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Synopsis
In the recent past many results have been established on non-negative solutions to boundary value
problems of the form

-u"(x) = Xf{u(x)); 0<x<l ,
M(0) = 0 = K(1),

where A>0, / (0)>0 (positone problems). In this paper we consider the impact on the non-negative
solutions when /(0) < 0. We find that we need f(u) to be convex to guarantee uniqueness of positive
solutions, and f(u) to be appropriately concave for multiple positive solutions. This is in contrast to
the case of positone problems, where the roles of convexity and concavity were interchanged to obtain
similar results. We further establish the existence of non-negative solutions with interior zeros, which
did not exist in positone problems.

1. Introduction

Consider the two point boundary value problem

-U"(X) = A/(W(JC)); * e ( 0 , l ) , (1.1)

«(0) = 0 = u(l), (1.2)

where A > 0 is a constant and / e C2 satisfies

0. (1.3)

Firstly, note that any solution u(x) of (1.1)—(1.2) is symmetric about any point
xoe(0, 1) such that u'(xo) = 0. Then by (1.3) it is possible that a non-negative
solution u(x) of (1.1)—(1.2) may have interior zeros in (0,1). (This was not the
case when/(0) >0, where if u(x) is a non-negative solution of (1.1)—(1.2), then
u{x) > 0 on (0,1).) We will distinguish those solutions which do not have interior
zeros by referring to them as positive solutions. We shall consider three distinct
cases:

Case (A). f"(s)>0 for s >0,

Case(B). f"(s)<0 for s >0,
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292 Alfonso Castro and R. Shivaji

Case (C). There exists some s0 such that/%y) < 0 for 0<s<so and/"(y)>0
for s > s0.

Our main results are:

THEOREM 1.1. Letf(0) < 0, f'(s) >0fors>0 and p\ 6 be positive real numbers
that satisfy /(/3) = 0, F(6) = 0, respectively, where F(s) = fof(t) dt.

Case (A). If f"(s)>0 for s>0 and lim f(s)/s = +oc, then there exist A* >0

such that (1.1)—(1.2) have a unique positive solution for 0< A^A* and have no
positive solutions for A>A*. Also denoting by pk the supremum norm of the
positive solution, pA increases as A decreases, and in particular, pA. = 6,
limpA = +oo. (See Fig. 1.1.)
A-»0

Case (B). / / f"(s)<0 for s>0, lim f(s) = M where 0<A/^+oo,

lim sf'(s) = 0 and (J(6)/d) <f'(6), then there exist A*, fix such that 0 < /i, < A*

and (1.1)—(1.2) have no positive solutions for 0 < A < fix and at least one positive
solution for h = Hi. Further (1.1)—(1.2) have at least two positive solutions for
jUi<A^ A* and there exists ^2 = A* such that (1.1)—(1.2) have a unique positive
solution for A > ju2. Also, pA. = 6 and lim pA = +<*>. (See Fig. 1.2.)

f(s) F{s)

0 A*

Figure 1.1. Bifurcation diagram (Theorem 1.1, Case (A)).
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f(s)

fi

Figure 1.2. Bifurcation diagram (Theorem 1.1, Case (B)).

Case (C). Iff"(s) <0forse (0, s0) with so> 6, f"(s) >0fors>so, (f(d)/6) <
f'{d), and if there exists o>d such that H(o) = F(o) - (o/2)f(o) > 0,
lim (f(s)/s) = +°° and lim f(s) — lim sf'(s) < 0, then there exist A*, Ax, A2 such

f/iaf 0 < Aj < A* ^ A2 and (1.1)—(1.2) have a unique positive solution for 0 < A < Aj
and no positive solutions for A > A2. Further, there exists a range for A in (Ax, A*)
in which (1.1)-(1.2) have at least three positive solutions and if A2>A* then
(1.1)—(1.2) have at least two positive solutions for A e [A*, A2). Also pA. = 6 and
lim px = +oo. (See Fig. 1.3.)
A—0

LEMMA 1.2. Let a = 02/[-F(/3)]. 77ien 2a- ^ A* ^ 8a-.

LEMMA 1.3. If ux(x) and u2(x) are distinct positive solutions o/(l.l)—(1.3), then
{x e (0, l)/u!(x) = u2(x)} is the empty set.

THEOREM 1.4. Let the hypotheses of Theorem 1.1 hold. Then in each of the
cases (A), (B), or (C), given n a positive integer, (1.1)—(1.2) have a non-negative
solution with n interior zeros if and only if A = (n + 1)2A*. Further, such a solution
is unique.
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Fis)

I
4-

A, A* = A2 A, A A2

Figure 1.3. Bifurcation diagram (Theorem 1.1, Case (C)).

Remark 1.5. The above results on positive solutions are in contrast to the case
of positone problems (see [l]-[3]) where concavity (not convexity) guaranteed
uniqueness while convexity (not concavity) allowed multiplicity to be a
possibility.

Remark 1.6. Our results are related to the fact that the Hessian of the
variational functional corresponding to

-u"(x) = / («(*) ) - / (0) ; 0 < * < l

is non-singular at a positive solution. However, our assumptions are quite general
and as such are not enough to guarantee the above.

Remark 1.7. Unlike the case of positone problems where / (0)>0, here, in
general, it seems rather difficult to apply the method of sub-super solutions to
track down the positive solutions. This is because /(0) < 0 makes xp = 0 a
supersolution and not a subsolution as in the case of positone problems. In fact,
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for many of these solutions we suspect that it will not be possible to use this
method. However, see [4], where boundary value problems of the type

—AM = A(M - u3) - e; xeQcR",

u = 0; xedQ,

were considered, and existence of positive solutions for a certain range of A and
e > 0 small enough were derived, using sub-super solutions via the anti-maximum
principle due to P. Clement and L. A. Peletier.

Remark 1.8. See [5], where (1.1)—(1.3) are considered when f"(u)<0 and
when / satisfies certain additional hypotheses which are not easy to verify in
general. The authors prove that, at most, there are only two positive solutions for
any A.

We shall prove our results in Section 2. In Section 3 we give an example
satisfying the hypotheses of Theorem 1.1. In particular, we discuss Case (C), as
construction of examples for Cases (A) and (B) is much easier.

2. Proofs of results

Proof of Theorem 1.1. On multiplying (1.1) by u'(x) and integrating, we
obtain

Since we are dealing with positive solutions, u{x) has to be symmetric with
respect to x = 1/2 and u'{x) > 0 for x e (0, \), see Figure 2.1

In fact, if p = Sup u{x) then u{\) = p, p = 6, and substituting x = \ in (2.1) we
obtain *e((U)

Now integrating (2.2) on [0,x] and using (1.2), we obtain

durVF(p)-F(«)'

(2.2)

(2.3)

u(x)

1/2

Figure 2.1
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His)

Figure 2.2

and hence substituting x = \ in (2.3) we have

du
•:=G(p). (2.4)

Now for positive solutions p must be in [d, °c). In fact, for given A such that there
exists a p e [8, °°) for which G(p) = VX, it follows that (1.1)—(1.2) have a positive
solution u(x) given by (2.3) such that Sup u(x) = u{\) = p. Further, it follows

xe(0,l)

that G(p) is a continuous function and differentiable for p e (6, °o) with

where

= F(s)-(s/2)f(s).

(2.5)

(2.6)

Case (A). We will prove that G'(p)<0 and lim G(p) = 0. Now H'(s) =

2[f(s)-sf'(s)] and H"(s) = -($)sf"(s). But /(0)<0, f"(s)>0 for s >0. Thus
H'(s) < 0 for s > 0, see Figure 2.2.

Hence H(p)-H(pv)<0 for v e [0, 1], and consequently G'(p)<0. Next,
note that for p e (6, <»),

G(p) = (2.7)

Let L(u): = F(pu)/F(p). Then L(0) = 0, L'(v) = (f(pv)p)/F(p) and L » =
(f'{pv)p2)/F(p). But /(s) < 0 for 5 e (0, /5), /(s) > 0 for s > /S and /'(s) > 0 for
s>0. Hence for a given p e (0, <»), L(U) takes the shape shown in Figure 2.3.

Hence, clearly, L(v) ^ v for v e [0, 1]. Consequently from (2.7)
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L(v)

dip

Figure 2.3

But since lim f(s)/s = +°°, we have lim p2/F(p) = lim 2p//(p) = 0, and

hence lim G(p) = 0. This completes the proof of Case (A).

Case (B). Note that /(0) < 0, /"(s) < 0 for s > 0, / (0) < df'{6) and lim /(5) =
S—» + 2C

M. Thus H"(s) > 0 for s > 0, if'(s) < 0 for 5 e [0, 0] and lim if'(j) = (M/2) > 0.

Hence there exists 6, y such that 0 < 5 < y, tf'(<5) = 0 and H(y) = 0,
see Figure 2.4. Consequently, G'(p)<0 for p e [0, d] and G'(p)>0 for
p ^ y and, in order to complete this part of the proof it remains to prove that
lim G(p) = +°°.

Now L{v) = F(pv)lF{p) ^ [f(0)pv]/F(p), since F" = / ' > 0. Hence from (2.7)

H(s)

Figure 2.4
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dv

= -V2(VF(p)//(0))[

- [(f(O)pv)/F(p)]
-(/(O)p)AF(p)

where w = —(f(0)pv)/F(p). Hence

G(p)s-2V5(VF(P)//(O)){[1-

But lim p/F(p) = — while lim p2/F(p) = lim 2p//(p) = +=c. Hence

lim G(p) = +°° and Case (B) is proved.

Case (C). The hypotheses imply that H(s) takes the form shown in Figure 2.5,
which shows a1, a2, o3 and CT4.

Hence H(p) — H(pv)<0 for u e [0, 1) when p e [6, CTJ and when p>o4,
while //(p) - H(pv) > 0 for v 6 [0, 1) when p e (cr2. ^ l - Consequently G'(p) < 0
for p e [6, ox] and for p § a4, while G'{p) > 0 for p 6 [CT2, ^3]- Now to complete
the proof of Theorem 1.1 it remains to prove that lim G{p) = 0, which follows

by arguments identical to those used in the proof of Case (A). •

Proof of Lemma 1.2. First we note that (1 - V-F(s)) g (l/V--F(/3)) for

His)

Figure 2.5
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Figure 2.6

s e (0, 6), and since F"(s) =f'(s) > 0 for s > 0 we have

K) \-[F(P)/(d-P)](6-s) for

(See Fig. 2.6.)
Thus

. fVj8/(-F(j8)s) for 0^5^/3,

^ for
Hence

and

(2.8)

{-F{p)) 2Vjs
= 2y/26N-F(fi). (2.9)

From (2.8) and (2.9) it easily follows that 2cr^ A* = [G(0)]2^8a, where
o- = 62/[—F(P)], and Lemma 1.2 is proved. Note here that for A = A* the minimal
solution u(x) has supremum norm p = 8 and hence u'(0) = 0, see Figure 2.7. •
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- V -

2(n +

Figure 2.8

Proof of Lemma 1.3. If «2(2) = Pi> "1(2) = Pi, then at any point *o 6 (0, \)
where Ui(x0) = u2(x0), from (2.2) we must have w2(*o) > "i(*o)- Hence, there can
be at most one such point. But from (2.2) we also have u2(0) > uJ(O). Thus, no
such point exists. •

Proof of Theorem 1.4. First we note that in order to study a non-negative
solution with n interior zeros, due to the symmetry we need to study the solution
only in the interval [0, l/(2(n + 1))], see Figure 2.8.

From (2.1) we have for x e [0, l/(2(/i + 1))],

«'(*) = V2A[F(p)-F(u)], (2.10)

where p = sup u(x) = u(l/(2(n +1))). But since we must have u'(0) = 0,

F(p) = 0 and hence p = 6. Now integrating (2.10) on [0, x], we obtain

duru(x)

JO ^
xe[0,l/(2(n

and hence substituting x = l/(2(n + 1)) in (2.11) we must have

du

(2.11)

(2.12)

Thus, in order to have a non-negative solution u(x) to (1.1)—(1.2) with n interior
zeros, A must equal (n + 1)2A* and Sup u(x) = 6. In fact, given A = (n + 1)2A* it

follows that (1.1)—(1.2) have a unique non-negative solution u{x) with n interior
zeros given by (2.11) with Sup u{x) = «(l/(2(n + 1))) = 0. •

3. An example

This example illustrates Theorem 1.1, Case (C). Consider

f(s) = s3- as2 + bs-c, (3.1)
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where a > 0, b>0, c > 0 and they satisfy

ft>(32/81)a2, (3.2)

fl3>54c. (3.3)

Clearly /(0) < 0. Further

f'(s) = 3s2-2as + b

= 3{[s-(a/3)]2 + (b/3)-(a2/9)}. (3.4)

But (3.2) implies that (ft/3) > {a219). Hence / ' (* )>0 for s>0 and since
lim f(s) = +°°, there exists a unique /? > 0 such that /(/3) = 0.

Next F(s) = sg(s), where

g(s) = (s3/4) - (as2/3) + (bs/2) - c, (3.5)

and

g'(s) = (3s2/4) - (2os/3) + (ft/2)

= (3/4){[s - (4a/9)]2 + (2ft/3) - (16a2/81)}. (3.6)

Once again (3.2) implies that (2ft/3)> (16a2/81) and hence g'(.s)>0 for s § 0 .
But g(0) < 0 and lim g(s) = +oo. Hence there exists a unique 6 > j3 such that

Now note that

f"(s) = 6s-2a. (3.7)

Clearly there exists s0 = (a/3) such that f"(s) < 0 for s e (0, s0) and f"(s) > 0 for
s>s0. Also (3.2), (3.3) imply that

F(a/3) = (a/3){(a3/108) - (a3/27) + (aft/6) - c}

= (a/3){(ab/6)-c-(a3/36)}

i= (a/3){(32fl3/486) - (a3/54) - (a3/36)}

= (19a4/2916)>0. (3.8)

Hence 6<so = (a/3).
Next consider

f(6) - df'(d) = -2d3 + a62 - c.

Now g(6) = 0 and thus substituting for c we have

f(6) - 6f'(6) = (-903/4) + (4a02/3) - (bd/2)

= (~96/4){[d - (8a/27)]2 + (6ft/27) - [64«2/(27)2]}.

Hence, using (3.2), we have f(9)-df'(8)< 0.
Finally, the hypotheses lim (f(s)/s) = +°° and lim f(s) - lim sf'(s)<0 are

easily seen to be satisfied, and hence it remains to prove the existence of a
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number a > 0 such that H(o) > 0. Inequality (3.3) implies that

//(a/3) = (-a4/324) + (a4/162) - (ac/6)

= {[a4-54ac]/324} >0,

and (a/3) > 6. Hence the result.
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