychophysiological investigations
on the human auditory system, a bio-inspired two-dimensional
auditory representation of music signals is exploited, that captures
the slow temporal modulations. Although each recording is rep-
resented by a second-order tensor (i.e., a matrix), a third-order
tensor is needed to represent a music corpus. Non-negative multi-
linear principal component analysis (NMPCA) is proposed for the
unsupervised dimensionality reduction of the third-order tensors.
The NMPCA maximizes the total tensor scatter while preserving
the non-negativity of auditory representations. An algorithm for
NMPCA is derived by exploiting the structure of the Grassmann
manifold. The NMPCA is compared against three multilinear
subspace analysis techniques, namely the non-negative tensor
factorization, the high-order singular value decomposition, and
the multilinear principal component analysis as well as their
linear counterparts, i.e., the non-negative matrix factorization,
the singular value decomposition, and the principal components
analysis in extracting features that are subsequently classified
by either support vector machine or nearest neighbor classifiers.
Three different sets of experiments conducted on the GTZAN and
the ISMIR2004 Genre datasets demonstrate the superiority of
NMPCA against the aforementioned subspace analysis techniques
in extracting more discriminating features, especially when the
training set has small cardinality. The best classification accuracies
reported in the paper exceed those obtained by the state-of-the-art
music genre classification algorithms applied to both datasets.

Index Terms—Auditory representations, music genre classi-
fication, nonnegative matrix factorization (NMF), non-negative
multilinear principal components analysis (NMPCA), non-nega-
tive tensor factorization (NTF).

I. INTRODUCTION

T
HE efficient organization of large music databases is of

paramount importance for the electronic music distribu-

tion. Music genre is probably the most popular description of
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music content [1] to be exploited for the organization of music

repositories despite it is not well-defined, since it may depend

on cultural, artistic, or market factors, and the boundaries be-

tween genres are fuzzy [2].

Hopefully, there is evidence that the audio signal contains

information about genre [2], [3]. Most of the music genre

classification algorithms resort to the so-called bag-of-features

(BOF) approach [2], which models the audio signals by the

long-term statistical distribution of their short-time spectral

features. These features can be roughly classified into three

classes (i.e., timbral texture features, rhythmic features, and

pitch content features) or their combinations [3]. Pattern recog-

nition algorithms are employed next to classify the feature

vectors extracted from short-time segments into genres. Fre-

quently used classifiers include the nearest-neighbor (NN),

the support vector machines (SVMs), or classifiers, which

resort to Gaussian mixture models, linear discriminant analysis

(LDA), non-negative matrix factorization (NMF), non-negative

tensor factorization (NTF). Several common audio datasets

have been used in experiments in order to make the reported

classification accuracies comparable. Notable results on music

genre classification are summarized in Table I.

Aucouturier et al. [13] have observed that recent systems,

which assess audio similarity using the BOF approach, have

failed to offer significant performance gains over early systems.

Not to mention that their accuracy makes their practical use un-

realistic.

Having the aforementioned remarks in mind, and motivated

by the fact that most of the perceptual properties of both speech

and music are encoded by slow temporal modulations [14]–[18],

instead of the BOF approach, we propose here, a bio-inspired

auditory representation, that maps a given sound to a 2-D repre-

sentation of its slow temporal modulations. This is the first paper

contribution. Such a representation extends the joint acoustic

and modulation frequency analysis [14] by exploiting the prop-

erties of the human auditory system [16], [19]. By just feeding

the auditory temporal modulations to an SVM with a radial

basis function (RBF) kernel, music genre classification accu-

racy equal to 77.09% and 78.64% has been obtained on GTZAN

dataset and ISMIR2004Genre one, respectively. The aforemen-

tioned classification accuracies provide a first hint that the audi-

tory temporal modulations carry more discriminating informa-

tion about music genre than many of BOF approaches included

in Table I.

The proposed 2-D auditory representation can be treated as

a second-order tensor (i.e., a matrix). Although each recording

is represented by a matrix, a third-order tensor is needed to

1558-7916/$26.00 © 2010 IEEE



PANAGAKIS et al.: NMPCA OF AUDITORY TEMPORAL MODULATIONS FOR MUSIC GENRE CLASSIFICATION 577

TABLE I
NOTABLE CLASSIFICATION ACCURACIES ACHIEVED BY MUSIC GENRE CLASSIFICATION APPROACHES

represent a music corpus. Accordingly, music genres are ex-

pected to be defined on subspaces of the three-order (and in

general high-order) tensor. In multilinear algebra, tensors are

defined as the multidimensional equivalent of matrices or vec-

tors [20]. In addition, auditory representations are constrained

to be non-negative. They are highly redundant as well [21].

Therefore, it is reasonable to assume that the associated ten-

sors are confined into a subspace of an intrinsically low dimen-

sion. Let be a set of tensor samples

. Subspace analysis methods can reveal

such a low dimensional subspace by defining a transformation

that maps the original tensor space onto a tensor

subspace with , . In-

deed, linear subspace analysis methods (i.e., when ) such

as PCA, LDA, and NMF [22] have successfully been used for

dimensionality reduction of vectorized data. By vectorizing a

typical 2-D auditory representation, the dimensionality of the re-

sulting feature space is usually much larger than the size of typ-

ical music corpora used for genre classification. This is known

as curse of dimensionality or small sample size problem (SSS)

[23]. Many classifiers, cannot cope with the high-dimension-

ality of a small number of feature vectors. One solution is to re-

duce the dimensionality of the feature space by using the afore-

mentioned linear dimensionality reduction techniques. Unfortu-

nately, these methods break the natural structure and any con-

straints on the data (e.g., positivity), while they assume either

a Gaussian distribution of feature vectors or diagonal covari-

ance matrices in order to reduce the number of unknown model

parameters [23]–[25]. In addition, handling such high-dimen-

sional feature vectors is computationally expensive. On the con-

trary, dimensionality reduction applied directly to tensors rather

to vectors retains many of the data properties.

In this paper, we propose non-negative multilinear principal

components analysis (NMPCA) in order to cope with the SSS

problem of the non-negative auditory temporal modulation rep-

resentations. NMPCA objective is to maximize the total vari-

ation of the given non-negative tensors while preserving their

non-negativity. It is an unsupervised multilinear dimensionality

reduction technique whose development is motivated by the suc-

cess of NTF [26]–[28] in music genre classification [11] and

the first promising results of the application of multilinear prin-

cipal components analysis (MPCA) [29] in music genre clas-

sification [8]. However, the original MPCA does not preserves

the non-negativity of the auditory temporal modulations, a prop-

erty that is generally desirable in domains, where the underlying

factors have physical or psychological interpretation [22], [28],

[30]. This is the second contribution of the paper.

Furthermore, building on the notions of homogeneous

functions (i.e., functions defined on the subspace spanned

by the columns of a suitable orthonormal matrix) and the

Grassmann manifold (i.e., the set of matrices defined over the

aforementioned subspace), a novel framework for the maxi-

mization of homogenous, continuous, differentiable functions

with non-negative constraints over the Grassmann manifold

is proposed. This is the third contribution of the paper. This

framework is employed in the derivation of an algorithm for

NMPCA. Convergence and complexity analysis of the NMPCA

algorithm is studied as well.

The NMPCA is applied to music genre classification. The

performance of NMPCA in feature extraction against the

state-of-the-art unsupervised multilinear subspace analysis

techniques, namely the MPCA, the HOSVD, and the NTF as

well as their linear counterparts (i.e., the PCA, the SVD, and

NMF) is also investigated. The features extracted by the afore-

mentioned multilinear and linear subspace analysis techniques

are classified by the SVM with either an RBF or a linear kernel

and the NN classifier, which employs distances, such as , ,

and the cosine similarity measure (CSM). In order to compare

the reported genre classification rates with those achieved by

the algorithms listed in Table I, two sets of experiments are

conducted. First, stratified tenfold cross-validation tests are

applied to the GTZAN dataset, which yield a classification ac-

curacy of 84.3%. Second, experiments on the ISMIR2004Genre

dataset are conducted by adhering to the setup employed during

ISMIR2004 evaluation tests, which splits the dataset into two

equal disjoint subsets with the first one used for training and the

second one used for testing. The best classification accuracy is

equal to 83.15% in the ISMIR2004Genre dataset. To the best

of our knowledge, the reported classification accuracy is the

highest for both datasets. Furthermore, in real world conditions

the number of training samples per music genre is often limited.

In order to simulate such conditions, experiments with training

sets having small cardinality were conducted. Experimental

results indicate that the classification accuracy exceeds 70%

even when 100 training samples are employed in the GTZAN

dataset.

The remainder of the paper is as follows. In Section II, the

bio-inspired auditory representation based on a computational

auditory model is described. Basic concepts of multilinear al-

gebra are introduced in Section III, while multilinear subspace

analysis techniques are briefly addressed in Section IV. The pro-

posed NMPCA method is detailed in Section V. Convergence

and computational complexity analysis of NMPCA algorithm

are discussed in this section as well. Experimental results are
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demonstrated in Section VI. Conclusions are drawn and future

research direction are indicated in Section VII.

II. BIO-INSPIRED JOINT ACOUSTIC AND MODULATION

FREQUENCY REPRESENTATION OF MUSIC

The conventional spectrogram emphasizes many spectro-

temporal details that are not directly germane to the music in-

formation encoded in the signal and does not take into account

the perception and cognition of a human listener [31]. A key

step for representing music signals in a psycho-physiologically

consistent manner is to focus on how the audio information

is encoded in the human primary auditory cortex. In this

section, we develop a bio-inspired 2-D representation of audio,

by modeling the path of auditory processing. The proposed

2-D auditory representation is a joint acoustic and modula-

tion frequency representation [14], that discards much of the

spectro-temporal details and focuses on the underlying slow

temporal modulations of the music signal. There is evidence

that important time-varying information is contained in the

slow temporal modulation of audio signals [14]–[18].

The computational model of human auditory system consists

of two basic processing stages. The first stage models the early

auditory system, which converts the acoustic signal into a neural

representation, the so-called auditory spectrogram. This rep-

resentation is a time-frequency distribution along a tonotopic

(logarithmic frequency) axis. At the second stage, the temporal

modulation content of the auditory spectrogram is estimated by

applying a wavelet transform to each row of the auditory spec-

trogram.

The computation of the auditory spectrogram consists of

three operations, which mimic the early stages of human

auditory processing. In this paper, the mathematical model

of Yang et al. [32] is adopted. First, a constant- transform

is applied to the acoustic signal . The constant- trans-

form applies a bank of filters, such that the ratio of each filter

center frequency to its resolution is constant. Here, the con-

stant- transform is implemented via a bank of 96 overlapping

bandpass filters with center frequencies uniformly distributed

along the tonotopic axis over four octaves. Let denote the

logarithmic frequency. The impulse response of each filter is

denoted as . The output of cochlear filter is given

by , where denotes

convolution in the time domain. It is transduced into an auditory

nerve pattern by a hair cell stage, which converts the

cochlear output into inner hair cell intracellular potential. The

just described process is modelled by high-pass filtering, i.e.,

, corresponding to the fluid-cilia coupling,

followed by an instantaneous nonlinear compression ,

which models the gated ionic channels, and finally low-pass fil-

tering by , that models the hair cell membrane leakage.

That is, .

At a second step, a lateral inhibitory network (LIN) de-

tects the discontinuities in the response along the tonotopic

axis of the auditory nerve array. The LIN can be approx-

imated by a first-order derivative with respect to the log-

arithmic frequency followed by a half-wave rectifier, i.e.,

. The final step of this

stage is the integration of over a short window

, where is the unit step func-

tion. The time constant of the order of a few milliseconds

(typically 2–8 ms) accounts for the further loss of phase-locking

observed in the midbrain. Thus, the auditory spectrogram

is obtained by .

Higher central auditory stages, especially the primary audi-

tory cortex, further analyze the auditory spectrogram by esti-

mating the signal content in slow spectro-temporal modulations.

In this paper, we are interested in the slow temporal modula-

tions only. In order to mimic the human perception of temporal

modulation, we apply the concept of modulation scale analysis

[14] in order to derive a compact representation that captures

the underlying temporal modulations of an audio signal. Recent

psychoacoustic evidence suggests that a log frequency axis with

a constant- resolution best mimics the human perception of

modulation frequency [16]. In [14], a continuous wavelet trans-

form is applied to the temporal rows of a standard spectrogram

in order to efficiently approximate this constant- effect. In-

stead of the standard spectrogram, in this paper we use the au-

ditory spectrogram as input to the modulation scale analysis.

The modulation scale analysis consist of two stages. First,

for discrete rate , the wavelet filter is applied along each

temporal row of the auditory spectrogram , i.e.,

(1)

Equation (1) can be interpreted as filtering the temporal en-

velope of each cochlear channel output. The multiresolution

wavelet analysis is implemented via a bank of Gabor filters,

that are selective to different temporal modulation parameters

ranging from slow to fast temporal rates (in Hz). Since, the

analysis yields a rate–time–frequency representation for each

recording, the entire auditory spectrogram is modeled by a 3-D

representation of rate, time, and frequency

In the final step, the power of the 3-D temporal modulation

representation is obtained by integrating across the

wavelet translation axis . Thus, a joint rate–frequency represen-

tation results that has no uniform resolution in the modulation

frequency indexed by the discrete rate

(2)

The resulting 2-D representation (2) is referred to as auditory

temporal modulations representation. The extraction of the au-

ditory temporal modulations representation is depicted in Fig. 1.

In Fig. 2, the auditory temporal modulations representations of

ten music recordings that belong to ten different music genre

classes are shown. Psychophysiological evidence [33] justifies

the choice of Hz to repre-

sent the temporal modulation content of sound. The cochlear

model employed in the first stage, has 96 filters covering four

octaves along the tonotopic axis (i.e., 24 filters per octave). Ac-

cordingly, the auditory temporal modulation representation of

an audio recording is naturally represented by a second-order

tensor (matrix) , where and

. Thus, an ensemble of audio recordings can

be represented by a third-order tensor created by stacking the

second-order tensors associated to the recordings. Then, the data
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Fig. 1. Flow-chart of auditory temporal modulations representation extraction.

Fig. 2. Auditory temporal modulations representations of ten music recordings from the GTZAN dataset.

tensor is obtained, where denotes

the number of available recordings. Such multiway data can be

handled by employing the mathematical tools of multilinear al-

gebra [20], [34], which is briefly introduced in the next section

to make the paper self-contained.

III. MULTILINEAR ALGEBRA BASICS

Hereafter, vectors are denoted by lowercase boldface letters

(e.g., ) and matrices by uppercase boldface letters (e.g., ).

The th entry of a vector is denoted by , while the

element of a matrix is denoted by . Tensors

are considered as the multidimensional equivalent of matrices

(second-order tensors) and vectors (first-order tensors) [20]

and are denoted by calligraphic letters (e.g., ). An th-order

or an -way real-valued tensor is defined over the tensor

space , where for . The

order of a tensor is the number of indices needed to address its

elements. Consequently, each element of an th-order tensor

is addressed by indices, .

The mode- matricization of a tensor

maps to a matrix with such

that the tensor element is mapped to the matrix

element , where with

. Furthermore, it is possible to vectorize a tensor by

reordering its elements to form a vector. The vectorized form of

a tensor is denoted as .

The norm of tensor , is denoted as ,

and it is defined as the square root of the sum of the squares

of all its elements [34]. It can be shown that ,

where denotes the Frobenious norm.

The tensor product of a tensor with

a tensor , , is defined by

.

Given two tensors and

the contraction on the tensor
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product with respect to indices is expressed

as

(3)

When the contraction on the tensor product of -order tensors

and is with respect to all indices but the th index, we can

express this procedure as in [25]

(4)

From (4) it is seen that .

The mode- product of a tensor

with a matrix , denoted by

, is defined as

(5)

In order to simplify the notation, we denote

. Furthermore,

.

An th-order tensor has rank-1, when

it is decomposed as the outer product of vectors ,

, i.e., , where

stands for the vector outer product.

Let us close this section by introducing some matrix prod-

ucts that will be used next. The Khatri-Rao product of matrices

and is denoted by and yields a

matrix of dimensions . The Hadamard product is the

element wise matrix product. Given two matrices and both

of dimension , their Hadamard product, denoted by ,

is also of dimensions . Definitions of the aforementioned

matrix products can be found in [34] for example.

IV. MULTILINEAR SUBSPACE ANALYSIS TECHNIQUES

Three unsupervised multilinear subspace analysis tech-

niques, namely the NTF, the HOSVD, and the MPCA are

briefly discussed. Clearly no class information is used by the

just-mentioned techniques. Their linear counterparts, namely

the NMF, the SVD, and the PCA can be viewed as special

cases for first-order tensors (i.e., vectors). In the following,

let be a set of training tensor samples

which is represented by an -order

tensor , where .

A. NTF

NTF is a generalization of the NMF [22] for high-order ten-

sors. It decomposes a given non-negative training tensor

into a sum of rank-1 tensors

(6)

Various NTF algorithms have been proposed [11], [26]–[28]. In

this paper, we resort to the NTF algorithm, which minimizes

the tensor norm of the difference between the given tensor and

its expansion (6). In order to apply the NTF algorithm for an

th-order tensor, matrices ,

should be created and initialized randomly with

non-negative values. Let denote the iteration index. The fol-

lowing update rule in matrix form is applied to each in an

alternating fashion:

(7)

where and refers

to the matrix before updating. It is worth noting, that operators

such as Khatri–Rao product preserve the inner structure of data.

By applying NTF to , the decomposition (in matricized form)

(8)

is obtained, where is the unfolding of tensor to the

samples mode. It is clear that (8) implies that every column

of , (i.e., a vectorized training

sample), is a linear combination of the basis vectors, which span

the columns of the basis matrix

with coefficients taken from the columns of coefficient matrix

. Let be a test (new) tensor sample, then the feature

vector derived by the projection can be

used in place of for either representation or classification.

Following the strategy employed in [8], Gram–Schmidt or-

thonormalization is performed to basis matrix . Accordingly,

, where is an orthogonal matrix whose columns

define a basis that spans the same vector space with that of

the learned basis and is an upper triangular matrix.

Accordingly, the feature vector is derived by the projection

, because orthogonality increases the discrimi-

native power of the projections [35].

B. HOSVD

HOSVD is a generalization of singular value decomposition

(SVD) applied to high-order tensors [36]. The training tensor

can be decomposed as

(9)

where , is a unitary matrix con-

taining the left singular vectors of the mode- unfolding of

tensor computed by applying SVD to . The tensor

, known as core tensor, is given by
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and has the

properties of all orthogonality and ordering.

HOSVD results in a new ordered orthogonal basis for data

representation in subspaces spanned by each tensor mode. Di-

mensionality reduction in each subspace is obtained by pro-

jecting the data onto the principal axes and keeping only the

components that correspond to the largest singular values. The

vectorized version of the lower dimension tensor obtained by

HOSVD is used here for classification.

C. MPCA

Recently, Lu et al. [29] proposed MPCA as a multilinear

equivalent of PCA. Given a set of training tensor samples

, MPCA defines a multilinear trans-

formation that maps the

original tensor space onto a tensor subspace

with , . That is,

, } are

derived such that most of the variation observed between the

original tensor samples is captured. A measure of the variation

is the total tensor scatter defined as

(10)

where is the mean tensor given by .

The projection matrices , , that

maximize the total tensor scatter , are obtained by solving

the optimization problem

(11)

Since there is no known optimal solution to the optimiza-

tion problem (11), the problem was solved in [29] iteratively

by employing the alternating projection scheme [37]. Let

be a test (new) tensor. The lower dimension

tensor obtained by MPCA

can be used in place of for either representation or classifi-

cation. In this paper, is used for classification.

V. NON-NEGATIVE MULTILINEAR PRINCIPAL

COMPONENTS ANALYSIS

In this section, we propose a novel extension of MPCA, that

incorporates the non-negativity of the projection matrices in

MPCA. The proposed extension is referred to as Non-Negative

Multilinear Principal Components Analysis (NMPCA). Unlike

the MPCA, the NMPCA preserves the non-negativity of the

original tensor samples, a property which is crucial, when the

underlying data factors (i.e., the learned basis) have physical

or psychological interpretation [22], [28], [30]. Furthermore, in

this section, we derive a novel multiplicative type algorithm for

maximizing homogenous functions over the Grassmann mani-

fold subject to the non-negativity constraints by incorporating

the natural gradient [38] of the Grassmann manifold [39], [40]

into the multiplicative updates.

A. Multiplicative Updates on the Grassmann Manifold

Let be any continuous, differentiable, concave func-

tion of for which the homogeneity assumption holds, i.e.,

with being a orthonormal ma-

trix. Furthermore, it is assumed that can be expressed as

the difference of two non-negative terms. To begin with, let us

determine a real-valued column-orthonormal non-negative ma-

trix (i.e., a permutation matrix) that maximizes the function

. That is,

(12)

where stands for . Due to the homogeneity

assumption, maximizing under the orthogonality con-

straint is over-parameterized, and any conventional constrained

optimization algorithm would meet difficulties. It follows

that we should maximize (12) not just over matrices with

orthonormal columns, but over an equivalence class of such

matrices, i.e., for . Such an

equivalence class spans the same subspace with the columns of

an orthonormal matrix and is known as the Grassmann manifold

[39], [40]. If is a point on the Grassmann manifold, denoted

as , we write . With this notation in

mind the optimization problem (12) can be formulated as

(13)

A tangent vector at satisfies . Let

be the tangent space at , which consists of all tangent vectors

at . The projection onto the tangent space is .

The natural gradient of on the Grassmann manifold at

denoted as is given by

(14)

where is the ordinary gradient. It is

seen that is the projection of onto the tangent space

at .

Amari in [38] has proved that when a parameter space has

a certain underlying structure, such as the Grassman manifold,

the ordinary gradient of a function does not represent its steepest

direction, while the natural gradient does. Therefore, the natural

gradient ascent algorithm for the maximization problem (12)

over the Grassman manifold takes the form

(15)

where is a step size controlling the learning rate. However,

the update rule (15) does not maintain the non-negativity con-

straint after each iteration. To preserve non-negativity, we em-

ploy the strategy described in [41] and [42] in order to choose

an appropriate step size that ensures is non-negative

in each iteration. Following [41], it is possible to decompose

the natural gradient into two non-negative parts, i.e.,

, where

if

otherwise
(16)
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if

otherwise.
(17)

The step size can be chosen to be data-dependent, i.e.,

(18)

By inserting (18) into (15), the update rule becomes

(19)

where is a small positive number (i.e., typically ) used in

order to ensure that the denominator in (19) is always nonzero.

The multiplicative update (19) preserves the non-negativity of

, while at convergence. Furthermore, the mul-

tiplicative update maintains the orthogonality constraint, since

the natural gradient on the Grassmann manifold is employed.

The monotonic convergence of is guaranteed by

Theorem 1: If is the sequence of updates generated

by (19), then the function increases monotonically to its

global maximum.

Proof: As in [41].

B. NMPCA Algorithm

In order to preserve the non-negativity property of the orig-

inal tensor samples, NMPCA aims to define a non-negative

multilinear transformation

that maps the original tensor space onto a

non-negative tensor subspace with ,

. That is to derive with

such that most of the vari-

ation observed between the original tensor samples is captured,

assuming that the variation can be measured by the total tensor

scatter (10). Clearly the objective function to be maximized in

NMPCA is the same as in MPCA, i.e.,

(20)

Let be the mean tensor of . (20) can

be reformulated as follows:

(21)

Setting , (20) is simplified as

(22)

where is the mode- unfolding of

the total scatter tensor of . Accordingly,

the projection matrices are obtained by

solving the optimization problem

(23)

The maximization problem (23) is a concave problem

[30] and thus it is not possible to find a global max-

imum. However, since in (22) is a ho-

mogenous function [39], we can define different map-

pings ,

. The notation indicates that only

varies, while the matrices and are kept

fixed. Accordingly, independent optimization subproblems

can be defined as follows:

(24)

The projection matrices can be computed iteratively by a

local optimization procedure in a similar manner to the Alter-

nating Least Squares [29], [37], until a convergency criterion is

met or a maximum number of iteration is reached.

It is obvious that the homogeneity condition holds for

. Thus, each optimization subproblem (24) has

the form of the general optimization problem (12). Conse-

quently, it can be solved using the proposed multiplicative

updates (19). The first-order partial derivative of

with respect to is given by .

Invoking (14), the natural gradient of is calcu-

lated as

(25)

By defining two non-negative matrices and as in

(16) and (17), the mode- unfolding of the total scatter tensor

can be decomposed as . Since is a non

negative matrix, it follows

(26)

Inserting (26) into (19) and setting , the multiplicative

update for each projection matrix is given by

(27)
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Let indicates the th column of . The solution of the

subproblems is iteratively repeated until the following global

convergence criterion is met

(28)

which checks the stationarity of the solution . The

convergence criterion in (28) indicates that the value of

between two successive iterations is quite small. That is, the

procedure halts, when admits a local maximum.

NMPCA Interpretation: Ding et al. have proved that the

optimization subproblem (24) is equivalent to -means clus-

tering [43]. Since the projection matrices in NMPCA

are obtained by solving optimization sub-problems (24),

one for each mode- matrix, NMPCA could be interpreted as

simultaneous mode- -means clustering. Accordingly, is

the mode- cluster indicator matrix.

Convergence Analysis: The convergence of NMPCA algo-

rithm is governed by Theorem 2. The proof of Theorem 2 is

based on the global convergence theorem [44] and depends on

several lemmata. The proofs of Lemma 3, Lemma 4, and The-

orem 2 can be found in the Appendix.

Theorem 2: The limit point of any convergent subsequence

of generated by (27) is a stationary point of the

optimization problem (22).

Lemma 1: If is the sequence of updates generated by

(27) then

(29)

Proof: It is straightforward from Theorem 1.

Lemma 2: If is an infinite sequence, gener-

ated by the alternating updates (27), then

(30)

Proof: Straightforward by applying Lemma 4.1.

Lemma 3: Let be an infinite sequence gen-

erated by the alternating updates (27). This sequence lies on a

compact set.

Lemma 4: Let be the mapping

that generates from . That is, . is

closed.

NMPCA Computational Complexity: Let

be a set of

tensor samples. Assume , for

simplicity. The time complexity of the iterative NMPCA

algorithm during the training phase is as follows. At each

iteration, the time complexity of computing the mode-

unfolding of the total scatter tensor, , has an upper bound

of the order , while the time complexity of the

multiplicative updates rule in (27) is in order of .

The NMPCA algorithm does not require all the training tensor

samples to be kept in the memory, since it can compute

incrementally by loading each sequentially. Hence, the

memory requirements of NMPCA is of the order . This

is a significant advantage of NMPCA comparing to subspace

analysis algorithms, such as NTF and HOSVD, which require

the entire training set to be loaded in the memory.

VI. EXPERIMENTAL EVALUATION

The projection matrices obtained by

NMPCA from a set of non-negative training tensor samples

, can be used to extract features. In order to

assess the discriminating power of both auditory temporal mod-

ulations and NMPCA, experiments in automatic music genre

classification were conducted. To compare the classification ac-

curacy obtained with that of state of the art music genre classifi-

cation algorithms, two different experimental settings were con-

sidered. In addition, a third set of experiments was conducted in

order to simulate the case when the training set has small cardi-

nality.

A. Datasets and Preprocessing

Experiments were performed on two widely used datasets

for music genre classification [3]–[7], [10]. The first dataset,

abbreviated as GTZAN, was collected by Tzanetakis [3] and

consists of ten genre classes, namely Blues, Classical, Country,

Disco, HipHop, Jazz, Metal, Pop, Reggae, and Rock. Each

genre class contains 100 audio recordings 30 s long. The second

dataset, abbreviated as ISMIR 2004 Genre, comes from the

ISMIR 2004 Genre classification contest and contains 1458 full

audio recordings distributed over six genre classes as follows.

Classical (640), Electronic (229), JazzBlues (52), MetalPunk

(90), RockPop (203), World (244), where the number within

parentheses refers to the number of recordings which belong to

each genre class.

All the audio recordings were converted to monaural wave

format at a sampling frequency of 16 kHz and quantized with

16 bits. Moreover, the audio signals have been normalized, so

that they have zero mean amplitude with unit variance, in order

to remove any factors related to the recording conditions. Since

the ISMIR 2004 Genre dataset, consists of full length tracks, we

extracted a segment of 30 s just after the first 30 s of a recording

to exclude any introductory parts that may not be directly related

to the music genre the recording belongs to. The auditory tem-

poral modulations representation is computed over a segment of

30-s duration for any recording of both datasets.

B. Evaluation Procedure and Experimental Results

Following the experimental setup used in [3], [6], [8], and

[9], stratified tenfold cross validation is employed for experi-

ments conducted on the GTZAN dataset. Thus each training set

consists of 900 audio files. By stacking the associated auditory

temporal modulations a training tensor

is constructed, where , ,

and .

The experiments on ISMIR 2004 Genre dataset were con-

ducted according to the ISMIR2004 Audio Description Con-

test protocol. The protocol defines training and evaluation sets,

which consist of 729 audio files each. Thus the corresponding
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Fig. 3. Total number of retained principal components in each mode (e.g., fre-
quency and rate) as a function of the portion of total scatter retained (threshold)
for the (a) GTZAN dataset and (b) ISMIR 2004 Genre dataset.

training tensor is constructed for

, , and .

Compact feature vectors were extracted by applying

NMPCA, NTF, MPCA, PCA, NMF, and SVD on each training

tensor, as described in Section IV and [8].

In order to determine the reduced dimensions of tensors

after subspace projections, the ratio of the sum of eigenvalues

retained over the sum of all eigenvalues of each mode- tensor

unfolding is employed as in [29]. By using this ratio as a speci-

fication threshold, the number of retained principal components

for each mode (e.g., frequency and rate) was determined,

as is demonstrated in Fig. 3 for the GTZAN and the ISMIR

Genre 2004 datasets. The different subspace analysis methods

are compared for equal dimensionality reduction. That is, the

same and were used in MPCA,

HOSVD, and NMPCA, while for PCA, SVD, NTF,

and NMF. Several bases obtained by each subspace analysis

method are visualized in Fig. 4. Classification was performed

by the SVM with an RBF and a linear kernel. In order to tune

the RBF kernel parameters, a grid search algorithm similar

to the algorithm proposed in [45] was used. In addition, the

NN classifier with three commonly used distances defined in

Table II was tested. Given a test vector , its distance

Fig. 4. Bases obtained by applying various subspace analysis methods to
� , when 98% of the total scatter is retained.

from all , which belong to the training set, is calculated. The

label assigned to is that of being closer to , i.e.,

is minimal.

In Figs. 5 and 6 the classification accuracy achieved by the

NN classifier and the SVMs, when the various subspace anal-

ysis methods are employed on both GTZAN and ISMIR 2004

Genre datasets, is plotted as a function of the threshold. The

best classification results for each classifier and each dataset are

summarized in Table III. Especially for the GTZAN dataset, the

best classification results reported in Table III were calculated

by applying tenfold stratified cross-validation.

For both GTZAN and ISMIR 2004 Genre datasets, the best

classification accuracy obtained by auditory temporal mod-

ulations without any dimensionality reduction was achieved

by the SVM with an RBF kernel and was equal to 77.09%

and 78.64%, respectively. Therefore, the auditory temporal

modulations carry a significant amount of information about

music genre, outperforming many music genre classification

algorithms based on BOF approach [3], [5], [9].

For both datasets, the classification accuracies obtained by

the multilinear subspace analysis techniques outperform those

obtained by their linear counterparts. For example, the best clas-

sification accuracies were obtained by the SVM with an RBF

kernel. The SVM with a linear kernel did not perform well for

features extracted by the subspace analysis methods.

On the GTZAN dataset the best classification accuracy

(84.3%) was obtained when NMPCA extracts features that are
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TABLE II
THREE DIFFERENT DISTANCES EMPLOYED IN THE NN CLASSIFIER

Fig. 5. Classification accuracy for the various subspace analysis methods used to extract features that are classified next by the NN classifier for various distances.
The accuracy is calculated by ten n-fold stratified cross-validation. Classification accuracy on GTZAN dataset obtained by NN classifier with (a) � distance, (b)
� distance, (c) ��� distance. Classification accuracy on ISMIR2004 Genre dataset obtained by NN classifier with (d) � distance, (e) � distance, (f) ���
distance.

classified by SVM with an RBF kernel. The reported classifica-

tion accuracy outperforms those listed in Table I.

On the ISMIR 2004 genre dataset the best classification ac-

curacy (83.15%) was obtained when NTF extracts features that

are classified by SVM with an RBF kernel. Again, the achieved

classification accuracy outperforms all previously reported rates

as shown in Table I. The classification accuracy achieved when

NMPCA extracts features, that are classified by the SVM with

an RBF kernel equals 82.19% and is comparable to the previous

best classification rate obtained by Pampalk et al. [7] on this

dataset. It is not possible to compare directly our results with

the results obtained by Holzapfel et al. in [5] and Panagakis et

al. in [8], on this dataset, because of the quite different experi-

mental setup that was used.

C. Experimental Results on a SSS Problem

In many real applications, both commercial and private,

the number of available audio recordings per genre is limited.

In order to investigate the performance of NMPCA against

the other subspace analysis techniques, five different small

training subsets were extracted from the GTZAN dataset. The

first training set consist of the 10% of the total number of files

contained in the GTZAN dataset, i.e., 100 recordings. The

remaining 900 songs were used for testing. Similarly, the other

four training sets consist of 20%, 30%, 40%, and 50% of the

total number of files in the GTZAN dataset, respectively.

The classification accuracies obtained in this experiment are

plotted in Fig. 7 as a function of the number of training samples

employed. From Fig. 7, it is obvious that the NMPCA outper-

forms the other subspace analysis techniques either multilinear

or linear ones when it is used to extract features that are next

classified by NN and SVM classifiers. The classification accu-

racy obtained when NMPCA selects auditory temporal modula-

tions that are next classified by the SVM with an RBF kernel ex-

ceeds 70% even when 100 training samples are exploited. This

observation further supports the claim that the proposed rep-

resentation of auditory temporal modulations when combined

with the NMPCA has a potential for a viable music genre clas-

sification in real world conditions.

VII. CONCLUSION AND FUTURE WORK

Two-dimensional auditory temporal modulations have been

proposed for music representation. Furthermore, a novel unsu-

pervised multilinear subspace analysis method, the NMPCA,

has been derived in order to preserve the non-negativity of

-order tensor representations. An algorithm for NMPCA

has been developed by exploiting the structure of the Grass-

mann manifold. The NMPCA has been applied to the auditory

temporal modulations in order to extract features of reduced
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Fig. 6. Classification accuracy for the various subspace analysis methods used to extract features that are classified next by the SVM classifier with an RBF and
a linear kernel. The accuracy is calculated by tenfold stratified cross-validation. Classification accuracy on GTZAN dataset obtained by (a) SVM with RBF kernel
and (b) SVM with linear kernel. Classification accuracy on ISMIR 2004 Genre dataset obtained by (c) SVM with RBF kernel and (d) SVM with linear kernel.

TABLE III
BEST CLASSIFICATION ACCURACIES FOR BOTH DATASETS

dimensionality for music genre classification. The efficiency of

the extracted features for music genre classification has been

demonstrated. Moreover, the gains of multilinear subspace

analysis techniques against the linear counterparts have been

shown. The NMPCA outperforms the other subspace anal-

ysis methods for a SSS music genre classification problem

highlighting the potential of the proposed method for viable

practical music genre classification systems.

The multilinear dimensionality reduction techniques em-

ployed in this paper are unsupervised. In the future, supervised

multilinear subspace analysis techniques based on preserving

the non-negativeness of bio-inspired auditory representations

will be developed and tested for music genre classification. In

our experiments, we have considered that each song belongs

exclusively to only one genre class. Obviously, it is more

realistic to use overlapping class labels, e.g., labeling music by

style [4]. In general, high-order tensors are structures that are

suitable for a such multi-labeling classification problem.

APPENDIX

Proof of Lemma 3: In order to prove that the sequence

lies on a compact set, it suffices to prove that

, for is both closed and bounded. Since

sequence lies on the Grassmann manifold

in order to prove that , for is closed it

suffices to prove that the Grassmann manifold is

closed. Let . is a continuous function

as product of two continuous functions, namely

and . By definition and

since is closed and is continuous, is closed,

because it is the inverse image of a closed set. Consequently,

is a closed set.

Let . Since is an orthonormal ma-

trix, each column , has unit length. Thus,

. Consequently, the norm of every orthonormal ma-

trix is and thus is bounded.

Therefore, being closed and bounded, lies on

a compact set, as union of compact sets.

Proof of Lemma 4: In Lemma 3, we have proven that

is closed. Since the update rule (27) is a continuous

function, the mapping is closed.

Proof of Theorem 2: The following conditions hold.

1) Let be the NMPCA algorithm

illustrated as a composition of sub-algorithms. Since
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Fig. 7. Classification accuracy for small numbers of training samples when various subspace analysis methods extract features that are next classified by either
an SVM or a NN classifier, which employs different distance measures. Classification accuracy obtained by NN classifier with (a) NN classifier with � distance,
(b) NN classifier with � distance, (c) NN classifier with ��� distance. (d) SVM with an RBF kernel, and (e) SVM with a linear kernel.

from Lemma 4, , is a closed algorithm,

is closed too.

2) By Lemma 3, the infinite sequence , gener-

ated by the alternating updates (27), lies on a compact set.

3) Furthermore, strictly increases the objective function

unless a solution is reached according to Lemma

2.

Consequently, the conditions of the general convergence the-

orem are met. Thus, the limit point of any convergent subse-

quence of generated by (27) is a stationary point

of the optimization problem (22).
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