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Abstract. We show that in each dimension n ≥ 10 there exist infinite sequences of ho-
motopy equivalent but mutually non-homeomorphic closed simply connected Riemannian
n -manifolds with 0 ≤ sec ≤ 1, positive Ricci curvature and uniformly bounded diame-
ter. We also construct open manifolds of fixed diffeomorphism type which admit infinitely
many complete nonnegatively pinched metrics with souls of bounded diameter such that
the souls are mutually non-homeomorphic. Finally, we construct examples of noncompact
manifolds whose moduli spaces of complete metrics with sec ≥ 0 have infinitely many
connected components.

1. Introduction

In this article we discuss several infiniteness phenomena in nonnegative sectional curvature.
Our first such result is motivated by the finiteness theorems in Riemannian geometry and
a question of S.-T. Yau which asks whether there always exists only a finite number of
diffeomorphism types of closed smooth manifolds of positive sectional curvature that are
homotopy equivalent to a given positively curved manifold ([Yau93], Problem 11).
If one relaxes the condition sec > 0 to sec ≥ 0 then the answer to Yau’s question is known
to be false in all dimensions ≥ 7, even in the category of simply connected manifolds.
Counterexamples can here be obtained in the following way: By a result of Grove and
Ziller [GZ00] the total space of any linear Sk -bundle over S4 admits a Riemannian metric
with nonnegative curvature. However, for k ≥ 3 the total spaces of such bundles fall
into infinitely many homeomorphism, but only finitely many homotopy types ([DW59]; if
k = 3, one has in addition to assume that the Euler class of the bundle be zero). On the
other hand, when rescaled to have uniformly bounded diameter, by [PT99] these examples
cannot satisfy any uniform upper curvature bound. More generally, it is natural to look at
the following question:

Question 1.1. Given fixed n ∈ N, D > 0 and c, C ∈ R, are there at most finitely many
diffeomorphism classes of pairwise homotopy equivalent closed Riemannian n-manifolds
Mn with sectional curvature c ≤ sec ≤ C and diameter ≤ D?

The diffeomorphism finiteness theorems in Riemannian geometry (see, e.g., [AC91, Che70,
Pet84, FR00, FR02, GPW91, PT99, Tus02]) leave this question in general dimensions com-
pletely open. However, the answer is known to be positive in some special situations.

2000 Mathematics Subject classification. Primary 53C20. Keywords: nonnegative sectional curvature,
soul, moduli space, finiteness theorems.

V.K. and A.P. were supported in part by NSF grants # DMS-0204187 and # DMS-0406482, respectively.
W.T.’s research was supported by a DFG Heisenberg Fellowship.

1



2 VITALI KAPOVITCH, ANTON PETRUNIN, AND WILDERICH TUSCHMANN

This is, for example, the case if c > 0 and n = 2m by [Kli59, Che70], if Mn , n 6= 4, is
simply connected and C = 4c > 0 by [Ber60, CG80], if D = D(C, c, n) is sufficiently small
by Gromov’s theorem on almost flat manifolds [Gro78, BK81, Ruh82] and the rigidity of
infranilmanifolds [Aus60] (cf. [FH83]), if M is 2-connected by [PT99], or if C ≤ 0 and
n ≥ 5 by results of Farrell and Jones [FJ90, FJ93]. Remarkably enough, in the latter
case one actually does not even need the lower curvature and the upper diameter bounds.
In other words, for n ≥ 5 the answer to the analogue of Yau’s question for nonpositive
curvature (which in this case is a special case of the Borel conjecture) is yes.

As a preliminary result we first show that in general the answer to Question 1.1 is actually
negative in all dimensions ≥ 7:

Proposition 1.2. There exists D > 0 such that for any n ≥ 7 there exist an infinite
sequence of homotopy equivalent but mutually non-homeomorphic closed Riemannian n-
manifolds Mn

k with
| sec(Mn

k )| ≤ 1 and diam(Mn
k ) ≤ D.

If n 6= 8, all these manifolds can in addition be chosen to be simply-connected.

Notice that for simply connected manifolds, by [FR00, Tus02], n = 7 is indeed the smallest
dimension where such sequences can occur.

Our first main concern in this paper is, however, the analogue of Yau’s question for non-
negative pinching, i.e., the following special case of Question 1.1:

Question 1.3. Given fixed n ∈ N and C,D > 0, are there always at most finitely many
diffeomorphism types of pairwise homotopy equivalent closed Riemannian n-manifolds with
sectional curvature 0 ≤ sec ≤ C and diameter ≤ D?

Notice here that starting from dimension n = 6, from [GZ00] one may infer the existence of
infinite sequences of closed simply connected nonnegatively curved n-manifolds of mutually
distinct homotopy type, and in dimensions n > 8, n 6= 10 by [Tot03] there even exist infi-
nite sequences of closed simply connected nonnegatively pinched Riemannian n-manifolds
with pairwise non-isomorphic rational cohomology rings that also satisfy uniform upper
diameter bounds. Totaro ([Tot03]) also showed that there exist infinite sequences of closed
simply connected nonnegatively curved 6-manifolds with pairwise non-isomorphic rational
cohomology rings, and (improving earlier work of [FR01] for manifolds of dimension n ≥ 22)
that for any n ≥ 7, n 6= 8 there exists infinitely many closed simply connected Riemannian
n-manifolds with |sec| ≤ 1 and uniformly bounded diameter and pairwise non-isomorphic
rational cohomology rings.

Our first main result shows that if n ≥ 10, the answer to Question 1.3 is in general negative,
even under the extra assumption of positive Ricci curvature.

Theorem A. There exists D > 0 such that for each dimension n ≥ 10 there exists an
infinite sequence (Mn

k )k∈N of pairwise homotopy equivalent but mutually non-homeomorphic
closed simply connected Riemannian n-manifolds satisfying

0 ≤ sec(Mn
k ) ≤ 1, Ric(Mn

k ) > 0 and diam(Mn
k ) ≤ D.
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Notice that this result relates Yau’s problem to another long standing open question in
Riemannian geometry:
Are there any obstructions to the existence of a Riemannian metric with positive sectional
curvature on a closed simply connected manifold of nonnegative sectional and positive Ricci
curvature?
It is quite likely that the dimensional restriction n ≥ 10 in Theorem A is not optimal.
Again, by [FR00, Tus02], this dimension must be at least 7.
We continue with a description of the further main results of this paper, which concern the
souls and moduli spaces of metrics of open manifolds of nonnegative sectional curvature.
Very recently, in [Bel03] Belegradek constructed the first examples of manifolds admitting
infinitely many nonnegatively curved metrics with mutually non-homeomorphic souls. In
our second main theorem we sharpen this result by constructing such examples which in
addition have uniform bounds on the curvature of the manifolds and the diameters of the
souls:

Theorem B. For any k > 10 the manifold S2 × S2 × S3 × S3 × Rk admits an infinite
sequence of complete nonnegatively curved metrics gi with pairwise non-homeomorphic souls
Si such that

0 ≤ sec(M, gi) ≤ 1 and diam(Si) ≤ D

where D is a positive constant independent of k and i.

Another interesting application of the construction that we employ in the proof of Theo-
rem B concerns the moduli spaces of open manifolds with nonnegative sectional curvature.
Let Rsec≥0(M) denote the space of complete Riemannian metrics with nonnegative sectional
curvature on a given smooth manifold M . Then Diff(M), the group of diffeomorphisms of
M , acts on this space by pulling back metrics, and the orbit space Rsec≥0(M)/Diff(M) is
called the moduli space of (complete) nonnegatively curved Riemannian metrics on M . We
show:

Theorem C. There exist a manifold M22 which admits an infinite sequence of complete
metrics gi with pairwise non-homeomorphic souls Si such that

0 ≤ sec(M, gi) ≤ 1 and diam(Si) ≤ D

and such that the equivalence classes of the metrics gi all lie in different connected compo-
nents of the moduli space Rsec≥0(M)/Diff(M) of complete metrics with sec ≥ 0 on M .
Moreover, for any closed nonnegatively curved manifold (N, g), the product metrics gi × g
all lie in different connected components of the moduli space Rsec≥0(M ×N)/Diff(M ×N).

To put Theorem C into further perspective, we note first that in [KS93] Kreck and Stoltz
constructed a closed manifold M7 such that the moduli space of metrics of positive Ricci
curvature on M has infinitely many connected components. In fact, by choosing somewhat
different metrics their methods also show that Rsec≥0(M)/Diff(M) also has infinitely many
connected components! Since this was not observed in [KS93], let us briefly explain why
that is true.
Kreck and Stoltz actually construct an invariant s which distinguishes components of
Rscalar>0(M)/Diff(M). They look at various S1 -bundles over S2 × CP 2 with indivisi-
ble Euler classes, which admit Einstein metrics of positive Ricci curvature constructed by
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Wang and Ziller( [WZ86]). It is then shown [KS93, Theorem 3.11] that provided the metrics
are S1 invariant and have totally geodesic fibers (which is true for Wang-Ziller metrics),
the invariant s depends only on the Euler class of the bundle. One can exhibit infinitely
many bundles with distinct s invariants but diffeomorphic total spaces [KS93, Theorem
3.2, 3.4]. Unfortunately, the Einstein metrics given by [WZ86] do not have nonnegative
sectional curvature. However, we notice here that one can represent any S1 bundle over
S2 × CP 2 with an indivisible Euler class as a free isometric quotient (S3 × S5)/S1 . The
natural Riemannian submersion metric coming from the product metric on S3 × S5 is eas-
ily seen to have sec ≥ 0 and Ric > 0, it has totally geodesic fibers and it is S1 -invariant.
Therefore the same bundles as considered in [KS93], but taken with these metrics have
distinct s-invariants and hence lie in different components of Rscalar>0(M)/Diff(M). Since
any metric of sec ≥ 0 on M has scalar≥ 0 and scalar > 0 at a point, by [Aub70] it can be
deformed to a nearby metric of scalar> 0. Therefore the above metrics also lie in different
components of Rsec≥0(M)/Diff(M).

Observe, however, that all the different components of Rscalar>0(M)/Diff(M) obviously be-
come connected if we stabilize M by multiplying it by a closed manifold with nonnegative
sectional and positive scalar curvature, for example by Sn with n > 1. Therefore, in con-
trast to Theorem C which yields nonconnected moduli spaces of nonnegative sectional curva-
ture metrics in all dimensions ≥ 22, it is not clear if the components of Rsec≥0(M)/Diff(M)
remain disconnected after such stabilization.

There are many other interesting results about the connectedness or disconnectedness of
moduli spaces of metrics satisfying certain geometric bounds, for which we refer to, e.g.,
[Loh92, NW03, PRT99, PT99].

We conclude the introduction with a short description of the ideas and outlines of the proofs.

To prove Proposition 1.2 we look at a 6-manifold X6 which is homotopy equivalent to S2×
S2 × S2 but has nontrivial first Pontrjagin class. By an easy topological argument, among
the S1 -bundles over X6 there are infinitely many spaces which are homotopy equivalent
to S2 × S2 × S3 but have distinct Pontrjagin classes. All S1 -bundles we consider can
be represented as quotients of a fixed manifold Q by various subtori T 2

i ⊂ T 3 where T 3

acts freely and isometrically on Q . This implies that the induced metrics on Q/T 2
i have

uniformly bounded curvatures and diameters.

To prove Theorem A we fix a rank 2 bundle ξ over S2 × S2 × S2 and look at the sphere
bundle P of ξ ⊕ εk−1 with k ≥ 3. We then look at various circle bundles S1 → Mi → P .
A topological argument shows that with an appropriate choice of ξ , infinitely many such
bundles have total spaces homotopy equivalent to S2 × S2 × S3 × Sk but distinct first
Pontrjagin classes and thus are mutually non-homeomorphic.

We can represent all Mi s as S3 × S3 × S3 × Sk/T 2
i where T 2

i ⊂ T 3 which acts freely and
isometrically on S3 × S3 × S3 × Sk . This easily implies that the Mi satisfy all geometric
constraints in Theorem A.

To prove Theorem B we put k = 3, fix a rank 2 bundle ζ over P and look at the pullbacks
of ζ ⊕ εl−2 to Mi . By the same reasons as before, the total spaces of these pullbacks
have metrics satisfying all geometric restrictions of Theorem B with souls isometric to Mi .
Another topological argument then shows that with an appropriate choice of ζ the total
spaces of the pullbacks are diffeomorphic to S2 × S2 × S3 × S3 × Rl if l > 10.
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To prove Theorem C we modify the construction in the proof of Theorem B to produce a
manifold with infinitely many nondiffeomorphic souls whose normal bundles have nontrivial
rational Euler classes. We then show that for such a manifold all elements of a connected
component of Rsec≥0(M)/Diff(M) have diffeomorphic souls.

It is our pleasure to thank Igor Belegradek for many helpful discussions and particularly for
his help with the proof of the topological part of Theorem C. We would also like to thank
Burkhard Wilking and Wolfgang Ziller for helpful conversations regarding the preparation
of this article.

2. Proof of Proposition 1.2

Proof. Let α, β, γ be the standard basis of H2(S2 × S2 × S2). By Lemma A.1 in the
appendix, for some m > 0 there exists a closed manifold M6 and a smooth homotopy
equivalence f : M → S2 × S2 × S2 such that p1(M) = f∗(mβ ∧ γ).

Consider the principal T 3 bundle T 3 p→ S3×S3×S3 → S2×S2×S2 and let Q = f∗(p) be
its pullback. Choose a Riemannian metric g on Q which is invariant under the T 3 action.
For any subtorus T 2 ⊂ T 3 , the quotient space Q/T 2 is naturally a principal S1 -bundle
over Q/T 3 = M6 . Clearly, any principal S1 - bundle over M6 with indivisible Euler class
can be realized in this way. Let us denote the subtorus corresponding to the bundle with
Euler class (a, b, c) by T 2

a,b,c . Here the Euler class is written with respect to the natural
product basis α, β, γ of H2(M6) ∼= H2(S2 × S2 × S2).

By Lemma A.2, all the quotients Q/T 2
a,b,c with the induced submersion metrics satisfy

| sec | ≤ C,diam ≤ D for some C,D > 0.

Also from Lemma A.3, we see that all the spaces Na,b = Q/T 2
a,b,0 with (a, b) = 1 are

homotopy equivalent to S2 × S2 × S3 .

Now, for π : Na,b → M with (a, b) = 1 we have π∗(α) = −bω, π∗(β) = aω, π∗(γ) = γ
and thus π∗(β ∧ γ) = aω ∧ γ , where ω ∧ γ is the generator of H4(Na,b). Therefore,
p1(Na,b) = π∗(p1(M)) = amω ∧ γ . This means that all manifolds Na,b with distinct a and
(a, b) = 1 have distinct Pontrjagin classes and thus are mutually non-homeomorphic.

Finally observe that crossing the manifolds Na,b with round spheres produces examples
satisfying the conclusion of Theorem 1.2 in all dimensions ≥ 8. �

3. Proof of Theorem A

Proof. Fix k ≥ 3.

Consider the standard free T 3 action on S3×S3×S3 giving rise to the bundle T 3 → S3×S3×
S3 → S2 × S2 × S2 . For any subtorus T 2 ⊂ T 3 , the homogeneous space S3 × S3 × S3/T 2

is naturally a principal S1 -bundle over S3 × S3 × S3/T 3 = S2 × S2 × S2 . Clearly, any
principal S1 - bundle over S2 × S2 × S2 with indivisible Euler class can be realized in this
way. Let us denote the subtorus corresponding to the bundle with Euler class (a, b, c) by
T 2

a,b,c . Here the Euler class is written with respect to the natural product basis α, β, γ of
H2(S2×S2×S2). Let Na,b,c be the corresponding total space and π : Na,b,c → S2×S2×S2

be the natural projection.

By Lemma A.3 , Na,b,0 is homotopy equivalent to S2 × S2 × S3 if (a, b) = 1.
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Let us fix a representation ρ : T 3 → SO(2) given by the weight (p, q, r). Look at the
associated R2 bundle ξ over S2 × S2 × S2 given by S3 × S3 × S3 ×T 3 R2 . Its Euler class

is (p, q, r). Let η = ξ ⊕ εk−1 and let ηS be the corresponding sphere bundle Sk → P
ηS

→
S2 × S2 × S2 (here and in what follows εm denotes a trivial Rm -bundle).

Next look at the pullback of η to Na,b,0 . It can be written as S3×S3×S3×T 2
a,b,0

R2×Rk−1 .

We will denote this bundle by ηa,b . Let Sk → Ma,b

ηS
a,b→ Na,b,0 be the corresponding sphere

bundle over Na,b,0 .

We claim that by choosing an appropriate ρ : T 3 → SO(2) and by varying a, b the manifolds
Ma,b provide examples satisfying the conclusion of Theorem A.
Let us first check the geometric conditions.
Observe that we can write η and ηS as S3 × S3 × S3 ×T 3 Rk+1 , S3 × S3 × S3 ×T 3 Sk

respectively. Here T 3 acts on S3 × S3 × S3 by the canonical homogeneous action and on
Rk+1 and Sk via ρ followed by the canonical inclusion SO(2) ↪→ SO(k + 1).

Hence, Ma,b = S3 × S3 × S3 ×T 2
a,b,0

Sk .

Therefore, by Lemma A.2, when equipped with the induced quotient metrics, all total
spaces have uniform curvature bounds 0 ≤ sec ≤ C for some C > 0 and diam ≤ D for
some D > 0.
Next let us check that Ric(Ma,b) > 0. Obviously, Ric(Ma,b) ≥ 0. Suppose there exists
x0 ∈ TpMa,b such that Ric(x0) = 0. Let x̃0 be its horizontal lift to Tp̃(S3 × S3 × S3 × Sk).
By O’Neill’s formula this means that sec(x̃0, x) = 0 for any horizontal vector x ∈ Tp̃(S3 ×
S3 × S3 × Sk). Let h and m , respectively, denote the horizontal and the vertical tangent
space at p̃ .
Then x̃0 contains a nontrivial component tangent to some sphere factor. By construction,
the projection of m to the tangent space to that sphere is at most one dimensional. Therefore
we can find a vector x tangent to that spherical factor and perpendicular to both m and
x̃0 . Then sec(x̃0, x) > 0 which is a contradiction.
To finish the proof of Theorem A, it remains to show that among the spaces Ma,b there are
infinitely many homotopy equivalent but mutually non-homeomorphic ones.
First we claim that there exists an integer m such that for any ρ with weight (mp, mq,mr),
all spaces Ma,b are homotopy equivalent to S2 × S2 × S3 × Sk if a and b are reletevely
prime.

Look at the sphere bundle Sk → P
η→ S2 × S2 × S2 .

Up to fiberwise homotopy equivalences such bundles are classified by the homotopy classes
of maps in [S2 × S2 × S2, BAut(Sk)]. Here BAut(Sk) is the classifying space for Aut(Sk)
which is the identity component of the monoid of self-homotopy equivalences of Sk .
Moreover, in our case, by construction, the classifying map into BAut(Sk) corresponding
to the bundle η factors through BAut0(S3) where Aut0(Sk) is the subset of Aut(Sk) fixing
a base point.
It is a well known fact that if k is odd, then πi(Aut0(Sk)) is finite for any i . Indeed, it
is easy to see that Aut0(Sk) is the identity component of Ωk(Sk), and therefore, for any
i > 0, πi(Aut0(Sk)) ∼= πk+i(Sk), which is always finite if k is odd.
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A standard obstruction theory argument now implies that [S2 × S2 × S2, BAut0(S3)] is
finite.

Claim. There is an m > 0 such that if e(ξ) is divisible by m , then the classifyng map
fη : S2 × S2 × S2 → BAut0(S3) is homotopic to a point.

For any m > 0 let gm : S2 → S2 be a map of degree m .

Let Fm = gm × gm × gm : S2 × S2 × S2 → S2 × S2 × S2 . Clearly, e(F ∗mξ) = me(ξ) for
any rank 2 bundle ξ over S2 × S2 × S2 . Hence if fη : S2 × S2 × S2 → BAut0(S3) is the
classifying map for the Sk bundle coming from ξ , then fη ◦ Fm is the classifying map for
the Sk bundle coming from the rank 2 bundle with Euler class equal to me(ξ).

The claim now follows from a standard obstruction theory argument. Let us give a brief
sketch. If f1, f2 : S2 × S2 × S2 → BAut0(S3) are two maps which are homotopic on
the (i − 1)-skeleton, the obstruction to extending this homotopy to the i-skeleton lies in
Γi = H i(S2 × S2 × S2, πi(BAut0(S3)) which is finite by what has been said above. Let
mi = |Γi| . By naturality, the obstruction corresponding to the maps f1 ◦ Fmi , f2 ◦ Fmi is
zero. Repeating this process finitely many times, we see that for m = m1 · . . . ·m6 , and any
f1, f2 , the maps f1 ◦Fm , f2 ◦Fm are homotopic. By taking f1 to be a constant map we see
that for any f : S2 × S2 × S2 → BAut0(S3), the map f ◦ Fm is homotopic to a constant.
This proves our claim.

From now on we will assume that e(ξ) is divisible by m and hence the bundle Sk → P
ηS

→
S2 × S2 × S2 is fiberwise homotopically trivial.

Of, course the same is true for any pullback of this bundle and hence ηS
a,b is fiberwise

homotopically trivial for any a, b . Thus its total space Ma,b is homotopy equivalent to
Na,b,0×Sk which, by Lemma A.3, is homotopy equivalent to S2×S2×S3×Sk if (a, b) = 1.

Let us finally show that for appropriately chosen p, q, r , infinitely many of the spaces Ma,b

have distinct Pontrjagin classes and thus are mutually not diffeomorphic.

Consider the bundle π : S1 → Q → S2 × S2 with Euler class (a, b) with respect to the
canonical generators α, β of H2(S2 × S2). Let ω be the generator of H2(Q). Then we see
from the Gysin sequence that π∗(α) = −bω, π∗(β) = aω .

Now look at the bundle π : Ma,b → P . Let ω, γ be the natural basis of H2(Ma,b). Then
by the above we have that π∗(α) = −bω, π∗(β) = aω, π∗(γ) = γ . (We purposefully slightly
abuse notations by denoting by γ elements of both H2(P ) and H2(Ma,b)).

We compute

p1(ζa,b) = p1(ξa,b) = e(ξa,b) ∪ e(ξa,b) = π∗(pα + qβ + rγ) ∪ π∗(pα + qβ + rγ) =

= ((−pb + qa)ω + rγ) ∪ ((−pb + qa)ω + rγ) = 2(−pb + qa)rω ∧ γ

Notice that ω ∧ γ is the generator of H4(Ma,b) ∼= Z .

From the bundle Sk → Ma,b

ηS
a,b→ S2 × S2 × S3 , using the Whitney formula we see that

p1(Ma,b) = p1(ηa,b) + ηS∗
a,b(p1(S2 × S2 × S3)) = 2(−pb + qa)rω ∧ γ .

Clearly, for fixed p, q, r , infinitely many of these spaces have distinct p1 . For example if
p = 0, q = mq1 6= 0, r = mr1 6= 0, the spaces Ma,b with distinct a will work, as in this case
p1(Ma,b) = 2qar .
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By the above, all of these spaces are homotopy equivalent to S2 × S2 × S3 × Sk and hence
they satisfy all conclusions of Theorem A.

�

Remark 3.1. Observe that unlike the examples constructed in [Bel03], the manifolds con-
structed in the proof of Theorem A have infinite π2 . This is actually necessary by the
π2 -finiteness theorem [PT99].

Also, all our examples are constructed as quotients of a fixed manifold E (in our case
E = S3 × S3 × S3 × Sk ) by free torus actions. This is also necessary by [PT99, Corollary
0.2].

4. Proof of Theorem B

We will use the notation and constructions employed in the proof of Theorem A .

We will make use of the following fact from algebraic topology which follows from a combi-
nation of results of Haefliger and Siebenmann ( [Hae61, Sie69]).

Fact: Let Rl → Ei → Mn
i , (i = 1, 2) be two vector bundles over smooth closed manifolds.

Suppose f : E1 → E2 is a tangential homotopy equivalence and l ≥ 3, l > n .

Then f is homotopic to a diffeomorphism (cf. [Bel03] for details).

Let in the proof of Theorem A now k = 3.

Recall that from the construction of P as S3 × S3 × S3 ×T 3 S3 , we see that the map
Z3 ∼= π2(P ) → π1(T 3) ∼= Z3 is an isomorphism.

Consider a representation φ : T 3 → SO(2). It gives rise to a rank 2 bundle ζ over P .
Its total space can be written as Eζ = S3 × S3 × S3 × S3 ×T 3 R2 , where T 3 acts on
S3 × S3 × S3 × S3 by the action described above and on R2 by φ . By above, by choosing
appropriate φ we can realize in this way any rank 2 bundle over P with Euler class (x, y, z)
with respect to the basis α, β, γ of H2(P ) ∼= H2(S2 × S2 × S2).

Recall that by the proof of Theorem A, we can chose ξ so that e(ξ) = (0, q, r).

Let us choose ζ so that e(ζ) = (ηS)∗(0, q,−r) where we recall that ηS is the sphere bundle
S3 → P → S2 × S2 × S2 .

Let ζa,b be the pullback of ζ to Ma,b via the natural projection π : Ma,b → P .

We will show that infinitely many of the stabilized bundles ζ̃a,b = ζa,b ⊕ εl−2 satisfy the
statement of Theorem B if l > 10.

Let us first check the geometric conditions. The total space of ζ̃a,b can be written as
E(ζ̃a,b) = S3 × S3 × S3 × S3 ×T 2

a,b
Rl . Here T 2

a,b ⊂ T 3 is the subtorus which corresponds to

the bundle S1 → Ma,b → P . Therefore, by Lemma A.2, we have uniform curvature bounds.
Note that while the manifolds in question are not compact, it is easy to see that curvature
remains uniformly bounded at infinity, so that Lemma A.2 still applies. Alternatively, rather
than taking Rl with a flat metric, we can take it with a rotationally symmetric nonnegatively
curved metric isometric to Sl−1×R+ at infinity. Then the uniform curvature bounds follow
directly from Lemma A.2.

Of course, the soul of E(ζ̃a,b) is isometric to Ma,b , and thus all the souls have bounded
diameter and are not homeomorphic for different a .
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Next we will show that infinitely many of the bundles ζ̃a,b have diffeomorphic total spaces.

First, by the same computation as in the proof of Theorem A, we find p1(ζ̃a,b) = −2qar

and hence p1(E((ζ̃a,b)) = p1(ζ̃a,b) + p1(Ma,b) = −2qar + 2qar = 0.

Since Pontrjagin classes determine a bundle up to finite ambiguity, infinitely many of the
spaces E(η̃a,1) are tangentially homotopy equivalent and hence diffeomorphic.

This observation is already sufficient to produce examples of manifolds with infinitely many
nonnegatively pinched metrics whose souls have bounded diameter and are mutually non-
homeomorphic. Unfortunately, it does not give us the precise diffeomorphism type of these
manifolds.

However, with a little more work we can show that, in fact, all manifolds E(ζ̃a,b) with
(a, b) = 1 are diffeomorphic to S2 × S2 × S3 × S3 × Rl .

Look at the following commutative diagram:

S3 // Ma,b
ηS

ab //

π

��

Na,b,0

π

��
S3 // P

ηS

// S2 × S2 × S2

First notice that the bundle ζ is the pullback via ηS of the bundle ζ̂ over S2 × S2 × S2

with ”the same” Euler class. Bundle ζ̂ can be written as S3 × S3 × S3 ×T 3 R2 where T 3

acts on R2 by the representation φ .

Similarly, ζa,b = ηS∗
a,b(ζ̂a,b).

Next observe that TE(ζ̃a,b)|Mab
= TMa,b⊕ζa,b⊕εl−2 = TMa,b⊕ε1⊕ζa,b⊕εl−3 = ηS∗

a,bTNa,b,0⊕
ηS∗

a,b(ξa,b ⊕ ε2)⊕ ζa,b ⊕ εl−3 = ηS∗
a,b(TNa,b,0 ⊕ ξa,b ⊕ ζ̂a,b ⊕ εl−1).

Since Na,b,0 is the total space of an S1 bundle over S2 × S2 × S2 , it immediately follows
that TNa,b,0 ⊕ εl−1 = el+6 . (Alternatively, this is also clear since Na,b,0 is diffeomorphic to
S2 × S2 × S3 by [Bar65]).

Thus TE(ζ̃a,b)|Mab
= ηS∗

a,b(ξa,b⊕ ζ̂a,b)⊕εl+6 = ηS∗
a,bπ

∗(ξ⊕ ζ̂)⊕εl+6 = ηS∗
a,bπ

∗(ε4)⊕εl+6 = ε10+l .
Here the next to last equality holds because by the choice of ζ we have that e(ζ̂) = (0, q,−r)
and e(ξ) = (0, q, r) so that ξ ⊕ ζ̂ = ε4 by Lemma A.4 below.

Thus E(ζ̃a,b) is tangentially equivalent and hence diffeomorphic to S2×S2×S3×S3×Rl .

�

Remark 4.1. Using the same procedure as in the proof of Theorem B, we can also construct
manifolds with nontrivial p1 which admit infinitely many nonnegatively pinched metrics
with non-homeomorphic souls.

5. Proof of Theorem C

We will use the same notations as in the proofs of Theorem A and Theorem B. Let us first
construct the Riemannian manifolds in question. The construction is very similar to the
one used in the proof of Theorem B, therefore we will skip some details.



10 VITALI KAPOVITCH, ANTON PETRUNIN, AND WILDERICH TUSCHMANN

Let m be as in the proof of Theorem A. Let us fix positive integers n and k and look
at a rank 2 vector bundle ξ over S2 × S2 × S2 with Euler class m(0, 1, k). Let S3 →
P → S2 × S2 × S2 be the sphere bundle in ξ ⊕ ε2 . Look at the rank 2 bundles ζ1, ζ2

over P with Euler classes mπ∗(0, 1,−k),mπ∗(n+1, n, 0), respectively. Now look at the S1

bundle πab : Na,b → P over P with Euler class π∗(a, b, 0), where (a, b) = 1 and pull back
ζ = ζ1 ⊕ ζ2 to Na,b .

By the proof of Theorem A, Na,b is homotopy equivalent to S2×S2×S3×S3 for any pair
of integers a, b with (a, b) = 1.

As before we also see that the total space of the bundle π∗a,b(ζ) admits a complete metric
with 0 ≤ sec ≤ C and the soul isometric to Na,b with diam(Na,b) ≤ D where C,D are
independent of a, b .

A computation similar to the one in the proof of Theorem B shows that for the first Pon-
trjagin and Euler classes of the bundles in question we have

p1(Na,b) = 2m2akω ∧ γ, p1(π∗a,b(ζ)) = −2m2akω ∧ γ,

and

e(π∗a,b(ζ)) = m2(−b(n + 1) + an)kω ∧ γ.

Set a = 1 + r(n + 1), b = 1 + rn where r ∈ N and let Nr = N1+r(n+1),1+rn .

Then

(1) p1(Nr) = 2m2akω ∧ γ, p1(π∗r (ζ)) = −2m2akω ∧ γ,

and

(2) e(π∗r (ζ)) = −m2kωγ.

This means that the manifolds Nr have distinct Pontrjagin classes and hence are mutually
non-homeomorphic.

Let Er be the total space of the bundle π∗r (ζ). From the above we see that

(3) p1(Er) = 2m2akω ∧ γ − 2m2akω ∧ γ = 0.

Look at the spaces Xr = Er×TS4 with the product metric where we take the natural non-
negatively curved metric on TS4 given by the submersion metric on TS4 = SO(5)×SO(4)R4 .

We claim that the spaces Xr fall into finitely many diffeomorphism classes.

Indeed, let fr : N1 → Er be the homotopy equivalence given by the homotopy equivalence
of the souls followed by the embedding of the soul into Er . Note that H4(Nr) ∼= H4(S2 ×
S2 × S3 × S3) ∼= Z . By (2), by possibly composing fr with an orientation reversing self
homotopy equivalence of N1 , we can assume that f∗r (e(π∗r (ζ))) = e(π∗1(ζ)).

Observe that Xr is the total space of a rank 4 + 4 = 8 vector bundle over Nr × S4 and
dim Nr × S4 = 10 + 4 = 14. Since fr × IdS4 is a homotopy equivalence and 3 · 8 > 14 + 2,
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we are in the metastable range and by Haefliger’s Embedding Theorem [Hae61], fr × IdS4

is homotopic to an embedding gr . Since the codimension of Nr × S4 in Xr is = 8 > 3,
by [Sie69], Xr is diffeomorphic to the total space of the normal bundle νgr .

From (1) and (3), using the Whitney formula we see that all νgr have the same Pontrjagin
classes. From (2) we see also that all νgr have the same nontrivial Euler classes equal to
−2m2kω ∧ γ ∧ [dvol(S4)]. That is because the rational Euler class of νgr is a homotopy
invariant of gr which can be defined homologically by the formula

< e(νgr), x >= gr∗[X1] · gr∗(x)

for any x ∈ H8(X1) where · is the algebraic intersection number. Thus

e(νgr) = f∗r (e(π∗r (ζ)) ∪ e(S4)) = −m2kωγ ∧ 2[dvol(S4)]

by (2) and the fact that χ(S4) = 2. Here we disregard the difference between rational and
integer coefficients since all involved cohomology groups are torsion free. See also [BK01]
for a more detailed discussion of invariants of maps.

Thus we see that all the bundles νgr have the same Euler and Pontrjagin classes. Since
Euler and Pontrjagin classes determine a bundle up to a finite ambiguity, the bundles νgr

fall into finitely many isomorphism classes. Hence the total spaces of νgr fall into finitely
many diffeomorphism classes. By the above, the total space of νgr is diffeomorphic to Xr

and hence all manifolds Xr also fall into finitely many diffeomorphism classes.

Thus after passing to a subsequence, we can assume that all Xri are diffeomorphic to
M = Xr1 .

We claim that M satisfies the conclusion of the Theorem. Observe that Xr carries by
construction a natural metric of 0 ≤ sec ≤ C with soul isometric to Nr × S4 of diam ≤
D . Hence all the souls have distinct Pontrjagin classes by (1) and thus are mutually not
homeomorphic.

Since for any nonnegatively curved metric g and any self-diffeomorphism of the underlying
manifold φ , the souls of g and φ∗(g) are diffeomorphic, the statement of Theorem C will
follow from the following

Lemma 5.1. Let (M, gt), t ∈ [0, 1] be a continuous family of nonnegatively curved metrics
such that the normal bundle to the soul of (M, g0) has nontrivial rational Euler class.

Then all the souls of (M, gt) are diffeomorphic.

Proof. Let St be the soul of (M, gt). We claim that the family (St, gt|St) is continuous in
Gromov-Hausdorff topology. Observe that since St ↪→ M is a homotopy equivalence, by
the same argument as above the rational Euler class of νSt is nonzero for any t . Therefore
it’s enough to show that St

G−H→ S0 as t → 0.

Let πt : M → St be the Sharafutdinov retraction with respect to gt .

Let dt be the inner metric on M induced by gt . Since gt → g0 uniformly on compact
sets we clearly have that for any x, y ∈ S0 , dt(x, y) ≤ d0(x, y) + εt where εt → 0 as
t → 0. Since πt is distance nonincreasing we see that dt(πt(x), πt(y)) ≤ d0(x, y) + εt for
any x, y ∈ S0 . Since πt : S0 → St is a homotopy equivalence, it must be onto and hence
diamSt ≤ diamS0 + εt .
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From the assumption on the Euler class we see that St ∩ S0 6= ∅ for any t and since, by
the above, all St have uniformly bounded diameters, they all must lie in some fixed closed
ball B̄(p, D) where the ball is taken with respect to d0 . Again using that gt converges to
g0 uniformly on compact sets we have that d0(x, y) ≤ dt(x, y)+ εt for any x, y ∈ St . Hence
d0(π0(x), π0(y)) ≤ dt(x, y) + εt for any x, y ∈ St . Combining this with above we finally get
that

d0(π0(πt(x)), π0(πt(x))) ≤ d0(x, y) + 2εt for any x, y ∈ S0.

By Lemma A.5 this implies that for some ε̃(t) →
t→0

0

d0(x, y)− 2ε̃t ≤ d0(π0(πt(x)), π0(πt(x))) ≤ d0(x, y) + 2εt for any x, y ∈ S0.

Hence π0 ◦ πt : S0 → S0 is a max(εt, ε̃t)-Hausdorff approximation and the same is true for
π0 : (St, dt) → (S0, d0) which proves that St

G−H→ S0 as t → 0.
Since St is a smooth manifold for any t and dim St = dim S0 , by Yamaguchi’s Stability
theorem [Yam91] this implies that St is diffeomorphic to S0 for all small t . �

As observed before, Lemma 5.1 implies that all elements of a connected component of
Rsec≥0(M)/Diff(M) have diffeomorphic souls. This immediately implies the statement of
Theorem C. �

Remark 5.2. We suspect that Lemma 5.1 is true without any assumptions on the rational
Euler class. If this holds true, then the examples constructed in the proof of Theorem B
would directly yield Theorem C.

Appendix A

We will need the following lemma which is an easy consequence of some well-known topo-
logical results:

Lemma A.1. There exists an integer m such that for any element p ∈ H4(S2 × S2 × S2)
there exists a closed smooth manifold M6 and a homotopy equivalence f : M → S2×S2×S2

such that f∗(p) = mp1(M).

Proof. By the Browder-Novikov Surgery Theorem [Bro72, Thm II.3.1,Cor II.4.2], given a
vector bundle ξ over a simply connected manifold X6 , there exists a manifold M6 and a
homotopy equivalence M6 → X , such that f∗(ξ) is isomorphic to the stable normal bundle
of M if and only if the stable spherical fibration coming from ξ is isomorphic to the Spivak
normal spherical fibration ν(X).
If X = S2 × S2 × S2 , we obviously have that ν(X) is trivial. Recall that stable spherical
fibrations are classified by the homotopy classes of maps into the classifying space BG and
that all homotopy groups of BG are finite. The same obstruction theory argument as in the
proof of Theorem A shows that there exists an m1 such that for any f : S2×S2×S2 → BG ,
the map f◦Fm1 is homotopic to a point. Recall here that Fm = gm×gm×gm : S2×S2×S2 →
S2 × S2 × S2 where gm : S2 → S2 has deg gm = m .
Next observe that by looking at Whitney sums of rank 2 bundles we can realize any even
element of H4(S2 × S2 × S2) as the first Pontrajagin class of a vector bundle.
Combining these two facts, we obtain the desired claim with m = 2m1 . �
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The geometric part of the proof of Theorem A is based on the following lemma, which is
originally due to Eschenburg [Esc82, Prop 22]. For convenience of the reader, we include a
short outline of its proof.

Lemma A.2. Let (M, g) be a closed Riemannian manifold on which a k -dimensional torus
T k acts freely and isometrically. Then there exist C,D > 0 such that for any subtorus
Tm ⊂ T k the quotient manifold M/Tm , when equipped with the induced quotient metric,
satisfies

| sec(M/Tm)| ≤ C and diam(M/Tm) ≤ D.

Proof. The uniform diameter bound is obvious, and we need to find a uniform bound on
the O’Neill term in the Gray-O’Neill curvature formula for Riemannian submersions. As
the formula is local, it makes sense to look at the local quotients of M by Rm ⊂ Rk where
Rk is the universal cover of T k . The compactness of the Grassmannian of m-planes in Rk

now implies the result.

�

Lemma A.3. Let S1 → P → S2 × S2 be a principal S1 bundle such that P is simply
connected. Then P is homotopy equivalent to S2 × S3 .

In fact—though we will not need this fact in this paper—by a theorem of Barden [Bar65],
P is diffeomorphic to S2 × S3 .

Proof. It is easy to see that H2(P ) ∼= H3(P ) ∼= Z .

We can write P as the homogeneous space S3 × S3/S1 for some S1 ⊂ S3 × S3 . ¿From
the Gysin sequence it is easy to see that the map H3(S3 × S3) → H3(P ) is onto. Since, by
the Hurewicz theorem, π3(S3 × S3) ∼= H3(S3 × S3) and since, by the long exact homotopy
sequence, π3(P ) ∼= π3(S3×S3) we see that π3(P ) → H3(P ) is also surjective. Let f : S2 →
P be a map representing a generator of π2(P ) ∼= H2(P ) ∼= Z . Let g : S3 → P be a map
representing a generator of H3(P ) ∼= Z . Let ĝ : S3 → S3 × S3 be a lift of g . Such
a lift exists by the previous discussion. Consider the map F : S2 × S3 → P given by
F (x, y) = ĝ(y) · f(x), where x ∈ S2, y ∈ S3 and where the · represents the homogeneous
space action of S3×S3 on P . It is straightforward to check that F induces an isomorphism
on homology and thus is a homotopy equivalence.

�

Lemma A.4. Let ξ1, ξ2 be rank 2 bundles over S2 × S2 such that e(ξ1) = (q, r) and
e(ξ2) = (q,−r) with respect to the canonical basis of H2(S2 × S2).

Then ξ1 ⊕ ξ2 is trivial.

Proof. A direct computation shows that w2(ξ1 ⊕ ξ2) = p1(ξ1 ⊕ ξ2) = e(ξ1 ⊕ ξ2) = 0.

Since, w2(ξ1 ⊕ ξ2) = 0, its classifying map f into BSO(4) factors as f = g ◦ c . where
c : S2×S2 → S4 is the collapsing map of degree 1. Thus ξ1⊕ ξ2 = c∗(η) where η is a rank
4 bundle over S4 . Since c∗ is an isomorphism on H4 , p1(η) = e(η) = 0 and hence η is
trivial. �
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Lemma A.5. Let S be a closed Riemannian manifold. There exists a function δ : R+ →
R+ such that δ(ε) → 0 as ε → 0 and such that the following holds. If f : S → S is a
homotopy equivalence satisfying

d(f(x), f(y)) ≤ d(x, y) + ε for any x, y ∈ S,

then

d(x, y)− δ(ε) ≤ d(f(x), f(y)) ≤ d(x, y) + ε for any x, y ∈ S.

Proof. Suppose Lemma A.5 is false. Then there exists a sequence fi : S → S as well as a
sequence εi → 0 satisfying

d(f(x), f(y)) ≤ d(x, y) + εi for any x, y ∈ S

such that for some δ > 0 there exist xi, yi ∈ S such that d(f(xi), f(yi)) ≤ d(xi, yi) − δ .
By Arzela-Ascoli and the compactness of S we can assume that fi uniformly converges to
f : S → S and xi → x0, yi → y0 . Then f is 1-Lipschitz and d(f(x0), f(y0)) ≤ d(x0, y0)−δ .
By uniform convergence fi is homotopic to f for large i . Hence f is onto. A surjective
1-Lipschitz self-map of a closed manifold has to preserve the volume which easily implies
that it must be an isometry. Therefore we must have d(x0, y0) = d(f(x0), f(y0)). This is a
contradiction and hence Lemma A.5 is true. �
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