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NON-NEGATIVE SOLUTIONS OF LINEAR
PARABOLIC EQUATIONS

by D. G. ARONSON

Introduction.

The main results of this paper are several theorems concerning the prop-
erties of non-negative solutions of second order linear divergence structure
differential equations of parabolic type. One of the main results is the fact

that every non-negative solution of the Cauchy problem is uniquely deter-

mined by its initial data. Solutions of the Cauchy problem are functions

which correspond to a given initial function in some well defined way. There
are also solution of the differential equations in question which are non-

negative but which do not have initial values in any ordinary sense, for exam-
ple, the Green’s function in a bounded domain or the fundamental solution
in an infinite strip. The properties of the Green)s function and the funda-

mental solution are developed in detail, and another of the main results is
the fact that these functions are bounded above and below by multiples
of the fundamental solution of an equation of the form ad 1c = ut, where a
is a positive constant. In addition, we prove that the Widder rapresentation
theorem is valid for the class of equations under consideration. Throughout
this paper we work with weak solutions of a very general class of parabolic
equations. When specialized to classical solutions of equations with smooth
coefficients our results are either new or generalizations of earlier results.
All of our results depend ultimately upon the work of Serrin and the author
on the local behavior of solutions of general divergence structure equations
and upon certain energy type estimates which are derived here.

Let x = (xy .... , x’,~~ denote points in the n-dimensional Euclidian space
with it &#x3E; 1 and t denote points on the real line. Let Z denote an open
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domain in En. It is not necessary that 4 be bounded == En is not

excluded. Let T be a fixed positive number and consider the domain D =

. I X (0, TJ. For (x, t) E D we treat the second order linear differential

operator

where ut = aulat, u.,i = and we employ the convention of summation
over repeated Latin indices. The coefficients of I~ are assumed to be defined
and measurable in D. Before describing the remaining assumptions on L we
introduce some notation.

Let ’i3i (~) denote a Banach space of functions defined on ~ with the
norm - 11, and (I) denote 3 Banach space of functions defined on an in-
terval I with the norm [ . [z. " A function ’Ui = W (x, t) defined and measurable
on D = I x I is said to belong to the class 932 [I ; ~1 (Z)] if w (., t) E 931 (1:)
for almost all t E I and It (t) 12  00. When the sets E and I are clear

from the context we will write 932 [C’311 in place of 932 [1; (~)]. In re-

ference [6] the classes Lq [I ; are denoted by and we shall

also use this notation here. Morever, for with 1 --- p, q  oo we

define

In case either p or q is infinite, II Ui II p, q is defined in a similar fashion

using L° norms rather than integrals. Let cS denote the set of cylinders
of the form R (a) X I, contained = En x I, where R (0) denotes an open
cube in Eft of edge length a and o = min A function w = w (x, t)
defined and measurable on S is said to belong to the class LP,q (cS) if

 oo, y where the norms are taken over cylinders in the

family c5.
The operator L is defined in a basic domain D which is either a bounded

cylinder S~ x (0, ~’) or an infinite strip En X (0, T]. It will be convenient

in many instances to regard L as being defined throughout the (n + 1)-
dimensional (x, t) space. We therefore adopt the convention that Lu == ut - A
for all (x, Throughout the paper it will be assumed that there

constants v, M, Mo and Ro such that 0  oo, 0  oo and 0 ~
S Ra S oo, and such that the coefficients of L satisfy the following con-

ditions which will be referred to collectively as (H).

(11.1) For and for a l1nost all (x, t)
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(H.2) .Let Qo = (I r )  Ro) x (0, T]. Each of the coefficients A j and Bj
is contianed i,1 space (Qo), where p and q are 8uok that ,

and / almo8t all and i

p and q a1’e such that

und C (x, t) ~ Mo for almost all I x I ~ Ro and t E (0, T].
Note that (H.2) implies that the Aj and Bj each belong to some space

LP, " (cS), where p and q satisfy (*), If Ro --- oo then Qo is the strip 8 = Es x
X (0, T] ] and condition (H.2) simply requires that the coefficients Aj and Bj
belong to the appropriate spaces Lp, q (8). On the other hand, (H) clearly
holds if L is uniformly parabolic and all of its coefficients are bounded in
S. Let L be an operator defined in a bounded cylinder Q = D x (0, T),
such that (i) and -~ M, almost everywhere in Q, (ii) A"
]3j E LP, q (Q) where p and q satisfy (~)~ and (iii) where p and q
satisfy (**). Then the extension of L according to the convention adopted
above satisfies (H) with v = min (1, M = max (1, Ml), ~ = 0, and any
Ro such that 0 c (r ; x  Ro) .

Without further hypotheses on L it is not possible, in general, to speak
of a classical solution of a differential equation involving the operator L,
and it is correspondingly necessary to introduce the notion of a generalized
Solution. Before doing so, however, we will need several additional defini-

tions. Let f2 denote a bounded open domain in A function w = w (x)
defined and measurable is said to belong to if w possesses
a distribution derivative ’lCx and

The space is the completion of the G’~ (~) functions in this norm.
The space H’’ ~ ( L’’~) is the completion of the functions in the norm
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For consider the differential equation

where the Fj and (~ are given functions defined and measurable in D. A

function u = u (x, t) is said to be a ioeak solution, of equation (1) in D if

for all 6 E (0, T) and u satisfies

for E (D). Clearly every classical solution of equation (1) in D is

also a weak solution. We will use the terms weak solution and solution

interchangably throughout this paper.
Various known properties of weak solution of equation (1) are summa-

rized for convenient reference in section 1. These results, which are used

extensively in the remainder of the paper, include the maximum principle
and theorems on local behavior proved by Serrin and the author in refer

ence [6], and theorems on regularity at the boundary due to Trudinger [21].
Moreover, we establish a simple but useful extension principle which
permits us, in some cases, to use the local results of reference [6] in the

neighborhood of the boundary.
Section 2 is primarily devoted to the derivation of weighted energy type

estimates for weak solution of equation (1). In particular, if u is a solution

of (1) we derive estimates for the L2, ° norm of eh u and the L~~ 2 norm

of eA ux. Here 1~ = h (x, t) has the form

where ~ E En and 8 E [0, T) are arbitrary, and a, fJ, P, are positive constants

determined by L and the data. These estimates are related to those obtained
by Aronson and Besala in reference [5], and include as special cases esti-

mates due to Il’in, Kalashinikov and Oleinik [121, and Aronson [3].
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be a bounded open domain in En and Q = !J x (0, Z’ J, Consider
the boundary value problem

where are given functions each belonging to a space Lp, q (Q) with

p, q satisfying (*), G is a given function in Lp, q (Q) with p, q satisfyng (~:~),
and Mo is a given function in L2 (~). In section 2 we define the notion of

a veak solution of problem (3) and prove that this problem possesses exactly
one weak solution. Moreover, we establish various properties of the solu-
tion. Except for certain details, this material is fairly standard. It is

included in detail here for the sake of completeness and since we will have
occasion to refer to some of the intermediate steps in the proof. Alternate

v

treatments can be found in the work of Ivanov, Ladyzenskaja, Treshkunov
v

and Ural’ceva [13], and Ladyzenskaja, Solonnikov and Ural’ceva [15].
The Cauchy problem

where 8 = En X (0, T], is treated in section 4. Again the Fj, G and tto are
given functions, and it is assumed that for some constant y - 0 we have

It Fj E Lp, q (8) with p, q satisfyng (~), e-Y 1111’ G E LP, q (~S) with p, q satis-
fying (**), and The notion of a weak solution of prob-
lem (4) is defined and it is shown that the problem possesses exactly one
weak solution in the appropriate class of functions. Various properties of

the solution are also established. For example, let u denote the solution of
problem (4), where ito = 0 and where the Fj and Q~ satisfy the hypotheses
given above with y = 0. Then there exisists a constant depending
only on T and the quantities in the conditions (H), such that

for all (x, t) E S. For other work on weak solutions of the Cauchy problem
see references [ 12j and [15].

In section 5 we consider a non-negative solution u of the Cauchy
problem
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where uo is a given non-negative function which belongs to (En). The
main result is that u is uniquely determined by Specifically, for each

(x, t) E S we have 1Gk (x, t), where the uk are the unique weak
k - oo

solutions of certain boundary value problems involving L and A spe-
cial case of this result, with

was obtained by the author in reference [3]. The first theorem of this type
was given in the case it =1 by Serrin [19] for equation

with Holder continuous coefficient. Our result extends but does not include

Serrin’s result. In the proof of the main result we use the following gener-
alization of a theorem first proved by Widder [22] for the equation of heat
conduction. If It is a non-negative weak solution of the Cauchy problem (6)
with uo .= 0, then u = 0 in S. This result includes earlier results for clas-

sical solutions of equations with smooth coefficients due to Friedman [9],
. ,

[10] and Krzyzanski [14].
The estimate (5) implies that the value at a point of the solution of

the Cauchy problem is a bounded linear functional on a certain Banach

space. We use this observation in section 6 to establish the existence of

the weak fundamental solution r (x, t ; ~, T) of in S. In particular,
we estimate certain norms of 1’ and its derivatives, and show that the

solution of the Cauchy problem

with the for p, q satisfyng (*) is given by the formula

In a similar manner, using the maximum principle for solutions of the

boundary value problem. we prove the existence of the weak Green’s function
for Lu = 0 in any bounded cylinder Q i S~ ~ (0, T] and derive a represen-
tation formnla similar to (8) for solutions of the boundary value problem.
The existence and properties of the Green’s function for the special case in
which L is given by (7) were obtained by the author in reference [1].
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The next two sections are devoted to deriving various properties of the
weak Green’s functions and fundamental solutions. In section 7 we make

the temporary assumption that the coefficients of L are smooth and show
that the weak Green’s functions and fundamental solution coincide with

their classical counterparts. Several of the known properties of these func-
tions are described. The main results of this section are upper and lower

bounds for these functions which are independent of the smoothness of the
coefficients of L. Specifically, we prove that there exist positive constants

at I a2 and C’ such that

for all (x, t), (~, r) E S with t &#x3E; 1:, where gi (x, t) is the fundamental solution

of o:, JM = ut for i = 17 2. The constants depend only on T and the quan-
tities in condition (H). In the appendix to reference [16] Nash gives some-
what weaker bounds for r in case L is given by (7). A similar result holds
for the Green’s function y for L in a bounded cylinder Q. Here, however,
for the lower bound x and ~ must be restricted to a convex subdomain

Q’ of S2 and the constants depend on the distance from {J’ to These

bounds were announced by the author in reference [4]. In section 8 we re-
move the assumption of smoothness of the coefficients of .L and prove that
the function y and .~ are limits of the corresponding functions for operator
obtained from b by regularizing the coefficients. From these considerations
it follows that y and 1’ inherit the principal properties of their classical

counterparts including the bounds described above.
In section 9 we combine the results obtained in sections 5 and 8 to

prove that if u is the non-negative weak solution of the Cauchy problem (6)
then

This representation theorem includes as special cases earlier results for

classical solutions of equations with smooth coefficients due to Friedman
, ,

[9], [10] and Krzyzanski [14]. We also obtain a necessary and sufficient

condition for a function defined by a formula such as (9) to be a non-

negative solution of the Cauchy problem. Using (9) and the bounds for T
derived in section 8 we show that if u is a non-negative weak solution
of Lu = 0 in S then there exist a unique non-negative Borel measure g
such that 

-
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Moreover, we give a necessary and sufficient condition for a function de-

fined by a formula such as (10) to be a non-negative weak solution of
Lu = 0 in S. Taken together these two results constitute a generalization
of Widder’s representation theorem for non-negative solutions of the equa-
tion of heat conduction [22]. The representation formula (10) for classical

. I

solutions of equations with smooth coefficients was derived by Krzyzanski
in reference [14]. The uniqueness of the measure p has not been consider-

. ,

ed by either Krzyzanski or Widder. As a corollary to this result we also
obtain the following result of Rôcher type concerning non-negative solutions
of Lu = 0 with an isolated singular point on the hyperplane t = 0. Let u

be a non-negative weak solution of Lu = 0 in S and suppose that

for all I where uo ~ 0 is in Then there exists a con-

stant ’1J h o such that

The special case in which "0 = 0 and u is a classical solution of an equa-
. ,

tion with smooth coefficients is treated by Krzyzanski in [14]. A weaker
result when L~ is given by (7) and 1to = 0 was obtained by the author in
reference [2].

Results quoted from references [6] and [21] are designated by Theorem
A, Theorem B, etc. Theorems and lemmas proved in this paper are nun-
bered consecutively without regard to the sections in which they occur,
and we use Corollary n . m to designate the m-th corollary to Theorem n.

The results reported here are a partial summation of research which
has spanned several years. Througout this period the author has benefited
greatly from countless discussions (and arguments) with Professor James
Serrin, and it is a pleasure to thank him here for his interest, encourange-
ment and aid. We also wish to thank Professors Jiirgen Moser and

Hans Weinberger for their interest in this work and for many stimulating
discussions.
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1. Preliminary Results.

For (x, t) E ,S consider the linear equation

where it is assumed that L satisfies (H), each q (cS) for some p, q

satisfying (*), and G E LP, q (c5) for 1’, q satisfying (**). Under these hypothe~
ses, equation (1.1) belongs to the class of equations treated in references

[6] and [21]. What follows is an annotated list of the specific results from
these references which are used in this paper. The statements given below
are not necessarily in their most general forms but are tailored to the ap-
plications which we will make here. Theorem D is from reference [21] and
the remaining results are from reference [6].

In this section will always denote a bounded domain in ~E" and

Q = {J X (0, TJ. The parabolic boundary of Q is the set (~ x (t = 0)) u (aD x
x [0, T]l When the nature of the basic domain is irrelevant we will denote

it by D = I x: (0, T], where E is either Q or Ell. If IV is one of the

functions or G, I, means ~) W ~ I p, q if the basic domain

is Q or sup 11 if the basic domain is S = En X (0, T]. With this con-
c5 

’

vention we define

All constant will be denoted by e. The statement e depends on the
structure of (1.1) » means that e is determined by the quantities v,M,
it, 1! B~ ~~, (~ C I and 0, where 9 is a positive constant which is deter-

mined by the values of p and q occuring in (B ) and in the hypotheses
on the F~ and 

In reference [6] it is shown that every weak solution u of (1.1) in D
has a representative which is continuous in D. We will therefore always
assume that u denotes the continuous representative of a given weak solution.
Hence there is no difficulty in talking about the value of u at any point
of its domain of’ definition.

THEOREM A. Principle) Let u be rr. weak solution of equa-
tion (1.1 ) in M6 (,10 (Q) and S u  on the pa1’abolio bouiadary of
Q, then ,
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in Q, ivhere e depends only on T, Q and the of’ (1.1), ivhile

B7=’ I /

for i = 1, 2.
Let (x, t), be an arbitrary fixed point in the basic set D. BtVe denote

by R (g) the ball in En of radius p/2 centered at x and define x

x (t -- L02 t~. The symbol 1:-llp, q e will be used to denote the Lp, q norm com-
puted over the 

THEOREM B. (Local Boundedness). Let u be if. 1ceak solution of equation
(1.1) in D. Assume that e  eo that Q (3g) c D. Then (e)

where e depends only o~i eo and the structure of (1.1).
To state the next result it is convenient to use the following notation.
write x’ = (x~ t)~ y’ = (y, s), etc. to denote points in space time and in-

troduce a pseudo-distance according to the definition

Thus, for example, the set  ~e for fixed x’ is the cylinder

THEOREM C. (Interior Hdlder Continuity) Let u be a zoeak solution of
equation (1.1) in Q such that u I ~ 1lt i~i Q. If x’, y’ are points of Q 2aith

where a are positive depending only on the of (1.1),
and B is equal to either the pseudo-distance x’ to the parabolic boundary
of Q or 1, whichever is 

In order that a solution of (1.1) in (j be continuous tip to the para-

bolic boundary of Q it is clearly necessary that ôQ have some regularity
v

properties. The following very weak condition was introduced by Ladyzen-
skaja and Ural’ceva (cf. reference [15]). The bonndary 00 of S will be said
to have property (~.) if there exist constants ao and 90, 7 0 ~ (10 , 90  1,
such that for any ball l~ (e) with center on FQ and radius ~/,‘~~  (to tlle
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inequality

holds.

THEOREM D. (Continuity up to the Let u be a weak solution

of equation (1.1) in Q and suppose that aS~ h08 propet-ty (A).
(i) If It is continuous in Q X (0, 2’1 and bounded in Q then it laas a

modulus of continuity in Q X [, TI fot- a1fY 6 E (0, 1’) which is completely
detertmined by ð, the structure of (1.1), k, u I, the constants involved in

Q

(A), and the modulus of continuity of 1£ on aS x [6/2, T].
(ii) If 1£ is continuous in Q then the modulus of continuity of u in !

is completely determitted by the structure of (1.1), k, max 1 u I, , the constants
Q 

’

involved in property (A) and the tnodul?18 of contin1£ity 0..1" u on the parabolic
of Q. In particulat., if u is H61der continuous on the parabolie

bounda1’y of Q then it is also golder continuous in Q.
The remaining results concern non-negative solutions of (1.1). Since

we apply them only in cases where k = 0 we will state them onl y for the
equation

THEOREM E. Pt"inciple) Let it be a non-negative solution of
equation (1.2) in S. Then ,for ,atl points (x, t), (y, 8) in S with 0  s  t  T

we have
i~ 19 . , I

where e depends only on T and the of (1.2).
The next two theorems are concerned with the behavior of a non-neg-

ative solution in the neighborhood of t = 0.

THEOREM F. Let u be a non-negative solution of equations (1.2) in S.
Suppose that fot, sotne x &#x3E; 0 we have

Here e1 and C’2 both depend T the structure of (1.2), and et also

depends ora x.
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THEOREM G. Let 1t be a non-negative solution of equation (1.2) in S. If

then

where e depends onl y on the structure of (1.2).
Finally, we have the somewhat more complicated versions of Theorems

E and F which hold when the basic domain is bounded. If ê1 and ê2 are
two point sets we will write d ((f 1 l(f2) for the distance from ê1 to ê2.

THEOREM H. Let it be a non-negative solittion of
equation (1.2) in Q. Suppose Q’ is a couvex subdomain 0..( Q such that b =

Then all x, y in ’ and all 8, t satisfyiitg I
we have

where e deends only on the structure of (1.2), and R = min (1, s, 2).

THEOREM I. Let u be a non-negative 80lution of equation (1.2) in
Let ~ be a fixed point of Q and suppose that ,for 8onae X &#x3E; 0

If S’ is a covex subdomain of Q 8i(ch E Q’ a)td

then

fot- all and whei-e ðt = d (~, aD’). Here C’1 aud
C~2 depend on d, T and the of (1.2). ltnd e, also depends On x.

Theorems B, C, E and H are local results. In particular, they are ap-
plicable only in subdomains where t is bounded away from zero. If, however,
u (x, t) has a limit in an appropriate sense as t --+ 0 and if the limit satisfies

certain additional conditions, then this restriction can be avoided. A spe-
cial case of this remark will be used on several occasions in what follows

and we conclude this section with a precise formulation of that special
case.
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Let u be a weak solution of equation (1.1) in D and let be such

that T. For each e ;&#x3E; 0 so small that T

there exists a smooth function 1,, = ’YJE (t) such that (i) ti, = 1 for a c t S z,
(ii) = 0 for t  ~ - ~ and t ~ z + E, (iii) 0 ~ ~ 1, and (iv) 0  ~E S
const./£ for 0 - E  t S a and const/E  q§  0 for T  t ~ z -E- e. is

a C’ (D) function with compact support in Z then C’o (D). Thus
it follows from (2) that

Since dx is a continuous function of t on the interval (0, T] we can

let e - 0 to obtain (1)

for E 01 ( I)) with compact support in -v, where 0  a  ~  Z’. By
continuity, y it follows that (1.3) also holds = T.

A weak solution u of equation (1.1) in D will be said to have initial

values "0 on t=O, where
and

for all If u has initial values "0 on t = 0 and 92 is a I fune-

(i) According to Lemma 2 (given in 8section 2), 1
- , - .

implies that for all exponents p’, q’ whose Holder conjngates p, q
satisfy (**). It follows that ( is dominated by an integrable function,
and, using the dominated convergence theorem one obtains (1,3) A similar remark jus-
tifies the limit prooess which leads to (1.4).
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tion with compact support in E, then since

as o -~ 0, Therefore, letting in (1.3) we obtain the following result.

If u is a weak solution of equation (1.1) in Il with initial values uo on

t = 0 then

for TJ and for all q E C’ (Ð) with compact support in Z.
Let u be a weak solution (1.1) in D with initial values ~y = constant

on t = b. Extend the domain of definition of the Fj and G by setting them
equal to zero in CD. Let D~ _ ,~ ~ (- oo, T] ] and define the function

We assert that 1~~ is a weak solution of’ equation (1.1) in D*, where L is

defined for t ~ 0 according to the convention adopted in the Introduction

Q’ = 0 for t  0. It is clear that

Thus it remains to be shown that

for arbitrary . For any
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Hence, letting

On the other hand, if we in (1.4) it follows that

Combining the last two expression we obtain (1.6) and the assertion is proved.
Since the extension of equation (1.1) for t  0 does not alter its struc-

ture, the results of reference [6] apply to u* in D*. In particular, the weak
solution u* defined by (1.5) has a representative which is continuous in D~‘.
Henceforth u* will denote this continuous representative. Note that with

this convertion u- (x, 0) = uo for x E ~. To summarize these considerations

we have the following result.

EXTENSION PRINCIPLE. Let u be a weak solution of equation (1.1) in

D with initial values !to = constant on t = 0. Then B holds for
u. in D*. if C, E or H holds for -it in I), then the same

holds for u- in D*.

The operator adjoint to L is

and it is clear that if L satisfies (H) then the same is true for L. Thus all
of the results given above also hold for the equation

Indeed, any result which is stated for equation (1.1) can be reformulated
to apply to equation (1.7) by replacing t with -t, and interchanging Aj
and - Bj.

2. Energy Estimate.

In this section we consider a certain class of weak solutions of the

equation
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and derive estimates for a weighted L2,°° norm of u and a weighted L2,2
norm of These estimates will be used frequently in various contexts in
the remainder of the paper and they will be given here in a form which is
sufficiently general to cover all applications which occur.

Let 0 be a fixed bounded open domain in En and Q = S~ &#x3E;C (o, TJ. We
assume that L satisfies (H), F? E L2’ 2 (Q), and with p, q satisfying
(**). If 1a is a weak solution of (2.1 ) in Q and 
n L 2 [0, T ; HI, 2 (Q)] then u is said to be a global weak volution of (2.1) in Q.
For arbitrary T E (0, T ] let R = S , (0 ). is a global weak solution

of (2.1) in Q with initial values uo on t = 0 then it follows from (1.4) that

for all g E C~ with compact support in fd. Sote that if’ u is a weak so-

lution of (2.1) in D then 1t is a global weak solution of (2.1) X (~, T]
with initial values u (x, 6) on t = 8 for any bounded open domain such

that Q c and any T). 1n the proof of the main result of this sec-

tion we will need two properties of global weak solutions. Before formulating
the main result we derive these properties.

If u is a global weak solution of (2.1) in Q with initial values uo on

t = 0 then

and

for all t E [0, T I and 1p E L2 (fj), where it (x, 0) is interpreted as Uo (x). Let

Since u E L2t 00 (Q) we know that = 0. Suppose that E =t= 0. Then given
I there exists a sequence of points in C E such that t; - s. If this

were not the case then E would contain a neighborhood of s in contradic-

tion to = 0. The weak compactness of bounded sets in L2 (~3) and

imply the existence of a function

and a subsequence, which we again denote by such tlmt

weahly in L2 (5~~, Moreover, in (2.2) and fake
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Then letting tj - s we obtain ,

On the other hand, (2.2) also holds for T = s and it follows that

for Since Co (~) is dense in this implies that

I as functions in L2 (0) and, in particular, that
Hence the assumption that leads to a contra-

diction and (2.3) holds. Now let a and T be any two points of [0, T J with

a  T. It follows from (2.2) that

for any Thus

for all 6[(), T] J and cp E In view of (2.3) and the density of 

in 7~(~), (2.4) follows easily.
The main result of this section is the following lemma concerning

global weak solutions of (2.1) in Q.

1. Let 2c be cr global ’weak solutaon of (2.1) 
zoitle and be a non-negative smooth function
Buch that

l’Ite)-e exist positive constantR a, f, 0 t1tt,,t 

aoid p ] 0

; della l’isa
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the norms at-e taken over the Bet with and

1.’he constants 0153 and f3 depend only on the of -L, while e depends
only on the structure of L, T, the exponents p, q for G

By the structure of L we mean it and the quantities which occur in

the hypotheses (H). In particular, a depends only on n, M and v, while fl
depends only on ~~, Mo and v. The explicit forms of a, f3 and C are given in
the proof of Lemma 1.

In the proof of Lemma, 1 and elsewhere in the paper we will need the
following interpolation lemma.

LEMMA 2. If then a

for all values of p’ at¡d q’ whose Holder conjugates p and q satisfy

Moreover

where and K is a positive corzstant which depends only oaz n

I and only on p 
This lemma is a slightly improved version of Lemma 3 of reference [6].

Specifically, in reference [6 J the constant K depends on ~ I in the case ~i=2,
while here g is independent of ~ I for all 9~ ~ 1. We shall prove Lemma 1

only for the case it = 2 and refer the reader to [6] for the remaining cases.

PROOF or LEMMA 2 FOR THE CASE M = 2. By Nirenberg’s form of the
Sobolev theorem [20] 

..

for p &#x3E; 1 and almost all were Hence
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provided that : 
"

Thus it follows from Young’s inequality
that

PROOF OF LEMMA 1. Without loss of generality we may set 8 ~ 0. To
derive the required estimate it is necessary to take ~2 e2h u as the test
function in (2.2). It is obvious that this cannot be done directly since
~2 e2h u is not a 01 (QT) function with compact support in 0, and in par.
ticular, it does not have a derivate with respect to t even in the dis-

tribution sense. Thus the proof is divided into two parts. In the first

part we show that the equation obtained by formally substituting 99 = ~2
e2h It in (2.2) is in fact valid. That is, if u is a global weak solution of

(2.1) in Q then u satisfies

for all 1" E [0, T’~. To accomplish this we use a regularization technique as
in reference [3]. The second part of the proof consists of the actual deri-
vation of the required estimate from (2.5).

In view of the choice of ~,

Thus, in particular, there exists a sequence functions with

compact support in 0 such that

where the norms are computed over the set QT for fixed r E (0, T"]. Let (t)
be an even averaging kernel with support in t (  1/ l, where l is a posi-
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tive integer. Let wi denote the convolution of wk with Kl on (0, T), that is,

and define w, similarly. For each value of k and I it is clear that

is a C, (Q,) function with compact support in ~. It is therefore an admis-

sible test function in (2.2) and we may set 99 = qf to obtain

We assert that if we hold I fixed and let k --~ oo in (2.6) the result is
that (2.6) is valid with k deleted. By Minkowski’s and Schwarz’s inequal-
ities together with the standard properties of averaging kernels [20]

whence
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Similarly, since

and

for every Thus

and, by Lemma 2,

for all exponents p’, q’ such that Note that w itself also be-
’1

longs to .L2p’,2q’ (9,) for the same range of exponenents. Using these facts
together with the hypotheses eatieflerl by and u. it is not difficult
to check that each term in (2.6) tends as k --~ oo to the corresponding term
ii’ith k deleted. We omit further details.

Consider the integral

By Fubini’s theorem and the definition of zal this can be written

Th us, since K, (t) is an even function of t, it follows that V = 0. Using the
translation continuity of the norm 11 IIp, q one shows, in a standard fashion

’I and ) I as l --~ oo for all ap-
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propriate p, q. Consider

for 1/~ ~ ~. Since i and (2.4) holds we have

Thus given 0 there exists 6 ~ 0 such that

for all 101 I  6. In particular, ~ b then

that is,

Similarly,

Using these observations it is not difficult to verify that if we first let

k --~ oo in (2.6) for fixed I and then let I --~ oo ill the resulting equation
we obtain precisely the equation (2.5). This completes the first part of the

proof of Lemma 1.
For the integrands of the second and third terms on the left in (2.5)

we have the estimates
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and

where

Let 1’1 , z2 be such that T’. Write (2.6) for t = rti and r = r2,
form the difference between these expressions, and apply the estimates

given above to obtain

Here

and the double integrals are computed on the set
Set

and define
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Since L satisfies (H) it is easily seen that

The functions i C and a each belong to some space with

p and q satisfying (**). Let 0 denote the minimum value of

for the 2M-J-2 pairs (p, q) involved. Note that 0~0~1. Assume
where By H61der’s inequality and Lemma 2

where

with the norms computed on the set Qo. Similarly, using the inequalities
of Holder and Young together with Lemma 2, we have

Finally we note that

In view of these estimates,

Choose
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and a such that

Note that min (i, v). rhus using (2.8) and (2.9) it fol-

lows from (2.7 ) that 
’

where

Let

and

where the norms are computed on the set Q x (0, T’). Then (2.10) implies

for x, S z ~ a, + o. Here the integral is taken over the sets

and the norm is computed over the set If we ignore the
second term on the left in (2.11) it is easily seen that

for it follows by iteration that

On the other hand, if we ignore the first term on the left in (2.11), set

T1 = ( j - and apply (2.12) we obtain the estimate
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Suppose that for some integer Then (2.12)
implies

and summing the estimates (2.13) on j from 1 to 1 yields

Combining these two estimates, we obtain the assertion of Lemma 1.

[The conditions (H ) which are imposed on L are sufficient but not

necessary to guarantee the simultaneous applicability of the results enu-

merated in section 1 and of Lemma 1. To use theorems of section 1 in the

strip S one needs, in addition to uniform parabolicity, only that each of

the functions and C belong to some space However, to ob-
tain Lemma 1 it is necessary to have some further restriction on the be-

havior of the coefficients of L for large values of x 1. An examination of

the proof of Lemma 1 reveals that the essential use of (g) is in obtaining
a lower bound for the expression

where’ ¿ 0 and

and that the proof can be carried through under less restrictive conditions

on L. For example, we can assume that : (i) Each of the functions and

C belong to some space with p and q satisfying (**), and (11.1)
holds. (ii) There exist positive constants n, b c, fl and a 
which is the sum of a finite number of non-negative functions each belong-
ing to some space with satisfying. (**) such that

holds for all and

In proving the existence of weak solutions we use Lemma 1 to obtain
a sequence of functions (v"+) such that uniformly
bounded. From such a sequence we then extract a subsequence which con-

verges to the eventual weak solution by means of Lemma 2 and the fol-

loving lemma.
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LEMMA 3. Let lvln I be a sequence of functions in L (.) which converges
weakly to a limit function v w independent of m

PROOF. According to the Banach-Saks theorem [17] there exist a sub-
sequence ( such that the averages

strongly in L29 2 ( D). Therefore, there exists a subsequence I of the aver.
ages which converge to v almost everywhere in D. Let tit (t) denote the

n.dimensional measure of the set of x E ~ for which ;ki -1-+ v (x, t) and Eo
denote the set of t E [0, T] for which 0. The measure of Eo is zero,

A
for otherwise we would have a contradiction to vk-- v almost everywhere
in D. Let Em denote the set of t E [0, T] for which

Then for each 1n ~&#x3E; 1 the measure of ~m is zero. Hence the set

also has measure zero. For any we i --~ z~ and hence I

-~ v2 almost everywhere in 4. By Minkowski’s inequality

Thus, it follows from Fatou’s lemma that 11 V ( ·, ~) every t E t E
Since the measure of E is zero this proves the Lemma.

2. The Boundary Value Problem.

Let 0 be a fixed bounded open domain in and Q = 0 X (0, T]. Given
functions Fj E 1,2~ 2 ( ~), G E (Q) with p, q satisfying (~~:), and ito E L2 (0) we
consider the boundary value problem

where L satisfies (B). A function is said to be a weak solution

of probleiii (3.1) if 11, is a global weak solution of equation (3.1) in Q with
initial values uo on t = 0 and if u E
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By the convention adopted in the Introduction, .L is defined for almost

all (x, t). Extend the domains of definition of the Fj, G and uo by setting
F,= Q’ = 0 in C ~I and ito = 0 in C S~. Let A j, ..., Um denote integral
averages of ~4~..., G formed with an averaging kernel whose support
lies in x ~2 -~- t2  lit-2 for integer8 ni ~ 1 and define the operators

By the standard properties of integral averages [20] it is easily verified

that these operators have a uniform structure with respect to ni which is

completely determined by the structure of L. Let uo denote the integral
averge of uo formed with a kernel whose support lies in x  ~0-1. If uo
has compact support, so does u~ for w sufficiently large. Let (Dm) be a

sequence of open domains with smooth boundaries such that

for all 1n ~ 0 and lim Dm = S~. If ito has compact support in

Q set ~’m --_ 1, otherwise for each let ~,,, = ~... (x) denote a

function such that Cm = 1 on and 0 - 1.
Consider the sefluence of boundary value problems

Since the coefficients of and the data are all C°° fonctions, and 8Q’n
is smooth it follows from the classical existence theory that for each

such that supp the problem (:3.2) has a unique classical

solution I

THEOREM 1. Suppose that L satisfies (H), Fj E L2,2 (Q), 
p and q satisfying (**), and Uo E l.2 (S). Then there exists (i unique so-

lution u of the value p,’oble1n (3.1). Mo’reove’f, u is the 10eak Unlit in

L2 [0, T ; 2 (S] of the sequence {um} of cl(lssical solutions of problems (3.2)
If each Fj belongs to so,nie space Lr, q (Q) 1vith p l’tnd q satisfying (*) then u
has the following additional 

in Q, e only on 1’, Q and the of L, (Uld the ki are

the Banle as in A.
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(iii) If uo E and aD has property (A), then u is the unifoi-tit
Zitnit of and ia continuous in ~l.

PROOF. Since u’n E Ot (ijm) and = 0 for x E aQm it follows that um (., t) E
E Rolt 2 for each t E [0, 1’], (cf. [20]). Thus, in particular, urn is a weak

solution of problem (3.2). By Lemma 1, =1, 8 = 0 ,u = 00,

where fl and e are independent of sii. It is easily verified that

and

Thus

and by Lemma 2,

for all p’, q’ whose Holder conjugates satisfy (* *). Extend the domain of

definition of urn by setting u’n = 0 in It is clear that the extended

function belongs to and that the last

two estimates can be rewritten as

and
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with compact support and suppose that 99 vanishes.. - . - - -

in a neighborhood of t = T. If i)i is so large that and

8UPP then

In view of the weak compactness of bounded sets in Ll [0, T ; H~’ ~ (Sl)] and
L2p’, 2q’(Q) it follows from (3.3) and (3.4) that there exists a subsequence of
the again denoted which converges weakly to an element u in

L2 [H 0 1, 21 and in any finite collection of L2p’. 2q’ (Q) spaces. Moreover, it fol-

lows from (3.3) and Lemma 3 that it E Ll~ °° (Q). Since the integral averages
of the coefficients and the data converge strongly in the appropriate spaces,
the limit as tit - o0 of the integral on the left in (3.5) exists and is equal
to the corresponding integral with ~n deleted. lkloreover,
as tit -~ oo. Thus

for all cp E Ct (Q) with compact support in Q which vanish near t = T. In

particulair, 7 then (3.6) holds vith zero on the right hand side,
and hence u is a global weak solution of equation (3.1) in Q. By an argn-
ment similar to the one employed in section 1 to derive (1.3) from (2),
it follows from (3.6) that 

’

for all and for all with compact support If wre

take then
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Thus u is a weak solution of problem (3.1). The uniqueness is a trivial

consequence of Lemma 1. Note that since u is unique the whole sequence

converges to it.

If with p, q satisfying (*), then the results of section 1 are

applicable. Let K be a compact subset of Q and consider 111 so large that

By (3.4) and Theorem B, the sequence is uniformly bounded,
and, by Theorem C, it is equicontinuous in g. Therefore, there is a sub-

sequence which converges uniformly in K. Since any convergent subsequence
from (u"’) must converge to it it follows that -~ M uniformly in K. To
prove (ii) we first note that 1111 c implies ’1l1  ~~n M"’  ~rr2. More-

over, if in is sufficiently large
z

for any

. Thus, by Theorem A, for any (x, t) E ~ and )It so large that

where e depends only on and the structure of equation (3.1). Asser-

tion (ii) follows from (3.6) and (i).
If has property ( A ) then the sequence (Qmj can be chosen so that
has property ( ~! ) uniformly whith respect to Moreover, the integral

averages um have the same modulus of continuity as. "0. Thus, in view of

(3.6) and Theorem D (ii), for 111, sufficiently large each um has a bound and
a modulus of continuity in ~ independent of ni. If we extend the um by
setting = 0 the resulting sequence is uniformly bounded and
equicontinuous in Q. Thus the assertion (iii) follows from Arzela’s theorem
and the uniqueness of it.

In various special cases it is possible to simplify the construction of

the approximating sequence I in Theorem 1. For example, is

smooth and tio has compact support in S~ we can omit the approximation
of S~ by smoothly bounded domains and take for the sequence of clas-

sical solutions of the boundary value problems

with M sufficiently large. If aD is smooth and uo is Holder continuous on
S~ with uo = 0 on Of2 then can be taken to be the sequence of

classical solutions of problems (3.7) with the initial values

instead of &#x3E;
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4. The Cauchy Problem.

In this section we consider the Cauchy problem

where L satisfies (H ), and the F~ G, uo are given functions. The data will be
required to satisfy certain conditions which will be specified later. A function
u = u (x, t) is said to be a weak solutioit of problem (4.1) if it is a weak so-

lution of equation (4.1) and has initial values uo on t = 0. In partic-
ular, a weak solution of problem (4.1) is a global weak solution of equation
(4.1) in Q with initial values Uo on t = 0 for any bounded cylinder Q e S.

We are going to prove an existence and a uniqueness theorem for prob-
lem (4.1). Before doing so however let us recall some of the limitations on
uniqueness and solvability of the Cauchy problem for the one dimensional

equation of heat conduction

Tihonov has shown that if u is a solution of (4.2) in 8, then it (x, 0) = 0 and

in S for 0 imply u - 0. On the other hand, there are examples
which show that M(~0)==0 and ~c = 0 (e~ ~x~Z+‘ ) do not imply u = 0. Thus
one cannot expect to have a unique solution of the Cauchy problem without
excluding solutions which grow too rapidly as -~ oo. The unique solu-
tion in the class of functions which satisfy (4.3) of equation (4.2) with the
initial condition it (x, 0) = is given by

Clearly this solution is valid only for t E [0~1/4~). Thus if’ the data grow

exponentially for large x ~ we cannot expect the solution of the Uauchy
problem to exist for arbitrary values of t. Analogous restrictions enter into
the statements of the results given below.

A function u = u (x, t) defined and measurable on b’ will be said to

belong to the class ê2 (8) if there exists a number À ¿ 0 snell that

It is clear that if u satisfies (4.3) then, &#x3E;
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THEOREM 2. There is at tno8t one solution of the Cauchy problem (4.1)
in the class (f2 (b~ ).

PROOF. If there were two solutions of the problem (4.1) in the class 
then their difference tv would also belong to (f2 (8) and be a weak solution
of the problem

We will show, using Lemma 1, that this implies ~a == 0. Set

Then for we have h set

otherwise set Then l and hence

where

where for and I
is bounded independent of R. By Lemma 1

where 6ii is independent of R. Since the integral on the right
in (4.4) tends to zero as R --~ oo. Hence,

for arbitrary Lo &#x3E; 0 and it follows 0 in 8’. If T’ = T this com-

pletes the proof, otherwise the proof can be completed by a finite number
of applications of the same argument on En X (T’, 2T’), En X (2T’, 3T’), etc.

THEOREM 3. Let fixed and assume T  at/47. Suppose that L
satisfies I with p and q satisfying

thei-e exists a weak solution u of the Cauchy
(4.1 j in b’. 

e is II l)ositit’e coitstant which depends only on T anti the structure of
equtdion (4.1), a ud 

.,~

J’t8a
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In partioular, u belongs to the class ê2 (,S) and hence is the unique solution
of problem, (4.1) in 4f2 (8).

PROOF. Let X (0, Ti, where Ik = I  k) for integers
k ~ 1, and consider the boundary value problems

By Theorem 1, for each value of k there exists a unique weak solution uk
of problem (4.5). Since uk E L2 [0, T ; Ho’ 2 (} it follows from Lemma 1 with

and ~ == 1 that

where C~ is independent of k and the norms are taken over the set Qk. For
we have where v = a/4T. Thus

and

Therefore (4.6) implies that

where e1 depends only on T and the structure of the equation. If we ex-
tend the domain of definition of the uk by setting uk = 0 for I x ] k and

then and

Furthermore
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In view of (4.7) and (4.8) there exists a subsequence of the vectors, ..

which we again index by k, and a vector (

such that and e weakly in L2,2 (8). Let Q

be any bounded cylinder in 8 and let q be an arbitrary .L~~ 2 ( Q) function.

Let x0 denote the characteristic function of Q and set q; _ ihen

clearly 9 Thus

that is, uk -+ u weakly in L2,2 (Q) for any bounded Q c S. Similarly,
weakly in L2~ 2 (Q) for any bounded Q c S. Since

for G’~ with compact support in I it follows that ui is the dis-

tribution derivative of it with respect to x; and we will write instead

of ui. Note that for the limit function we have

Moreover, it follows from (4.7) and Lemma 3
that

and

Let 0 be an arbitrary bounded open set in ’n and let D’ be another

bounded open set such that be a 000 (E") fnnction
such that By Lemma 2

for all p’ and q’ whose Holder coniugates satisfy (**). Thus

and according to (4.7) and (4.8) ve have II
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Hence

independent of k. Therefore, in any bounded cylinder Q, we can select
a subsequence of the subsequence selected in the last paragraph which

converges weakly to u in any finite collection of spaces L2p’~ 2q’ (Q) with p’
and q’ whose Holder conjugates satisfy (**).

Let q be an arbitrary C1 (~5) function with compact support in which

vanishes near t --- T. For all k so large that (supp n S ~ Qk we love

If we let k- oo through the appropriate subsequence it follows from

the considerations of the two previous paragraphs that (4.10) also holds

with k deleted. Thus, as in the proof of Theorem 1, we conclude that u
is a weak solution of the Cauchy problem (4.1). Since
we have, in view of (4.9),

Hence It belongs to the class (f2 (b‘) and is the unique solution of problem
(4.1) in (f2 (8). Note that any convergent subsequence of the Uk must con-
verge to function (f2 (8) and, therefore, to tt. It follows that the whole se-

quence uk --~ u weakly in the appropriate spaces.

COROLLARY 3.1 Suppose that L satisfies (B), and tlre functions G and
tlo satrs f y the hypotheses of’ Theorem 3. If each j, the function e-Y x be-

long8 to 8otne space with p and q (*) then the 

(Ilk) of weak solutions of the problems (4.6) conve’fge 
to u in any conlpact subset of S. 
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wltet’6 e depends ottly on T and the structure of equation (4.1), and h i8

given iit Theore11l 3.

PROOF. Observe that

Thus the proof of Theorem 4 can be carried through without essential change
in the present case. In view of (4.8), the sequence (Uki is uniformly bound-
ed in the L2,2 norm in any bounded subset of S. Therefore, since the

Fj and G are locally in the appropriate it follows from The-

orems B and C that the sequence (Uk) is uniformly bounded and equicon-
tinuous in any compact subset of S. The uniform convergence of uk to 11
then follows by Arzela’s theorem and the uniqueness.

We now consides the special case of problem (4.1) in which ’1 =~ 0 and

uo - 0. In this case, using Theorem B and Lemma 1, we derive a point-
wise bound for u in terms of the . and Q’-

COROLLARY 3.2. Let u be the weak solution iti the cla8,s 4f2 (S ) of the
Caucliy problem

where L satisfies (H) I for soine p and q satisfying (*), and

with p and q satisfying Then for all 

1vltere e is a positive constant which depend, on T and the structure of the

equation. u is uniformly continuous in S.

PROOF. be an arbitrary fixed point in Bn. By Lemma 1, with

where C’ is independent of k and
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Since it is easily verified that

for all exponents r, 8 ~ 1, where

Thus, by H61der’s inequality,

where and

where Here e* and e’ depend only on the

structure of the equation, It follows that

where C~i depends only on T (or an upper bound for 1’) and the structure
of the equation. Let If k is so large that

; then

and hence

where e2 depends only on T and the structure. Since 1tk -+ u weakly in
it follows that Extend the domain of definition

of 1c by setting it = 0 for t and let .

Then clearly By the Extension Principle and Theorem B,
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for I and 0 ~ t ~ ~’ we have

Since ~ is arbitrary this proves the first assertion. The second assertion
follows immediately from the Extension Principle, Theorem C and (4.12).

Consider the sequence of Cauchy problems

for integers tit &#x3E; 1, where

and ~m denotes the integral average of yP formed with a kernel whose sup-
port lies in I X I’-+t2 ",-2. As we noted in section 3, the equations (4.13)
have a uniform structures

COROLLARY 3.3. hypotheses of 3.2, u i8 the 
in any compact ,ub,et of S of the sequence (um) of cla,sicn,l solutions

o.l the Olfuchy probletus (4.13).

PROOF. For each integer the problem (4.13) has a unique clas-
sical solution in the class E2 (S) (cf. [10]) and it is easily verified that

um is also the weak solution of problem (4.13) in class ê2 (8). By Corollary
3.1 and the fact that integral averaging on 8 does not increase norm

where e depends only on T and the uniform structure. It follo,v8, by the
argument used to prove Theorem 3 and the strong convergence of integral
averages, that the sequence ( um) converges to u weakly in the appropriate
space. In view of Corollary 3.2, the sequence (um) is uniformly bounded

and equicontinuous in ,S. The assertion then follows from Arzela’s theorem

aiid the uniqueness.
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5. Non-negative Solutions of the Cauchy Problem.

The results obtained in the previous three sections are not restricted

to non-negative solutions of linear parabolic equations. Beginning with this
section, however, we shall use these general results together with the re-

sults quoted in section 1 to study the properties of various non-negative
solutions. Specifically, in this section we will characterize the non-negative
weak solutions of the Cauchy problem

where L satisfies (8) and "0 is a given function in It is easily
seen that if the problem, (5.1) admits a non negative solution then we must
have "0 ~ 0 almost everywhere in En. Our first result is a generalization
of a theorem first proved by Widder [22] for the equation of heat conduction.

LEMMA 4. Suppose that L ( 8 ). If u is a non-negative weak

solution of the Oa4ch,y problem (5.1) with tto --_ 0 then It == 0 ~~~ S.

PROOF. Extend the domain of detiniton of u by setting 1t = 0 for t  0.

The extended function is non-negative, locally bounded and continuous in

En X (- 00, T]. By the Extension Principle and Theorem .E

for all be arbitrary and set
Then for

Clearly, if u (0, T) = 0 then u - 0 in S8. On the other hand, if u (0, 
then (5.2) implies that and it follows, as in the proof of Theorem 2,
that u = 0 in 8e. Finally, since e is arbitrary and u is continuous we

conclude that u = 0 in b’.

Since the difference between two non-negative functions does not neces-
sarily have a constant sign, Lemma 4 does not imply uniqueness of a non-
negative solution of problem (5.1 ). The uniqueness does follow from our

next result which characterizes a non-negative solution of problem (5.1) as

the limit of a certain well-defined sequence ot’ functions associated with

Land "0.
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Let and For each integer
) denote a G’o (En) function such that ’It =1 for

for and I is bounded independent of k.
Consider the sequence of boundary value problems

According to Theorem 1, for each k there exists a unique weak solution ~ck
of the boundary value problem ~5.3). Extend the domain of definition of ti k

by setting Uk = 0 for ,x ! k and 0  t --- T.

THEOREM 4. Suppose that L satisfies (H) and uo E L2 (En). Let u be a

non-negative weak solution of the Cauchy (51). Then at every point of S,

where ilgkl is the sequence of solutions of the bouudary valite problems
(5.3). Moreover, the coitvet-genee is on evet.y conepact sub.et of S.

PROOF. We first show that the sequence (ull) is non-negative and

non-decreasing, that is,

for all (x, t) E S and all k ~ 3. Acoording to Theorem 1 (i) and the remark

at the end of section 3, uk is the limit at each point of Qk of the sequence
Uk, m of classical solutions of the problems

Extend the domain of definition of Uk, m by setting = 0 for

and Clearly and hence 1

then Uk, m = 0 and

. On the other hand, 10m ~&#x3E; 0 on the parabolic boundary of
Qk. Since in Qk, it follows from the classical maximum prin-
ciple that wm &#x3E; 0 in Qk. Therefore in "8 and we obtain (5.4)
by letting m -~ 00.

We assert that the sequence is bounded above by tt, that is,
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for all and all Ic ~ 3. Since the inequality (5.5) is trivial for I x Ik
and 0  t ~ T, it suffices to prove it for points in Qk. Let (xo, to) be a

fixed point in Qk. For fixed k and integers 1 such that to &#x3E; 1/1 consider

the sequence of boundary value problems

Since a~k is smooth and it follows from Theorem 1

(iii) and the remark at the end of section 3 that for each L the problem
(5.6) has a unique weak solution v", and Set 

Then on the parabolic boundary of and wk, l

is a weak solution of L~c = 0 in Qkl. Hence, by Theorem A, ~k, ~~0 in

Q"l. In particular,

for , It remains to be shown that as i
, v

Define the function

Clearly Moreover, it is easily verified that
and satisfies

for all with compact support in Zk which vanish near t =- 1’. By
Lemma 1, 
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independent of l. On the other hand, since u is a weak solution of the

Cauchy problem, we have

Therefore

independent of l. In view of Lemma 2, there exists a subsequence of the

A A 1 2;k, which converges weakly to a function vk in L2 [0, T; H’ 2 () and
L2p’, 2q‘ (Qk) for any finite collection of admissible exponents p and q. Moreover,

.

according to Lemma 3, Note that the second integral on the

left in (5.8) tends to zero as I- oo. Thus, letting 1 -* oo in (5.8), we
A A

conclude that uk is the weak solution of problem (5.3). Therefore ;1: = uk.
A

Finally, by Theorems B and C, the sequence is uniformly bounded
and equicontinuous in any compact subset of Qk. Hence, -,

and (5.5) follows from (5.7).
According to (5.4) and (5.7), the sequence is non-decreasing and

bounded above by u in b‘. Hence there exists a function zv=za (x, t) such that

and uk (X, t) -+ u’ (x, t) as k -+ oo for all (x, t) E S. In view of (5.5) and Theo-
rem C, the sequence starting from a sufficiently large k is bounded

and equicontinuous in any compact subset of S. Therefore the limit func-

tion w is continuous in ~S. We assert that w is a weak solution of the

Cauchy problem (5.1).

~ 

Let S~ and !J’ be arbitrary bounded open domains in En such that

’] and Let ~ be a

function such that ~ = 1 on D, ,~’ and I Take k so large
that i2’ By Lemma 1, with s = 0 and

Therefore, since
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independent of k. Moreover, by Lemma 2,

independent of k for any admissible exponents p and q. It follows that

there exists a subsequence of the M which converges weakly to a function
A 

, ,

u in J[0,T;2 2 (0)] and any finite collection of space L2p’ Zq (), where,
A

by Lemma 3, M~J°°(). However, Since pointwise in 8 we have

. Thus, in particular, w
Let q; be an arbitrary 01 (S) function with compact support in En and

which vanishes near t = T. Choose S~ so that (supp q;) n 8 c Q. For k so

large that Q C Ik we have ,

In view of the results of the last paragraph, if we let we obtain

and it follows that w is a weak solution of the Cauchy problem (5.1).
The function u - to is a weak solution of the Cauchy problem

and, in view of (5.9), u - w &#x3E; 0 in S. We therefore conclude from Lemma 4
that w = u in S. Since Uk converges monotonically to u and since it is

continuous in compact -subsets of 8, ttk -+ u uniformly on compact subsets
of S by Dini’s monotone convergence theorem.

An immediate consequence of Theorem 4 is the uniqueness of a non-
negative solution of problem (5.1).

COROLLARY 4.1. 1.( L satisfies (H), ito E ( En) and almost

everywhere in, then the Cauchy problem (5.1 ) lfdntits at one non-

negative weak solution.
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On the other hand, the proof of 2’heorem 4 can be reinterpreted to

yield the following criterion for the existence of a non-negative weak solu-
tion of problems (5.1).

COROLLARY 4.2. Suppose that L satisfies (H), 1’0 E .£foe (En) aud vo --&#x3E; 0

al1nost everywhere in En. The probletn (5.1) pos8e88e8 a non-negative
weak solution 9f only if there exists a function II (x, t) E L2 [0, (En)]
8tich that U in S.

PROOF. If there exists a non-negative weak solution it of problem (5.1)
then u E L2 [0, ’1’; and, in view of (5.5), Itk  1, in S. Thus we may
take U = u. If itk.- U almost everywhere in ~5, then, since (uk) is a non-

decreasing sequence of non-negative functions,

exists almost everywhere in Sand 0  U. The proof that w is a solu-
tion of problem (5.1) is identical to the corresponding part of the proof of
Theorem 4.

6. Existence of the Fundamental Solution and Green’s Function.

Let D = ~ x (0, T J is either a bounded open domain contain-

ed in En or Ell itself, and consider the problem

where L satisfies (H), and the functions Fo, .~i , .,. , all belong to a sin-
gle space Lp, q(D) ,vith p, q satisfying (*). = En we take it to be the

weak solution in ~2 (~.f) of the Cauchy problem (6.1), while if Z is bounded

we take u to be the weak solution of the boundary value problem consist-
ing of (6.1) and the condition u = 0 on In either case, accord-

ing to Theorem 1 (ii) or Corollary 3.2, we have

fur ~~11
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Let £P, q denote the Banach space of vectors W = ( Wo , ..., W n)
such that for j = 0, 1,... , it with either of the equivalent norms

According to (6.2), the value at a point in D of the solution u of the bound-
ary value or Cauchy problem (6.1) is a bounded linear functional on

, I that is, u (x, t) = (jx, t (F), where q%1 E Moreover, 11 e.
The remainder of this section is devoted to deriving a more precise char-
acterization of 91,, t .

Denote by collection of vectors such that

for all q E C~ (D). Let u be the weak solution of the boundary value or

Cauchy problem (6.1) and let u be the weak solution of’ the corresponding
problem for

where with the same p and q as
Then

in D, and w = is a solution of the corresponding problem for

In particular, w satisfies

for all Thus, if . it follows from the uniqueness for

the boundary value or Cauchy problem tlut zv = 0. Therefore
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implies that u = u and (6.2) can be replaced by

Assume now that p and q satisfy (*) and are finite. Consider

where SincE ’ is defined for all we have

). Let M denote the mapping from

given by

For the norm we take

Then, using the norm in . M is an isometric isomorphism of

] onto a linear subgpace Define a linear functional

on by Then

By the Hahn-Banach theorem there exists an element such that

on q’ and I Moreover, since is isomet-

rically isomorphic to Ep, q it follows from a theorem of Bochner and Taylor

[8] that there exists a unique E Ep, q such that and

for all then

Since it follovs that , On the other hand,

(2) By definition J
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Therefore, we conclude from (6.3) that

where that is, where and

We now interpret the result derived above for the specific problems of
interest. Let u denote the weak solution in ~9 (/S) of the Cauchy problem

where L satis6es (H) and F = (Fo, ... , Fn) E .C~p~ 9 for p and q satisfying (*).
In this case the constant C~ in (6.4) depends only on T, the structure of

L, and the exponents p and q for F. Suppose first that both p and q are

finite. Then since and is reflexive

it follows from a theorem of Hochuer and Taylor [81 that there exists

a unique ~ J such that ( and

In view of (6.4), we have

[It should also be shown that r is independent of the exponents p and q.

However, this is an easy consequence of Theorem 2 and 

T ; Lilo,, (En)], and we omit it.]
For integers k ~ 1 let Ek = ~x ; ~ x ~  k) and = ~k ~~ (0, T]. Four any

pair of exponents p’ and q’ whose Holder conjugates are finite and satisfy
(-) we have Hence ¡"EL8[O, ’1’; for all

exponents r E [1, p’] and 8 E [1, q’j, Let El’ q denote the subset EP’ q consist-
ing of vectors which vanish for and 0  t  T. If F E j}"oo, q with
2  q ~ oo then F E for some finite exponents p and q which satisfy
(*). Let u be the solution iu ê2 of the Cauchy problem (6.5) with data
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where 2  q  oo. Then the representation formula
(6.6) holds for u and we have

Since A it follows from (6.2) that

where e is independent of k. Thus, if we let k ~ oo~ we obtain

In particular then, (6.7) is also valid when p = oo and 2 C q  oo.
If let cvhere xx is the characteristic function of

Qk, and consider the Cauchy problem

This problem has a unique weak solution uk in ê2 (S), where, according to
Corollary 3.1,

On the other hand, if ip is a Ci (~~) function with compact support in En

which vanishes near t = T and if Ic is so large that (sup q) then

By the arguments used to prove Theorem 3 and Corollary 3.1, uk converges
pointwise in 8 to the weak solution it in C2 of the Cauchy problem (6.5)
with data F. Four each k, so that

Therefore, in view of (6.8),

9 delta I 
11 ~-
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and the representation formula (6.6) also holds when p = oo and 2  q ~ oo.
Suppose that F E .~p~ °° with max 2)  p  oo. Then F E 121’, q for all

q h 1 and, in particular, for some finite q such that p and q satisfy (*).
Thus if it is the weak solution in C2 (~f) of the problem (6.5) with data F,
then

f8 f8

On the other hand, H 1, P’ (En)] for any pair of exponents p’
and q’ whose Holder conjugates are finite and satisfy (*) implies that

H~~p~ (L’~)]. Therefore, it follows from (6.2) and the representa-
tion formula that

for max (n, 2)  p  oo.

Let n be the weak solutions in ê2 (8) of the Cauchy problem

(6.6) with data F and F respectively, and let to === ~ 2013 ~. If F = F in
So Bn X (0, to] for some to E (0, T) then it follows from Theorem 2 that

to = 0 in So. Thus the value of the solution of the problem (6.5) at a

point («, t) E 8 is independent of the values of F in En X (t, T]. We there
fore conclude from the representation formula (6.7) that r) = 0
for or &#x3E; t. To summarize, we have proved the following theorem.

THEOREM 5. Suppose that L (H). each 

unique function of ($, T) t ;  T) which has the fol-
lowing properties.

(i) For each pair of exponents p, q satisfyng I
and

where C is a constant which depends only on T, the structure of L, aud the

q.

(ii) If u is the weak soltttion in ~2 (~S) of the Cauchy (6.5),
where the data with p, q (*), then for till (x,t)E S

The function ’x, t; , z) will be called the weak fundamental solution of
the equation Lit = 0. Theorem 5 shows that it is analogous in many ways
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to the classical fundamental solution. The results which will be proved in

the next four sections demonstrate that this analogy is quite complete.
Now let u denote the weak solution of the boundary value problem

.En is bounded and 1J’ = (~,... ~ E with p, q satisfying
(*). If p and q are finite, then by the same argnment which led to (6.6) and

(6.7), there exists a unique such that

and

where e depends only on 7’1 1 D I, the structure of L, and the exponents
1), q. Moreover, the proof that the representation formula (6.10) and the

estimate (6.11) remain valid when p or q is infinite is somewhat simpler
in the present case since S~ is bounded. Finally, it is easily seen that

y (.e, t ; ~, ~) = 0 &#x3E; t. The function y (x~ t ; r) will be called the weak
function for the equation Lu = 0 in .

THEUREM 6. Sttppo,e tlurt L satisfies (H) and that Q x (0, TI,
2ahere Q zs a bounded open domain in h:n. for each (x, t) E Q there exists
a unique ftUlctiot of (, t), 7, (x, t;  ), in Q which hall the following

’

, 
(i~ For each pait’ of expolients p, q satisfying (

u)here e is a constant which depends only on T, I, tlae 8tsvcture of L, and
the exponents p, q,

(ii) If u is the 2aenk solution oj. the boundary value problem (6.9),
wtcere the data F = (Fo , ... , F,,) E Ep, q with p, q 8ati.Nfyiiig (*), then for all
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It is clear that everything which has been done in this section ap-

plies, with obvious modifications, to the adjoint operator Z, and, in par-
ticular, to the adjoint Cauchy problem

and the adjoint boundary value problem

N N

The weak fundamental solution satisfies (i) and (the
N

analogue of) (ii) of Theorem 5, while (iii) is replaced by r) = 0
N 

for x  t. Similarly, the weak Green’s function / (x, z) of Lu = 0 in

(~ satisfies (i) and (ii) of Theorem 6 together r (x, t ; ~, T) = 0 for T  t.

7. Classical Fundamental Solution and Gi-een’s Functions.

We consider the operators Land L in strip S. If L satisfies (H.1)
and if the coefficients of L are bounded and smooth, then Land L possess
classical fundamental solutions in 8 and Green’s functions in smoothly bound-
ed cylinders Q. In this section we enumerate various known properties
of these functions and derive bounds for them. This information will be used

in the next section to show that the weak fundamental solutions and Green’s

functions are limits of the corresponding classical functions and share many
of their properties. Since the degree of smoothness beyond that required
for the construction of classical solutions is irrelevant, we will make the

usual quantitative assumption that L satisfies (H) and the temporary qual-
itative assumption that the coefficients of L are 000 (8) functions.

Under the assumptions given above, it is well known that there exists

a classical fundamental solution of Lu = 0, that is, a function r(x, t; ~, ~)
defined for (x, t, ~, ~) E 8 x 8 except when both x = ~ and t = Ty which is
continuous for t &#x3E; z, and which has the folloving properties (cf. [10] and [12]).

1
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where

is the fundamental solution of x4 it = tIt, and the positive constants K, x
depend on the bounds and moduli of continuity of the coefficients of L. ln
particular, 1’ ( . ~ · ; ~, t) and ;.,.) belong to (8) for all p’ , q’
whose Holder conjugates satisfy (* ~). , 

(F.3) For fixed (~, t) E En X [0, T), ~’ is continuously differentiable with
respect to t, twice continuously differentiable with respect and satis.

fies .LI’ = 0 as function of (x, t) in X (z, 1’]. For fixed (x~ t) E En X (0, T ), r
is continuously differentiable with respect to ’1’, twice continuously different-

tiable with respect and satisfies Er = 0 as a function of (, ) in

(F.4) Suppose i ) for some and

where p and q Then

is a classical solution of . sufficiently
close to z, and

is a classical solution of in 1 for sufficiently
close to t. If y is sufficiently small then T’ = 0 and T* = T. Moreover, if

uo is continuous at x = y then

(F.5) For all

According to Theorem 5 there exists a weak fundamental solution of

Lit ~- 0. temporarily denote the weak fundamental solution by ~’’ and
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show that we can identify it with the classical fundamental solution 1’. To

this end, consider the Cauchy problem

where for some fixed -I- 2. In view of (F.4),

is a classical solution of this problem, which, in view of (F.2), is bounded

and therefore in class ê,2 (S). Moreover, it follows from the Schauder type
theory for parabolic equations [10] that u is continuously differentiable with
respect to t and twice continuously differentiable with respect to x in any
compact subset of 8 = E n X [0, T]. Thus u is also the weak solution in 4f2 (S)
of problem (7.1) and, by Theorem 5, we have .

for all (x, t) E S. Consequently

for a~ll (x, t) E ~5, According to (F.2) and Theorem 5 (i), both r and 7~ be-
long to as functions of (~, ~c). Since is dense in

it follows from (7.2) that for every (x, t) we have

for almost every (~, T) E S. Therefore it is unnecessary to dis-
tinguish between the weak and classical fundamental solutions of Lu = 0.

Note that, in view of (F.3),

where r is the fundamental solution of Zu = 0 in the variables (~ r).
The upper bound for 1’ given in (F.2) depends on the moduli of con-

tinuity of the coefficients of L and is therefore not applicable to the study
of weak solutions of equations whose coefficients are not necessarily contain
uous. This bound does, however, hold for all parabolic equations with
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smooth coefficients regardless of whether the equation has divergence struc-
ture or not. As the next theorem shows, if we restrict our attention to di-

vergence structure equations it is then possible to derive upper and lower
bounds for 1’ which have the same form as the upper bound in (F.2), but
which are independent of the smoothness of the coefficients of L.

THEOREM 7. Suppose that L satisfies (9) and the coefficients of’ L a1’6
stnootlt. Then thet’e exzst po,itive constants i a2 and e depending on T

and the structure Of L such Ihtd

.for all with t &#x3E; T, where gi x, t) ia the fundamental solution
~

PROOF OF THE LOWER BOUND. Since t; ~, ~) is a non-negative weak
solution of Lit = 0 for (x, t) E En X (1’, T) it follows from Theorem F that

if for some

Here e, is a positive constant depending only on x, T and the structure of

L, and ez is a positive constant depending only on T and the structure of
L. Ilence in order to establish the lover bound in Theorem 7 it suffices to
make an appropriate choice of x and estimate 9N from below.

Let (~, or) be an arbitrary fixed point in 8 and let t be an arbitrary
fixed point in the open interval T). Consider the function

for 8  t, where x = 16/P. In view of (F.1), (F.2) and (F.4), v is non-nega-

tive and bounded in for and

for all y such that It follows from the 8chauder.ty»e
theory [10] that v is continuously differentiable with respect to y for (,1/. s)



662

in any compact subset of Hence v is a weak

solution of in { with initial values 1

on 8 = t. Extend the domain of definition of v by setting v =1 for 8 ) t.

Then, by the Extension Principle and Theorem H (for Lu = 0) with 62 =
we have

where e depends only on T and the structure of L. Therefore for ~
we have independent of (~, 1’) and the assertion

follows from (7.4).
To prove the validity of the upper bound in Theorem 7 we will need two

lemmas concerning weak solutions of Lu = 0. For both of these lemmas

the smoothness of the coefficients of L is totally irrelevant. The first re~

sult can be derived from Corollary 3.2 if the coefficients .A j and C? belong
to the appropriate spaces. In any event, the proof is quite simi-
lar to that of Corollory 3.2.

LEMMA. 5. Suppose L satisfies (H) and let for any
~-i the weak solution i~z of Cauchy problem

then

iit where C i8 a constant which depends only on T and the structure of L.

PROOF. It snf6ees to prove the Lemma for ’f} = 0. For integers k ~ 1,
let ~) and If ux denotes the weak solu-

tion of the boundary value problem

then, as we have seen in the proof of Theorem 3, uk -~ u weakly in
for any bounded cylinder Q c S. By lemma 1, with C == 1,
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where e depends only on T and the structure of L, and

for an arbitrary fixed Since

it follows that

where el depends only on T and the structure of L, and A

Let If k is so large that then

and hence Extend the domain of definition of u by sets

ting u =1 for t  0 and let Clearly
where e3 depends only on T and the structure. By the

Extension Principle and Theorem B we have

for I and 0 T. Since ~ is arbitrary this proves the

assertion.

If u is the solution of the Cauchy problem

and if !to = 0 in some ball Z’ centered at x = y, then it is plausable to
expect that u (y, t) will be small when t - r~ is small in relation to the

radius of 1£. The next lemma gives a precise formulation of this observation.

LEMMA 6. Suppose satisfies (H) and "0 is a function
such that for x - y I  a, lvhe1.e y E Ell and a &#x3E; 0 at’e fixed. If

is the zceak solution of the Cauchy problem (7.5), then for any
J sucla that 0

whe1’e e is a constant which depends only on T attd the structure of L.
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PROOF. It suffices to prove the Lemma for y = t7 = 0. For

let be a C’ (Ell) function such that ~R =1 for
for is bounded independent of R. By
Lemma 1, with and

where the norms are computed over the set and

depends only on T and the structure of L. Since and

)) it follows that as R --~ oo, Thus

For and

while for

We therefore conclude from (7.6) that

Let Then

and it follows from Theorem B that

where C’2 depends only on T and the structure of L,
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Note that results analogous to Lemmas 5 and 6 also hold for weak

solutions of the adjoint equation. Let for ’1J E (0, T]. Then
if v is the weak solution in ~ of the Cauchy problem

we have . Moreover, if &#x3E; is the weak solu-

tion of the Cauhy problem

where tto satisfies the conditions of Lemma 6, then for any r E [0, t]) such

that 0  q 2013 ~ ~ 02

PROOF OF THE LTPPER BOUND. We begin by establishing the prelimi-
nary estimate (3)

in S x 8 for t &#x3E; T, where e depends only on T and the structure of L.

T ) be fixed and consider the Cauchy problem

This problem has a unique classical solution 2o in E2 (8,), and w is conti-

nuons and continuously differentiable in 8, (cf. [10]). Thus w is also the

weak solution in ~2 (~~’T), In view of the properties of 1’, we have

and it follows from Lemma 5 that

(3) This estimate ie due to Nash [16] ia the special case in which L is given by (7).
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in S, , where ei depends only on T and the structure of L. Now hold

(x, t) E E" x (0, ~’j fixed. Then, according to (F. 1) and (F. 3), T is a non-

negative classical solution of .Lu = 0 as a function of (~, z) in En x [0, t).
It is therefore also a non-negative weak solution of Lu = 0 for (~, ~) E En X [0, t).
The assertion (7,?) then follows immediately from Theorem G (for Lu = 0)
and (7.8). Note that, by a similar argument, we can supplement (7.8) with

for

Let and a &#x3E; 0 be fixed. For fixed r such that 1

consider the function

in 817. We will use Lemma 6 to derive an estimate for 1t (y, ~). In view

of (7.7) and (7.8),

in ISFJ’ where e depends only on T and the structure of L. According
to (F. 4), u is a classical solution of Lu = 0 in and for x such that

where

Therefore u is a weak solution of Lu = 0 and, by the bounded

convergence theorem

for any For any is bounded, continuous and

continuously differentiale in s~+, . Thus it is the weak solution in

of the Cauchy problem

Lv = 0 for
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By Theorem 3, with y &#x3E; 0 sufficiently small,

where e depends only on T and the structure of L. Letting e 2013~ 0 we
conclude that Therefore

is the weak solution of the Cauchy problem (7.5) with "0 given by (7.9).
Since, by (7.7) and (7.8), we can apply Lemma 6 to u to

obtain

Thus

for r E T] ] such that 0  i- - r~ _ o~, where e depends only on T and
the structure of L. Similarly, 

’

for r E [0, q) such that 0  fJ - 11 ~ 02.
Let (x, t) and ($, r) be arbitrary fixed points of 8 with t &#x3E; z. Set

I and assume that 0~2013T~~. By the Kolmogorov identity (F.5)

where Write
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By the Schwarz inequality

Using (7.10) to estimate the first factor on the right and (7.7), (7.8’) to
estimate the second, we obtain

where e depends only on T and the structure of L. To estimate J2 we
note that implies
’1’bus

Using now (7.7), (7.8) to estimate the first factor on the right and (7.10’)
to estimate the second, we find

It follows that , has the required upper bound in case I

This completes the proof of Theorem 7.

The following result is obtained from Theorem 7 by a simple computa-
tion.

COROLLA.RY 7.1. For each pait- of exponents p, q ichich satisfy (**)

where e depends only on T, the 8ti-tictui-e of L, ait(i the exponents ]1, q.
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Let S~ be a bounded open domain in En and Q = Q X (0, T]. We as-
sume that L satisfies (H), the coefficients of L are in C°° (~S ), and 00 is
smooth. Then it is well known that there exists a classical Green’s func-

tion for Lu = (1 in Q, that is, a function y (x, t ; $, r) defined in Q X Q ex-
cept when both x = ~ and t = T, which is continuous &#x3E; T and which

has the following properties (cf. [10] and [12]).

respect to t, twice continuously differentiable with respect to x, and satis-
fies L y = 0 as a function of (x, t) in D x (1", T]. For fixed (x, t) E S~ x (0, T],
y is continuously differentiable with respect to 1", twice continuously differ-

entiable with respect to ~, and satisfies L r = 0 as a function of (~, T) in

(G.4) Suppose that I Then

is a classical solution of Lit = G in Q X (T, T] and

is a classical solution of Moreover, if U0 is continuous
at then

According to Theorem 6, there also exists a weak Green’s function for
Lu = 0 in Q, but, by the argument we used for the fundamental solution,
we can identify the weak and classical Green’s functions. Thus, in parti-
cular,

where y is the Green7a function for in Q in the variables In

view of (G.2) and Theorem 7,
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for all (x, t) and (~, 1’) in f~ with t &#x3E; 1’, where e depends only on T and the
structure of L. Note that the bound (7.12) is independent of the domain

Q and the smoothness of the coefficients of L. There is also a lower bound
of the same form for y, but unlike (7.12) it is a local bound.

THEOREM 8. Suppose that L tati8fies (H), the coefficient. of L are
and 00 is 8niooth. Let be a convex subset of 12 such that the

from 0’ to aSl is positive. Then thei-e exist positive constants el
and C~2 depellding only o~i 6, T and the of L such that

hold8 for all x, ~ E Q’ and 

for arbitrary M B

for arbitrary t

PROOF. Let (~, z) be a fixed point of Since y is a non-

negative weak solution of Lu = 0 for it follows from

Theorem I that if for some x &#x3E; 0

where -’ then

. 

for all x E [J’ and Fiere C~; depends only
1 I

on a, x, T and the structure of L. Hence in order to prove the first part of
the Theorem it suffices to make a suitable choice of x and estimate 9N
from below. If we set x == 16/T then exactly as in the proof of the lower
bound in Theorem 7 we find independent of (~, ’l).
The proof of the second part of the Theorem is completely analogous with

the roles of Land L interchanged. We omit the details.
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8. Weak Fundamental Solution and Green’s Function.

In section 6 we showed that if L satisfies (H ) then there exists a

weak Green’s function y (x, t ; ~, z) for Lu = 0 in any bounded cylinder Q.
In particular, y belongs to certain Lq~ ] spaces in Q and gives a rep-
resentation formula for the solution of the boundary value problem (6.9).
Here we will derive additional properties of y which are analogous to

(G. 1-4) for the classical Green’s function. This derivation is based on the
fact that 7 can be approximated by classical Green’s functions. We will

also obtain similar resdlts for the weak fundamental solution of Lu = 0.
be a bounded open domain jn ~E~ and Q = D x (0, T]. For

"0 E L2 (S~) and G (x, t) E (Q) with p, q satisfyng (* *) we will show, among
other things, that 7 gi ves a representation for the solution of the boundary
value problem

and the adjoint problem

In stating our result we use the following notation. If r is an arbitrary
point in [0, T) we set Q, = SJ x (r, 1’], while if t is an arbitrary point in

THEOREM 9. Suppose that L satisjïes and

zclcere p, q satisfy (:~~). the zoeak 7
ha8 the followiitg p,.operties.

10. delta Norm. Sup. - 
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where the norm is computed over the set Q,+a, and e depend. only on T and
the of L. Moreover, y is a weak solution of Lu = 0 for
For fixed ( I for arbitary with

N

where the is contputed over the set Qt_8, and e depends only on T
N

and the structure of L. Morevoer, y is a weak solution of = 0 for

(v) For ( let Z denote an open domain Buch

that y is a global weak solution of Lu = 0 foi*
with initial values zero on t = 1’. For fixed ( de-

note an open domain such that ’ y is a global
woak solution of Ev = 0 for ) with initial values xero on

(vi) The weak solution oJ’ the bouttdary value (8.1) is givtn by

and the weak solution of the bound(try valite problem (8.2) is given by

If Uo is continuous at a point y in S then

Note that using the Extension Principle and Theorem G’ it follows

from (i), (iii), (iv) and (v) that y is continuous as a function of (x, t) in

z)) aud as a function of ($, z) B ((x, 1)). Thus the behavior of y
in the interior of Q is independent of whether or not has property (A),
and the assertion (ii) is actually only a statement about the boundary be-

havior of y.

PROOF. As in Section 3, let
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where the superscript m on a function denotes an integral average formed
with a kernel whose support lie6 in x 2 + t2  m-2 for integers »i h 1, and
let denote a sequence of smoothly bounded open domains such that

for all lit7 and lim = S?, Recall that the operators
Mt u M
111 - ’""’"

L- have a uniform structure which is, in turn, determined by the structure
of L. Throughout this proof we will use C~ to denote any constant which

depends only on T and the structure of L.
We assert that

weakly in for any exponents 1)’, c~’ whose Holder conjugates satisfy

where ym is the Green’s function for L’tn u = 0 in Qm x (o, T]. Let F
be an arbitrary Lp. q (Q) function with p, q satisfying (8.4) and consider
the boundary value problem = F in Q, u = 0 on the parabolic boundary
of Q. According to Theorem 6, the weak solution of this problem is given by

On the other hand, in view of Theorem 1 (i) and (G.4), for each

where we have set yn’ = i) Since F- -+ F strongly in Lp, q (Q)
the first part of (8.3) follows immediately. The second part of (8.3) is proved
by applying the same argument to the adjoint equation.

Let be fixed. For arbitrary $~((~T2013r) and tit so large that
is the classical solution of the boundary value problem
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Since ym is continuously differentiable in I and

is also the weak solution of this problem. By Lemma 1, with

where the norms on the left are computed over the set In view of

(7.12) and Theorem 7

Thus we have

where if we set 714 = 0 for x E C Dm we can regard the norms as being com-
puted over the set (~-~’ It follows from (8.5) and Lemma 2 that there
exists a subsequence of the rm which converges weakly to a limit function
in L2 + 6, T; H 0 1,2 (D)j and any finite collection of L2p’ 2,1 (Q,+ a) spaces for
suitable exponents, and it follows from (8.3) that the limit function is 7.
From this we conclude that ~(~T;~) is a weak solution of Lu = 0 for

«~T;.,.)~2~e~-~. If we hold fixed and

apply the same argument to yn considered as a function of (~, r)y we find

that y (x, t ; ~, ~) is a weak solution of for and

On the other hand, for fixed (~,~) E QT , it follows from (7.12), Theorem
7 and Theorem C that the sequence is uniformly bounded and equi-
continuous for (x, t) in any compact subset of Q, . Thus rm --~ y uniformly
in any compact subset of Q, . Similarly, for each (x, t) E Qo, ym -~ y uniformly
in any compact subset of Qt . Thus, in particular, (i) and (iii) hold. More-

over, in view of the previous paragraph, (iv) also holds.
If a~ has property (A ) then the sequence can be chosen so that

has property (A) uniformly with respect to ni. Let ($, r) E QT be fixed
and set ym = 0 for x E C Qm, where we assume ot so large that $ E For

the sequence is uniformly bounded in 

and in view of Theorem 1), equicontinuous in Therefore y is contain

uous for (x, t) x (r, 7’J and 7 = 0 for x E The proof of the continuity
of 7 as function of (~, ~c) is similar and we omit it.

For fixed (~, T) E ’ilT, let ~ be an arbitrary open domain such that
and let Then for m sufficiently large yl," is a
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weak solution of . and t &#x3E;,r then

where gx denotes the fundamental solution of Thus it follows
from (7.12) that

for all be a function with compact support in
such that ~ === 1 on v and 0 ~,~ 1. By Lemma 1, with s

for arbitrary and} /

where Z’ = supp ( and norms are computed over the set
If and t ~ 1: then

I Thus in view of (7.12) the first term on the right in (8.5) tends to
zero as e -~ 0 and the second is bounded independent of tit or e. Therefore,

we obtain

independent of m, where the norms are computed over the set Z’ x (~~ T).
In particular, each y"4 is a global weak solution of Lm u = 0 in D= with ini-
tial values zero on t = 1:. Moreover, we conclude from (8.6), Lemma 2 and
the pointwise convergence of ym to y that converges weakly to y in
1,2 [1:, T ; Hl 2 (2’)] and in any finite collection of L2p’, 2q’(]),) spaces with suit-
able exponents. Hence it follows that y is a global weak solution of Lu = 0
in D, with initial values zero on t = t~. The corresponding result for the

adjoint equation is proved analogously.
According to Theorem 1 (i) and (G.4), if u is the solution of the prob-

lem (~i.l) then for each we have um (x, t) -~ u ~x, t), where for tit

sufficiently large
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and we have set In view of (7.12) the sequence
is uniformly bounded in .L2 (S~) for t ~ 0 and

is uniformly bounded in Hence if p and q are finite there exists
a subsequence which converges weakly to in L2 (Q) and to

in . On the other hand strongly in
I strongly in It follows that ) with finite

exponents p, q satisfyng (* *) then

If Q’ E (Q) with p, q satisfyng (* 1:) and either p or q infinite, then, since
Q is bounded, we also have for some finite exponents p, q sa-

tisfyng (* *), and hence the representation formula is again valid. The proof
of the representation formula for problem (8.2) is similar and we omit it.

Suppose that uo is continuous at a point y EQ. The function

is the weak solution of problem (8.1) with the initial condition
for z E Q. Extend the domain of definition of w by setting
for t  0. By the Extension Principle and Theorem 0, w is continuous in

any compact subset of 9 x (- T, 1’]. Thus, in particular, t) --~ (y)
as (x~ t) -+ (y, 0). Write the solution of’ problem (8.1) in the form

and write J as the sum of an integral Ji taken over the set 11
and an integral J2 taken over the set where p
is smaller than the distance from y to OQ. Thus, in view of ( i.12),

Moreover, if then implies ~ and

hence

wbere x depends only on T and the structure of L. Since uo is continuous
at y, 0 we can fix a p = ~ (E) ) 0 such that E/2. Then for
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there exists an ~)0 depending on Band o (e) such that

implies I J2 I  E/2. Therefore J - 0 and it (x, t) - u, (y) as (x, t) -+ (y, 0).
The proof of the corresponding statement for v (~, 1’) is similar and we omit it.

We are going to prove a theorem concerning the properties of the weak
fundamental solution of Lu = 0 which is analogous to Theorems 9. Before

doing so, however, we pause to prove a lemma which establishes a useful
relationship between the weak Green’s function for certain domains and the
weak fundamental solution. In stating this result we use the notation

and i for integers J

LEMMA 7. Sitppose that L satisfies (H). Then the 8equence
of weak G1’een’s functions for Lu = 0 in Qk increases monotonically with k

t ~ ~ 

,,, ...-...,...,

?che)-e r is a of the fundamental solution which is continuous

as it function of (x, t) iit En X (r, T J for ,fixed (~, and as a function of
(~7 r) in En X [0, t) fixed (x, t).

PROOF. We extend the domain of definition of yk (.t’, t ; ~, t) by setting
7k = 0 if either x or ~ are Let (x, t) and (~, T) be fixed points with

. We assert that

for all k. The assertion is trivial if for a given k, x or ~ are and

in view of Theorems 9 (ii), also if x or ~ are on Hence we may assume

that x and ~ are in Let 99 (y) be a non-negative C’o (Zk) function such
that ($1 c supp 99 and consider the boundary value problem

Ry Theorem 1 (iii), this problem has a unique solution uk for each k, and
uk is continuous in Since on and

it follows from Theorem 1 (ii) that

Thus, in view of’ ’1’veorem 9 (vi)
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If we now replace 9? in (8.8) by a sequence of 0000 functions which ap-

proximates the Dirac distribution concentrated at y = ~, it follows that (8.7)
holds for x and $ in According to Theorem 9 (iii) the sequence (yk) is
bounded above. Therefore, lim yk exists in 8 x 8 for t &#x3E; r. In view of

k - oo

Theorems 9 (iv) and C, the sequence (x, t ; ? )), starting from some suf
ficiently large k, is bounded and equicontinuous for (x, t) in any compact
subset of .En x (1’, T] with (E,1’) fixed, and for (~, z) in any compact subset
of Eft X [0, t) with (x, t) fixed. Hence the limit function is continuous as a

function of (x, t) and as a function of ($, r) for t ) z.

Let F be an arbitrary function in Lp, q (~5‘), where the exponents are
finite and satisfy (8.4), and consider the Cauchy problem

By Theorem 5 (ii) the weak solution in C2 (8) of this problem is given by

On the other hand, by Corollary 3.1 and Theorem 9 (vi),

for each (x, 8, where we have set Thus

) weakly in Since the sequence (yk) converges point-
wise it follows that the pointwise limit is also 7~.

We will now prove the analogue of Theorem 9 for the fundamental
solution. Suppose that for some y &#x3E; 0 we have and

where p and q We will 8ho",, among
other things, that 1’ gives a representation formula for the solution of the
Oauchy problem

and for the adjoint problem
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In stating the result we use the following notation. If r is an arbitrary
point in [0, T) we set (t, T], while if t is an arbitrary point in

THEOREM 10. Suppose that L satisfies (H), and that for sot)te y ~ 0 zae

have and 1vhere p, q satisfy (**). The
weak fundamental solution has the following prop-
erties,

whe’fe the is cottiputed ot1et’ the set and e depends only on T and
the of L. r is a solution of Fu = 0 for (x, t) E 8,.

For fixed for arbitrat-y
with

where the is cottipitted over the set and e depends on T and
the structure of L. Moreovet- r is It weak solution.

(v) For fixed (~, -r) E ST let ~ denote an at-bitrary bounded open domain
such that Then ~’ is a global zcPnk solutiolt o f Lu = 0 for

with l value8 zero on t = 1:. fixed
note a?a bounded open domain such that 1 Then r is a

global solutioit of with initial value8 zero on

(vi) Suppose that T  1 /l6azy, zvhere a2 is the constant obtaitted in

Theorem 7. Then the Bolutio1t 2 (’) of the Cauchy problem (8.9) is

given by 
-
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llnd the tweak solution in (f2 (is’) of the Cauchy proble’l1l 18.10) is given by

continuous at a point y E En then

PROOF. Let F be an arbitrary function for (p, q) satisfying
(8.4) and consider the Cauchy problem

According to Theorem .5 (it) the weak solution in (f2(,~) of this problem is

given by

On the other hand, by Corollary 3.3 and Theorem 5 (ii)

where rm is the fundamental solution of’ = 0. Since Fm - F strongly
in it follows that weakly in .

for each (x, t) E Similarly, weakly in

for each i
-

Let (, 1’) E 8T be fixed. For arbitrary is the

classical solution in ~2 (S ) of the Cauchy problem

Since rm is continuosly differentiable in it is also the weak solution

of this problem. For be a function such

that ( for I and ~ bound-
ed independent of’ R. By Lemma 1, with and
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where the norms are computed over the set Here and elsewhere in

this proof e stands for any constant which depends only on T and the

structure of L. According to Theorem 7 we have and

Thus as R ---~ oo and it follows that

The results of the last paragraph together with (8.11) and Lemma 2 imply
that . weakly in I and any
finite collection of L 2p’, 2q’ (Q) spaces, where ifl is any bounded cylinder in

. Thus, in particular, is a weak solution of Lu = 0 for

and 1 . By a similar argument, we find

that for fixed is a weak solution of ZM = 0 for

and 1

In view of Theorem 7 and Theorem C, the sequence is uniformly
bounded and equicontinuous in any compact subset of 8, for fixed (~, «) E 8T.
lIence r uniformly for (x, t) in any compact subset of 81. Similarly,

uniformly for (~, r) in any compact subset of for fixed (x, t) E So.
Therefore (i), (ii) and (iv) hold. The assertion (ii) follows directly from the

corresponding result for 1’m using the pointwise convergence of F- to 7B
Theorem 7 and the dominated convergence theorem. The proof of (v) is

almost identical to the proof of the Theorem 9 (v) and we omit the details.
According to Corollary 3.1 and Theorem 9 (vi), if it is the solution

C2 (S ) of problem (3.9) then for each we have 1tk (x, t) -+ u (x, t)
where for lc sufficiently large

Hence yk is the Green’s function for = 0 in and we

have set yk = 0 for By Lemma 7, for almost all
and 7 for almost all (~,,r) E S. In view of Theorem 9 (iii),
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where gx is the fundamental solution of

x d1i = tit and x = a2 is independent of lc. It is easily verified that if

then

For fixed and

Hence and It follows

from the dominated convergence theorem that

for each (x, t) E ~5~. The proof of the corresponding statement for the adjoint
equation is similar and we omit it.

The proof that u (x, t) -+ uo (y) at points of continuity of Uo is essen-

tially the same as the proof of the corresponding part of Theorem 9. Here

we must show that for  the integral

can be made small by taking t sufficiently small. However, in view of

(8.12) if t  1/32 x y then

and the assertion The proof that v (~, z~ --~ ~~o (y) is analogous.
We have shown that if uo is continuous at x then

In the next section we will also need the corresponding result when the

integration is taken with respect to ,~~.



683

LEMMA 8. Suppose that L satisfies (B ) aitd lot’ 
Then, if uo is contitiuous at

PROOF. In view of what we have shown in the proofs of Theorems 9

(vi) and 10 (vi) it suffices to prove that

for For t E (0, TJ consider the family of Cauchy problems

According to Theorem 3 and Lemma 5, for each t E (o, T I this problem has
a unique weak solution v (y, s ; t) in the class ê2 (8t) - and

N 
,

in where e depends on T and the structure of L. Extend the domain of
definition of v by setting v =1 for 8 &#x3E; t. Then, by the Extension Principle
and Theorem C, the extended function is continuous in S and for

we have

where C~ depends only on T and the structure of L. In particular, if

then setting s = t we obtain

Since, by Theorem 10 (vi),

the assertion follows.
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9. Non-negative Weak Solutions.

In section 5 we characterized a non-negative weak solution of the

Cauchy problem

as the limit of a sequence of’ solutions of certain boundary value problems.
Here we will re-examine this result in the light of the results which we

have obtained concerning the weak Green’s functions and fundamental

solution for L. We show that if problem (9.1) admits a non-negative solu-

tion u then u is given by an integral involving r and u. Moreover, we

will use this result to derive a representation formula for any non-negative
weak solution of L1c = 0 in ~f.

THEOREM 11. Suppose that L B((tisfit8 (H) uo E (Ell) is non-

negative almost everywhere. IJ’ u is the non negative welt k 8olutio’lt of 
(9.1) then

for all

PROOF. According to Tbeorem 4 and Theorem 9 (vi)

where yk is the Greeny function for Lit = 0 in and we

have set yk = 0 for . Recall that (k is a function such that
for for and 0 1. In view

of Lemma 7, the sequence I is monotone increasing
and converges to for almost all ~ E En. Tlius it follows

from the monotone convergence theorems that it is given by (H.2).
Corresponding to Corollary 4.2 we have the following corollary to

Theorem 11.

COROLLARY 11.1. Suppose that L satisjie8 (H), u 0 E (E 11), and 1to &#x3E; 0

almost everywhere in En. problent !l.l) possesses a itoit negative
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weak solution if and only if

The non-negative solution u if’ it exists is given by (9.2).

PROOF. If there is a non-negative weak solution u of problem (9.1) then
By Theorem 11, u is given by (9.2) and hence (9.3)

holds. On the other Land, by Lemma 7,

Thus9 it follows from Corollary 4.2, that if (9.3) is satisfied then the ~ non-
negative solution 1t of problem (9.1) exists anct 1t (x, t) = lim ilk (x, t).

k-co

Therefore, as was shown in the proof of Theorem 11, it is given by (9.2).

THEOREM 12. Suppose thltt L satisfies (H). If it vs a weak

solution of Lu = 0 in 8, theit there exists a unique non-negative Borel 
such that for all (x, t) E 8 

’

The existence part of Theorem 12 was first proved by Widder [22] for
classical solutions of tbe equation of heat conduction and subsequently
extended for classical solutions of general second order parabolic equations

. &#x3E;

with sufficiently smooth coefficients by Krzyzanski [14]. Our existence
. &#x3E;

proof is almost identical to Krzyzanski’s. Widder also gives a sufficient

condition for a function defined by a formula such as (9.4) to be a solution
of the equation of heat conduction. Our version of this result is given
below in Corollary 12.1. The uniqueness proof which we give here is an

adaptation of Frostman’s proof that if the Newtonian potential due to a

signed measure is almost everywhere zero then the measure is identically
zero [11 ; pp 31-33].

PROOF. For any 8 E (0, T], we know that u (x, 8) E Llo, (En) and M (x, t) is
a non-negative weak solution of the Cauchy problem
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Thus, by Theorem 11,

for all If we restrict s to the interval (0, T/2] then

it follows from Theorem 10 (ii) that

where y = 1/2a, T and e depends only and the structure of L. For

each -o E (0, T/2] define the Borel measure

In view of (9.5)

for all Borel subsets E of En and

for all s E (0, T/2]. According to the Frostman selection theorem [11; pp 11 ~ 13],
(9.6) implies that there exists a sequence 8j - 0 such that the corresponding

A A A

measures p3 = LO.1, converge to a Borel measure Q. In particular,

for any
Hold (x, t) fixed and consider the functions

for sj  t. By Theorem 10 (ii), if 0  1 we have
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Thus if ~ I

Moreover, it is clear that for each j and
uniformly for ! ~! ~ R. By Tbeorem 3 of reference [14], it fol-

lows from (9.7) and the properties of the sequence that 
.

Set

Then, since for sufficiently large

we have

for then by Theorem 10 (iii), Theorem 11 and Fubini7s theorem

and the existence part of the Therein is proved.
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If u is a non-negative solution of -:~ 0 and g is a Borel measure

such that u is given by (9.4), then it follows from Theorem 10 (ii) that

where y == ~/4x~ T, and e depends only on T and the structure of L.
Now suppose that there are two measqres et and e2 each giving a re-

presentation of u in the form (9.4) and such that
Then

for all where

By the Hahn-Jordan decomposition theorem there is a Borel set A such

that A ~ 0 on all Borel measurable subsets of A 0 on all Borel

measurable subsets of I Set ~ and ,

Then A+ and l- are mutually singular ~,+ -1-. Moreover,

In particular, it follows from (9.8) that I* (~1~) S C~ 1t (0, T). Therefore the

measures 1+ and A- are regular [18 ; Theorem 2.181.
Since we have either A+(A) or 1- (B) positive. Suppose that

~,+ (~) ~ a ~ 0. We will show that this le4ds to a contradiction. In view of
the regularity of ~,+ and 1-, there exists a compact set K c A such that

and a bounded open set E » K such that J

. be a continuous function in En with

and 0 ~ C ~ 1. Define

By Lemma 8 we have
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for all ~ E En. On the other hahd, if 0  t ~ 1/lGa2 y and
then by Theorem 10 (ii)

Thus, it follows from (9.8) and (9.11) that

Hence v is integrable with respect to a for each and

Since we conclude from (9.10); (9.11) and the dominated

convergence theorem that

Therefore

For fixed is the pointwise limit of a Sequence of 
sical fundamental solutions , 0). The are jointly continuous in
(x, ). Hence the I’ m are Borel measurable in h:n X En and the same i8

true for their limit r. Therefore, in view of (9.12), for each t E (0, 1/16a2 7)
we have
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and

in contradiction to (9.13). Thus we cannot have l+ (A) &#x3E; 0. A similar argu-
ment shows that l- (B) = 0. Therefore 1 - 0 and the same is true for o.

COROLLARY 12.1. Suppose that L satis fi es (H) and let

where e is a non-negative - u is a weak solution of  "
if and only if , for 

PROOF. If u is a weak solution of .Lu = 0 in 8 then it clearly has the

required properties. To prove the converse note that u E ~L2 [8, T ; (E-)]
for every 8 E (o, T) implies there exists a sequence ltj) of points in (0, T)
such that tj--~ 0 and Consider the Cauchy problem

Since it follows from Corollary 11.1 that this problem has
a non-negative weak solution if and only if

. By Theorem 10 (iii) we have

ie a weak solution in (tj, T] I for any j. Since t~--~ 0 we con-
clude that u is a weak solution in ,S.
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We now consider a non-negative solution of Lu = 0 which has

initial values on the hyperplane t = 0 except at an isolated point. Roughly
speaking, the result is that such a solution is equal to a non-negative mul-
tiple of the fundamental solution with siflgularity at the point in question
plus a non-singular solution. Thus) for non-negative solutions, any isolated
singular point at which the singularity is weaker than that of the funda-

mental solution is a removable singular point.

COROLLARY 12.2. Suppose that L (H), uo E Lloc and uo ~ 0

everywhere i11, .En . Let u be a non-negative wellk solution of Lu = 0
such that

every there exist. a constant 0 such that

Note that if and

then, in view of Corollary 11.1,

A

where u is the non-negative solution of the Cauchy problem

PROOF. It suffices to show that

for every Rorel set E c where 6, denotes the Dirac measure concen

t be a non-negative function. by
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Theorem 12,

In view of Lemma 8

for all ~ E Moreover, if 0  t ~ 1 /1 G a2 y and supp then,
by Theorem 10 (ii)

Thus it follows from (9.14) and the dominated convergence theorem that

for any non-negative
In view of (9.8), for any compact set 7C we Thus

g is regular [18 ; Theorem 2.18]. Moreover, since uo ~ 0 and
the Borel measure

is also regular. Let E be any Borel set with compact closure in (0)
Let K be any compact set contained in E, and for given e &#x3E; 0 let G be

an open set with compact closure in En B (0) such that E c G and

e (Q~ B E)  ~. If y is a C° (En) function such that 1p =1 on = 0

and 0 :::;: 1p 1 then by (9.15), Uo (K)  t! (E) -- B. Taking the suprem-
um over all K c E and noting that E is arbitrary, we obtain 
On the other hand, if we choose Q’ such that E)  ~ and apply
the same argument we find that Lo (E) uo (.0). Therefore

for all Borel sets E with compact closure in
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Let E be an arbitrary Borel set in Then

where

Each Dj is a Borel set with compaot closure in and the Dj are

disjoint. It follows from (9.16) that 
°

Therefore, if e has a singular part it must be concentrated on (01 and
has the form 

-

for some constant Suppose that fJ  O. Then there exists an r &#x3E; 0 such
that for E = Ix; x ~  r) we have

Thus which contradicts the non-negativity of g.
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