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NON-NEGATIVE SOLUTIONS OF LINEAR
PARABOLIC EQUATIONS

by D. G. ARONSON

Introduction.

The main results of this paper are several theorems concerning the prop-
erties of non-negative solutions of second order linear divergence structure
differential eqnations of parabolic type. One of the main results is the fact
that every non-negative solution of the Cauchy problem is uniquely deter-
mined by its initial data. Solutions of the Cauchy problem are functions
which correspond to a given initial function in some well defined way. There
are also solution of the differential equations in question which are non-
negative but which do not have initial values in any ordinary sense, for exam-
ple, the Green’s function in a bounded domain or the fundamental solution
in an infinite strip. The properties of the Green’s function and the funda-
mental solution are developed in detail, and another of the main results is
the fact that these functions are bounded above and below by multiples
of the fundamental solution of an equation of the form «adw = w;, where «
is a positive constant. In addition, we prove that the Widder rapresentation
theorem is valid for the class of equations under consideration. Throughout
this paper we work with weak solutions of a very general class of parabolic
equations. When specialized to classical solutions of equations with smooth
coefficients our results are either new or generalizations of earlier results.
All of our results depend ultimately upon the work of Serrin and the author
on the local behavior of solutions of general divergence structure equations
and upon certain energy type estimates which are derived here.

Let & = (x,....,x,) denote points in the »-dimensional Euclidian space
E* with » >>1 and ¢ denote points on the real line. Let 3 denote an open
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608 D. G. Aronsox: Non-Negative Solutions

domain in E". It is not necessary that 3 be bounded and X = E" is nog
excluded. Let 7 be a fixed positive number and consider the domain D =
=23 % (0, T). For (z,t}¢ D we treat the second order linear differential
operator

Lu = w, — {4 (@, t) ug, + Aj(x, t) u},j — Bij(@, t) uz; — C(xy ) u

where w, = du/at, u,, = du/0x; and we employ the convention of summation
over repeated Latin indices. The coefficients of I are asgumed to be defined
and measurable in D. Before describing the remaining agsumptions on L we
introduce some notation.

Let B, (Z) denote a Banach space of functions defined on 3 with the
norm |-|,, and 98, (I) denote a Banach space of functions defined on an in-
terval I with the norm |-|,. A fanction w = w (x, ¢) defined and measurable
on D=2 x I is said to belong to the class B, [I; B, (3)]if w(-,t)€ B, (2)
for almost all t€I and if || w|, (¢)]|, < co. When the sets 3 and I are clear
from the context we will write 93, [9,| in place of WB,[I; B, (Z)) In re-
ference [6] the classes L?|l; L?(Z)] are denoted by L»9(D) and we shall
also use this notation here. Morever, for we L? (D) with 1 << p, ¢ < oo we

define
glp g
f =] [( [1017aef"a™
I x

In case either p or ¢ is infinite, || w|, , is defined in a similar fashion
using L* norms rather than integrals. Let & denote the set of cylinders
of the form R (o) < I, contained § = E" < I, where R (o) denotes an open
cube in E" of edge length ¢ and o = min (1, V|—I_|). A function w = w(, )
defined and measurable on S is said to belong to the class L».¢(J) if
sup || w|lgp < oo, where the norms are taken over cylinders in the
family J.

The operator L is defined in a basic domain D which is either a bounded
cylinder £ >< (0, T} or an infinite strip E» < (0, 7}. It will be convenient
in many instances to regard L as being defined throughout the (n+4 1)
dimensional (z,t) space. We therefore adopt the convention that Lu = u,— 4
for all (x, tyefD. Throughout the paper it will be assumed that there
constants », M, M, and R, such that 0 <v», M < o0, 0 << M; < 00 and 0 <
<< Ry << oo, and such that the coefficients of L satisfy the following con-
ditions which will be referred to collectively as (H).

(F1.1) For all £€ E* and for almost all (z,t)

A, t)E 85> 71512 and lA"i (=, t)|£M,
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(H.2) Let Q)= (|®| << Ry} < (0, T). Bach of the coefficients A; and B;
8 contained in some space L 9(Q,), where p and q are such that

n 1 1
() 2 p,g=<co0 and '27+?<'2—,

and | A, t)|, | Bj(x,t)| << M, for almost all |x| =R, and t€(0, T].

(H.3) Ce LP2(S), where p and q are such that
N 1
1 — 4 — <1
(w) <p, ¢g=<oo and 2p—l-q< ’

and C (z,t) << M, for almost all |x|= R, and t€(0, T].

Note that (H.2) implies that the A; and B; each belong to some space
L1 (), where p and ¢ satisfy (). If B; = oo then @), is the strip § = E» <
=< (0, T'] and condition (H.2) simply requires that the coefficients 4; and Bj
belong to the appropriate spaces L? ?(§). On the other hand, (H) clearly
holds if L is uniformly parabolic and all of its coefficients are bounded in
8. Let L be an operator defined in a bounded cylinder @ == < (0, T),
such that (i) A4 & & =», | & |® and | A;;| << M, almost everywhere in @, (ii) 4;,
Bje L¥ 7(Q) where p and q satisfy («), and (iii) C € L# ?(¢)) where p and ¢
satisfy (»+). Then the extension of L according to the convention adopted
above satisfies (H) with » = min (1,»,), M = max (1, M,), M, = 0, and any
R, such that Q c |z; |z | << R,}.

Without further hypotheses on L it is not possible, in general, to speak
of a classical solution of a differential equation involving the operator I,
and it is correspondingly necessary to introduce the notion of a generalized
Sglution. Before doing so, however, we will need several additional defini-
tions. Let {2 denote a bounded open domain in K" A function w = w ()
defined and measurable in £ is said to belong to H?(£2) if w possesses
a distribution derivative w, and

” w “Ll' o -+ ” Wy Hm'(m < oo.

The space H)'* () is the completion of the € (£2) functions in this norm.
The space H"*(E") is the completion of the (g (E") functions in the norm

| ”LP,E") + | p= ”LP(E",'
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For (z,t)€ D =3 < (0, T] consider the differential equation
(1 L = {Fj(x, t)}x,‘ + @ (x, 1),

where the F; and G are given functions defined and measurable in D. A
function v = u (», ¢t) is said to be a weak solution of equation (1) in D if

weLZ[8, T; Lin (20 L*[8, T; Hiy” ()]

for all §€(0, T) and u satisfies

(2) [f(— U@+ Ay, Py + Ajupy; + F; ¥z — Bjuy ¢ — Cup — Go)dadt=0
D

for any @€ Cp (D). Clearly every classical solution of equation (1) in D is
also a weak solution. We will use the terms weak solution and solution
interchangably throughout this paper.

Various known properties of weak solution of equation (1) are summa-
rized for convenient reference in section 1. These results, which are used
extensively in the remainder of the paper, include the maximum principle
and theorems on local behavior proved by Serrin and the author in refer-
ence [6], and theorems on regularity at the boundary due to Trudinger [21].
Moreover, we establish a simple but useful extension principle which
permits us, in some cases, to use the local results of reference [6] in the
neighborhood of the boundary.

Section 2 is primarily devoted to the derivation of weighted energy type
estimates for weak solution of equation (1). In particular, if » is a solution
of (1) we derive estimates for the L®»> norm of e¢*« and the L?2 norm
of e*u,. Here h =k (z,t) has the form

Ja—¢F

aZﬂ—(t—s)*ﬂ(t-—s)’

where £€ E" and s€[0, T') are arbitrary, and «, f, u are positive constants
determined by L and the data. These estimates are related to those obtained
by Aronson and Besala in reference [5], and inclade as special cases esti-
mates due to IVin, Kalashnikov -and Oleinik [12], and Aronson [3].
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Let £ be a bounded open domain in E* and @ = Q < (0, T']. Consider
the boundary value problem

Lu = {Fj(x, t)}xj + @ (x,t) for (z,t)€ Q
(3)
u (x, 0) = u, (x) for x€ 8, u(x,t)=0 for (2,t)€92 < [0, T],

where the F; are given functions each belonging to a space L?7() with
p, q satisfying (), G is a given function in L» 7(Q) with p, q satisfyng (x+),
and », is a given function in L?(Q). In section 2 we define the notion of
a weak solution of problem (3) and prove that this problem possesses exactly
one weak solution. Moreover, we establish various properties of the solu-
tion. Except for certain details, this material is fairly standard. It is
included in detail here for the sake of completeness and since we will have
occasion to refer to some of the intermediate steps in the proof. Alternate

treatments can be found in the work of Ivanov, Ladyzenskaja, Treshkunov

and Ural’ceva [13], and Ladyzveuskaja, Solonnikov and Ural’ceva [15].
The Cauchy problem

(4) Lu={Fj(x, t)]zj + G (x, t) for (x,t)€ S, u (x, 0) = u,(x) for « € B",

where § = E" >< (0, T'], is treated in section 4. Again the Fj, @ and u, are
given functions, and it is assumed that for some constant y =0 we have
e—rlzi" Fyje L4 (8) with p, ¢ satisfyng (x), e=7121" @ € L?. 9(8) with p, q satis-
fying (s«), and e¢—712l' € L?(E"). The notion of a weak solution of prob-
lem (4) is defined and it is shown that the problem possesses exactly one
weak solution in the appropriate class of functions. Various properties of
the solution are also established. For example, let v denote the solution of
problem (4), where v, =0 and where the F; and @ satisfy the hypotheses
given above with y = 0. Then there exisists a constant € > 0, depending
only on 7T and the quantities in the conditions (H), such that

() fu (@, )| < C(Z|| Fllpq+ | Gllp o
3

for all (x,¢)€ 8. For other work on weak solutions of the Cauchy problem
see references {12] and [15].

In section 5 we consider a non-negative solution # of the Cauchy
problem

(6) Lu = 0 for (x, )€ 8, u(x, 0) = u, (x) for x€ E",
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where u, is a given non-negative function which belongs to Li.(E". The

main result is that w is uniquely determined by wu,. Specifically, for each

(x,t)€ S we have u (x,t)=lim u® (v, t), where the u* are the unique weak
k —

solutions of certain boundary value problems involving L and u,. A spe-
cial case of this result, with

N Lu=u,— {Ay4(z,1) u,..]zj

was obtained by the aumthor in reference [3]. The first theorem of this type
was given in the case n =1 by Serrin [19] for equation

U — (&) Upy — b (@) Uy — () =0

with Holder continuous coefficients. Our result extends but does not include
Serrin’s result. In the proof of the main result we use the following gener-
alization of a theorem first proved by Widder [22] for the equation of heat
conduction. If u is a non-negative weak solution of the Cauchy problem (6)
with uy =0, then » = 0 in ¥. This result includes earlier results for clas-
sical solutions of equations with smooth coefficients due to Friedman [9],
[10] and Krzyzanski [14).

The estimate (5) implies that the value at a point of the solution of
the Cauchy problem is a bounded linear functional on a certain Banach
space. We use this observation in section 6 to establish the existence of
the weak fundamental solution I'(x,t; &, t) of Lu = 0 in 8. In particular,
we estimate certain norms of I" and its derivatives, and show that the
solution of the Cauchy problem

Lu = F,(z,t) — | Fj (=, t)},,j for (x, )€ 8, u{x,0)=0 in E»

with the Fje L? 9(8) for p, q satisfyng () is given by the formula

(8) u(x,t) =ff (@, t; &) Fy(é, v+ ng (o, t5 & 1) Fj(& 7)) d& dn.

s

In a similar manner, using the maximum principle for solutions of the
boundary value problem. we prove the existence of the weak Green’s function
for Lm =0 in any bounded cylinder § = Q > (0, T'] and derive a represen-
tation formnla similar to (8) for solutions of the boundary value problem.
The existence and properties of the Green’s function for the special case in
which L is given by (7) were obtained by the author in reference [1].
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The next two sections are devoted to deriving various properties of the
weak Green’s functions and fundamental solutions. In section 7 we make
the temporary assumption that the coefficients of L are smooth and show
that the weak Green’s functions and fundamental solution coincide with
their classical counterparts. Several of the known properties of these func-
tions are described. The main results of this section are upper and lower
bounds for these functions which are independent of the smoothness of the
coefficients of L. Specifically, we prove that there exist positive constants
o, a; and C such that

Cgea—&t—n<T(rt; §)<<Cglxr —&t—1)

for all (#,t), (§,7)€ 8 with ¢ > ¢, where g;(x, t) is the fundamental solution
of a; Auw = u, for i=1, 2. The constants depend only on 7' and the quan-
tities in condition (H). In the appendix to reference [16] Nash gives some-
what weaker bounds for I" in case L is given by (7). A similar result holds
for the Green’s function y for L in a bounded eylinder Q. Here, however,
for the lower bound # and & must be restricted to a convex subdomain
£2” of 2 and the constants depend on the distance from £’ to 4f2. These
bounds were announced by the author in reference [4]. In section 8 we re-
move the assumption of smoothness of the coefficients of L and prove that
the function y and I' are limits of the corresponding functions for operator
obtained from I. by regularizing the coefficients. From these considerations
it follows that y and I" inherit the principal properties of their classical
counterparts including the bounds described above.

In section 9 we combine the results obtained in sections 5 and 8 to
prove that if « is the non-negative weak solution of the Cauchy problem (6)
then

(9 n(x, t) =f1'(x, 158, 0)uy (&) dé.
En

This representation theorem includes as special cases earlier results for
classical solutions of equations with smooth coefficients due to Friedman

(9], {10] and Krz'yzahski {14]. We also obtain a necessary and sufficient
condition for a function defined by a formula such as (9) to be a non-
negative solution of the Cauchy problem. Using (9) and the bounds for I’
derived in section 8 we show that if » is a non-negative weak solution
of Lu =0 in § then there exist a unique non-negative Borel measure g
such that

(10) u {x, t):f[‘(.l‘,f;gf, O)Q(df)

o
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Moreover, we give a necessary and sufficient condition for a function de-
fined by a formula such as (10) to be a non-negative weak solution of
Lu=0 in 8. Taken together these two results constitute a generalization
of Widder’s representation theorem for non-negative solutions of the equa-
tion of heat conduction [22]. The representation formula (10) for classical

solutions of equations with smooth coefficients was derived by Kriyzanski
in reference [14}. The uniqueness of the measure ¢ has not been consider-

ed by either Krzyz'aliski or Widder. As a corollary to this result we also
obtain the following result of Bdcher type concerning non-negative solutions
of Lu = 0 with an isolated singular point on the hyperplane ¢ = 0. Let u
be a non-negative weak solution of Lu —= 0 in S and suppose that

lim fu (@, Yy (x)dx = [u, (x) v (z) dx
t-o .
E™

for all ye 03(11»\{0}) where u,=> 0 is in Li,. (E"). Then there exists a con-
stant 9 = ¢ such that

u(@,t)=nI(x,t;0,0)+ jl"(w,t;f, 0) u, (£) dE.
En

The special case in which v, =0 and % is a classical solution of an equa-
tion with smooth coefficients is treated by Krz'yzaliski in {14]. A weaker
result when L is given by (7) and », = 0 was obtained by the author in
reference [2].

Results quoted from references [6] and [21] are designated by Theorem
A, Theorem B, etc. Theorems and lemmas proved in this paper are num-
bered consecutively without regard to the sections in which they occur,
and we mse Corollary n-m to designate the m-th corollary to Theorem n.

The results reported here are a partial summation of research which
has spanned several years. Througout this period the author has benefited
greatly from countless discussions (and arguments) with Professor James
Serrin, and it is a pleasure to thank him here for his interest, encourange-
ment and aid. We also wish to thank Professors Jiirgen Moser and
Hans Weinberger for their interest in this work and for many stimulating
discussions.
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1. Preliminary Resalts.
For (x,t)€ 8 consider the linear equation

(1.1) Lu = {Fj(x, t)),j + G (#, 1),

where it is assumed that L satisfies (H), each F;c L¥ 9(J) for some p, g
satisfying (+), and G € L 9(J) for p, q satisfying (#»). Under these hypothe-
ses, equation (1.1) belongs to the class of equations treated in references
[6] and [21]. What follows is an annotated list of the specific results from
these references which are used in this paper. The statements given below
are not necessarily in their most general forms but are tailored to the ap-
plications which we will make here. Theorem D is from reference [21] and
the remaining results are from reference [6].

In this section £ will always denote a bounded domain in E™ and
@ = Q >< (0, T]. The parabolic boundary of ¢ is the set (Q x (t = 0)ju{62 <
> [0, T){ When the nature of the basic domain is irrelevant we will denote
itbhy D=3 =< (0,T], where X is either 2 or E*. If W is one of the
functions 4;, B;, C, F; or @, then | W| means |W |, , if the basic domain
is @ or sup| W, , if the basic domain is § = E" < (0, T]. With this con-

d

vention we define
- ' n
k= Z | E| +]@].

All constant will be denoted by €. The statement «C depends on the
structure of (1.1)» means that @ is determined by the quantities », M,
n, | A;ll, || Bj|}, || C] and §, where 8 is a positive constant which is deter-

mined by the values of p and ¢ occuring in (H) and in the hypotheses
on the Fjand G.

In reference [6] it is shown that every weak solution u of (1.1) in D
has a representative which is continuous in D. We will therefore always
assume that u denotes the continnous representative of a given weak solution.
Hence there is no difficnlty in talking about the value of u at any point
of its domain of definition.

THEOREM A. (Maximum Principle) Let u be a weak solution of equa-
tion (1.1) in . If w€ Q°(Q) and m, <u < m, on the parabolic boundary of
Q, then

my, — Cky<<u@t)y<my,+ Ck,
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in (—2, where C depends only on T, Q and the structure of (1.1), while

we= (2 1+ el e+ &
for i=1,2. =
Let (.;, f), be an arbitrary fixed point in the basic set D). We denote
by E(g) the ball in E™ of radius o/2 centered at z and define (o)== R(p) <
< (t — 0% t}. The symbol [*l|p. 4 e will be used to denote the L#? norm com-
puted over the cylinder  (p).

THEOREM B. (Local Boundedness). Let w be a weak solution of equation
(1.1) in D. Assume that g9 << g, and that ¢)(3p) € D. Then in Q (g)

|85, 0] < ClE™™ 22 | 2,50 + 07

where C depends only on g, and the structure of (1.1).

To state the next result it is convenient to use the following notation.
We write &’ = (x, f), ¥’ = (y, 8), etc. to denote points in space-time and in-
troduce a pseudo-distance according to the definition

‘max (2, — t/4) for t << 0
o=
oo for t > 0.

Thus, for example, the set |y’ —a’| < g for fixed #’ is the cylinder |x; —y.| <o,
t—402 < s <t

THEOREM C. (Interior Holder Continuity) Let u be a weak solution of
equation (1.1) in ¢ such that |u|<<m in Q. If x',y’" are points of @ with
8 <<t then

fu(y) —u(@)|<C(m + k) (‘Al inl)“,

where C and o are positive constants depending only on the structure of (1.1),
and R is equal to either the pseudo-distance from x’ to the parabolic boundary
of @ or 1, whichever is smaller.

In order that a solution of (1.1) in ¢ be continuous up to the para-
bolic boundary of @ it is clearly necessary that 6f{2 have some regularity
properties. The following very weak condition was introduced by Lady;en-
skaja and Ural’ceva (cf. reference {15]. The boundary 62 of £ will be said
to have property (A) if there exist constants a, and 8,, 0 <a,, 0, <1,
such that for any ball R(g) with center on 42 and radius /2 < a, the
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inequality
meas {R (o) N 2} << (1 — g,) meas R (o)
holds.

THEOREM D. (Continuity up to the Bouudary) Let uw be a weak solution

of equation (1.1) in Q and suppose that 682 has property (A).
(i) If u is continuous in 9 < (0, T'] and bounded in @ then u has a
modulus of continuity in Q >< [0, T)] for any S€(0, T) which is completely
determined by O, the structure of (1.1), Fk, meax |u|, the constants involved in

property (A), and the modulus of continuity of uw on 082 < [8/2, T'}].
(ii) If u is continuous in ¢ then the modulus of continuity of w in @
is completely determined by the structure of (1.1), k,max ||, the constants

involved in property (A) and the modulus of continuily of u on the parabolic
boundary of Q. In particular, if u is Hdolder continuous on the parabolie
boundary of Q then it is also Holder continuous in Q.

The remaining results concern non-negative solutions of (1.1). Since
we apply them only in cases where k = 0 we will state them only for the
equation

(1.2) Lu = 0.

THEOREM E. (Harnack Principle) Let w be a non-negative solution of
equation (1.2) in 8. Then for .all points (x,t), (y,8) in § with0 < s <t<<T
we have

. te —y |2 [
(Y, 8) < u () exp_e(HLJr;),

where C depends only on T and the structure of (1.2).
The next two theorems are concerned with the behavior of a non-neg-
ative soluntion in the neighborhood of ¢ == 0.

THEOREM F. Let u be a non-negative solution of equation (1.2) in 8.
Suppose that for some » > 0 we have

M = inf fu (z,t) du > 0.
vasr o
1B

Then
ulm, t) = C, W2 exp (— C, | ® |¥t).

Here G, and C, both depend on T and the structure of (1.2), and C, also
depends on x.
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TREOREM G. Let u be a non-negative solution of equation (1.2) in 8. If

N = sup fu(x,t)d.r< oo
0<t<T
En
then

U@, t) < C N,

where C depends only on the structure of (1.2).

Finally, we have the somewhat more complicated versions of Theorems
E and F which hold when the basic domain is bounded. If &, and &, are
two point sets we will write d(€, ,C,) for the distance from & to &, .

THEOREM H. (Harnack Principle) Let w be a non-negative solution of
equation (1.2) in Q. Suppose 2’ iz a convexr subdomain of £ such that 6 =
=d (2, 52) > 0. Then for all x,y in 2’ and all 5, t satisfying 0 < s t<<T
we have

2

u(w)gu(w’t)expe(lt:":|~+t;8+1),

where C depends only on the structure of {(1.2), and R = min (1, 8, 4%).

THEOREM I. Let u be a non-negative solution of equation (1.2) in (.
Let & be a fixed point of 2 and suppose that for some x > 0

C)?Z:inffu(x,t)d.r>0for 0 < { < min T,—i—dz(f,aQ) .

Tg—s 2t

Ir ' is a covexr subdomain of Q such that £€2’ and 6 =4 (2,68) >0
then
u(x, t)y = €, M—* exp (— ez_l x— E2JY)

Sfor all x€ Q" and 0 <t < min (T, 28/x), where 8, = d (£, 6£2). Here C, and
C, depend on 6, T and the structure of (1.2). and C, also depends on x.

Theorems B, C,E and H are local results. In particular, they are ap-
plicable only in subdomains where ¢ is bounded away from zero. If, however,
% (2,¢) has a limit in an appropriate sense as t — 0 and if the limit satisfies
certain additional conditions, then this restriction can be avoided. A spe-
cial case of this remark will be used on several occasions in what follows
and we conclude this section with a precise formulation of that special
case,
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Let u be a weak solution of equation (1.1) in U and let 0,7 be such
that 0 <6<t <<T. For each ¢ >0 80 small that 0 < o6 —e<ltv+e< T
there exists a smooth function %, = 5, (t) such that i)y, = 1fore<<t <7,
(i) o =0 for t<=o—e¢ and t =1t (iii) 0Ky, <1, and (iv) 0<7. <<
const./¢ for 6 —s<<t<"o and constje<<7n, <0 for r<<t<< 7-4¢& If @ i8
a C! (D) function with compact support in 3 then clearly #, ¢ € €y (D). Thus
it follows from (2) that

e o
fﬂi(fmp d-%') at 4 fné (zfmp dw)dt +

T = o—s

ff?]e (— U+ Ay ug, Pa +..—Gp)dx dt = 0.

D

Since f up dr is a continuous function of ¢ on the interval (0, 7] we can

2
let ¢-—> 0 to obtain (1)

(1.3) fmp ar |=. + jf(— u@e 4+ Ay g, Pz +..— do)drdt = [uq; az |—,
b b5

IX(e, 1)

for any @€ 0! (13) with compaet support in 2, where 0 <{o<1t<<7T. By
continuity, it follows that (1.3) also holds with z = T.

A weak solution u of equation (1.1) in D will be said to have initial
values uy on t=0, where uoELﬁ,c (2), if we Le[0,T; LE, (2)]n b g [o, T; H;l‘;f(Z)]
and

lim fu(w, t)y(x)dr =fu0 (x) p(x)dx
x

t-+0

for all y€ C§(Z). If u has initial values u, on t =0 and ¢ is a C'(D) fune-

() According to Lemma 2 (given in section 2), ueL* [§, T} L1200 (Z)]n L2 [8, T; Hllo’:(E)]

implies that we L29[8, T; Lfg’c, (2)] for all exponents p',q’ whose Holder conjugates p, ¢

satisfy (##). It follows that | 7, (— ug, + .. — Gg)| is dominated by an integrable funotion,

and, using the dominated convergence theorem one obtains (1.3). A similar remark jus-
tifies the limit process which leads to (1.4).



620 D. G. AroxsoN: Non-Negative Solutions

tion with compact support in 3, then since u € L><[0, T'; L, ()]

fu(m,a)«p(m)dw=fu<w,o)<p(w,0)dx+
z P

-|»-[u (x, o) |@ (x, 0) — @ (x, 0)} dx —~>fuo (x) @ (x,0) dx
b3 5

a8 ¢ — 0. Therefore, letting o — 0 in (1.3) we obtain the following result.
If % is a weak solution of equation (1.1) in D with initial values u; on
t =0 then

(1.4) fmr az |~ +[j (— e+ Ayts, @z 4 ... — Qo) dzdt =
z

ZX(0,1)

=f 1y (x) @ (x, 0) de

for all z€{0, T'} and for all ¢ € C? (D) with compact support in 3.

Let u be a weak solution (1.1) in D with initial values wu, == constant
on t = 0. Extend the domain of definition of the F; and @ by setting them
equal to zero in BD. Let D* = 3 < (— oo, T'] and define the fanction

’ u(x, t) for (x,8)€3 < [0, T)
(1.5) u® (2, t) =
u, for (z,t)€ Y < (— oo,0).

We assert that «* is a weak solution of equation (1.1) in D*, where L is
defined for ¢ < 0 according to the convention adopted in the Introduction
and Fj=G =0 for t<0. It is clear that u€ L°[— oo, T; L (Z)]n
L*[— oo, T; Hi2(3)) Thus it remains to be shown that

(1.6) . f[(—— ut g+ Ay, Pz + ... — Go)dxdt 4
D

+ (— v* @+ ug ) do dt = 0
22X (=00, V)

for arbitrary @€ Cg(D*. For any o < 0

fuotp(a:, o) dx +/f(— w4 ug @) dedt = 0.
U

22X {—o0, g}
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Hence, letting ¢ — 0,

fuotp (#,0) dr +ff(—— w* o+ u @) do dt = 0.
> ZX(—00, 0)

On the other hand, if we let + — T in (1.4) it follows that
ff(— W o+ Agug, Pz)) + oo — Go) drdt =j u, @ (x, 0) do.
D s

Combining the last two expression we obtain (1.6) and the assertion is proved,

Since the extension of equation (1.1) for ¢ <C 0 does not alter its struec-
ture, the results of reference [6] apply to »* in D* In particular, the weak
solution »* defined by (1.5) has a representative which is continuous in D*.
Henceforth u* will denote this continuous representative. Note that with
this convertion u*(x, 0)=u, for x€ 3. To summarize these considerations
we have the following result.

EXTENSION PRINOCIPLE. Let u be a weak solution of equation (1.1) in
D with initial values nwy = constant on t=0. Then Theoremm B holds for
u* in D*. Moveover, if Theorem C, E or H holds for w in D), then the same
Theorem holds for u* in D*.

The operator adjoint to L is

~

Ly = — vy — {A.‘j v,j —_— B"U;zl. + A;v,‘. —_ 0’0,

and it is clear that if L satisfies (H) then the same is true for L. Thus all
of the results given above also hold for the equation

(1.7) Lo = {Fj(x, O], + @ (2, 0).

Indeed, any result which is stated for equation (1.1) can be reformulated
to apply to equation (1.7) by replacing ¢t with — ¢, and interchanging A;
and — B;.

2. Energy Estimate.

In this section we consider a certain class of weak solutions of the
equation

(2.1 Lu = {Fj(®, )}, + G (2, 1)
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and derive estimates for a weighted L% > norm of u and a weighted L22
norm of u,, These estimates will be used frequently in various contexts in
the remainder of the paper and they will be given here in a form which is
sufficiently general to cever all applications which occur.

Let 2 be a fixed bounded open domain in E" and Q= Q< (0,T]. We
agsume that L satisfies (H), F;e L2 2 (@), and G € L? () with p, ¢ satisfying
(vw). If u is a weak solution of (2.1) in ¢ and w € L>{0,T; L2(Q)]n
n I2[0, T; H'.2(Q)] then u is said to be a global weak solution of (2.1) in Q.
For arbitrary z€(0, T) let Q.= Q « (0,7]. If n is a global weak solution
of (2.1) in ¢ with initial values u, on t= 0 then it follows from (1.4) that

(2.2) pr dr It=.+ff(— up+ AUz, 0o+ . — Gp)dx dt =
Q [

=fu0 (®) @ (x, 0) dz

2

for all @ € C!(Q,) with compact support in . Note that if u is a weak so-
lution of (2.1) in D then u is a global weak solution of (2.1) in £ < (3, 7T]
with initial values u (r,d) on ¢ =4 for any bounded open domain £ such
that 2 ¢ 2 and any 6 €(0, T). In the proof of the main result of this sec-
tion we will need two properties of global weak solutions. Before formulating
the main result we derive these properties.

If u is a global weak solution of (2.1) in ¢ with initial values u; on
t =0 then

(2.3) ()|l o <||ull.o for all tejo, 1]
and
(2.4) lim | u(x, t)y(x)de = I w(z, ) w(x) da

T+t o
2 2

for all t€[0, T] and y€ L?(£2), where u (x,0) is interpreted as u, (x). Let
BE={;0<t<T[u(|muwm > il

Since € L% (@) we know that | B | = 0. Suppose that E == . Then given
8€ F there exists a sequence of points {t;} in 0 E such that tj— s. If this
were not the case then E would contain a neighborhood of 8 in contradic-
tion to | B| =0. The weak compactness of bounded sets in L?(£2) and
11 (-yt9) lza@) <<1|| % |l2,c imply the existence of a function U, (x)€ L*(£)
and a subsequence, which we again denote by {4}, such that wu(-,¢)-— U,
weakly in L2 (). Moreover, || Uy||zr0 <l |00, Set v =1, in (2.2) and tuke
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o=@ @)E 0(',(!2). Then letting ¢;— 8 we obtain .

[U,(x)ww) dx +f/ (At @+ ... — Qo) dw dt=fu0 («) @ () da.
I3 [ g

On the other hand, (2.2) also holds for v = s and it follows that

fU, (%) @ () dx::fu(x, 8) ¢ (x) dx
2

Q2

for arbitrary @€ Cy (). Since C¢(£) is dense in L*(Q) this implies that
u (x, 8) = U,(x) as functions in L2 (Q) and, in particular, that || u (-,8) ||z =
| Uslleaey =< || # ||z, Hence the assumption that F == ¢ leads to a contra-
diction and (2.3) holds. Now let ¢ and v be any two points of [0, T'] with
g < . It follows from (2.2) that

[we oo s+ [[Agug o+ .. — dpraca = [uie,0 0 @de
2 kel

2X (e, 1)
for any ¢ € Oy (9). Thus

T !
[

lim [u (%, 7) @ (%) dw:/‘u(z, t) @ (x) dz
Q

for all ¢€[0, T] and ¢¢€ Co(2). In view of (2.3) and the demsity of Cg(f)
in 12 (Q), (2.4) follows easily.

The main result of this section is the following lemma concerning
global weak solutions of (2.1) in @.

LEMMA 1. Let u be a global weak solution of (2.1) in Q= 2 < (0, T]
with initial values u, and let {=7{_(x) be a non-negative smooth function
such that

we P[0, T AV Q).

There exist positive constants a, fi, C such that for avbitrary &€ E*, s€[0, T)
and p >0

| Cetul} oo 4 Il Gt w [}, <

n
e§ fz:2 et da oyt | Ch G IR +;\:] lzet B2, 4 || ebula |2 L,
§2

T Linnale della Sceola Norm Sup  isa
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where the norms are taken over the set L < (8, T') with T’ = min (T, u + 8), and

w|z—EF

h=h(w,t)=—m

Bt —s).
The constants o and B depend only on the structure of L, while C depends
only on the structure of L, T, and the exponents p,q for G

By the structure of L we mean n and the quantities which occur in
the hypotheses (H). In particular, o depends only on #, M and », while 8
depends only on n, M, and ». The explicit forms of «, 8 and C are given in
the proof of Lemma 1.

In the proof of Lemma 1 and elsewhere in the paper we will need the
following interpolation lemma.

LEMMA 2. If w€ L®[0, T; L2(Q)]n L2[0, T'; H§(Q)] then we L2 2% (Q)
Jor all values of p’ and ¢’ whose Hilder conjugates p and q satisfy

n 1
—+—=<1 <1 ifn=2
zp+q ( )

Moreover
(13,00 << BT {[|w |}, + 1l %= |3 ),

1
where 0=1— — — Zn_p’ and K is a positive constant which depends only on n
Jor n==2 and only on p for n =2,
This lemma is a slightly improved version of Lemma 3 of reference [6].
Specifically, in reference [6] the constant K depends on | 2| in the case n=2,
while here K is independent of | £2] for all » = 1. We shall prove Lemma 1

only for the case n = 2 and refer the reader to {6] for the remaining cases.

PROOF OF LEMMA 2 FOR THE CASE n = 2. By Nirenberg’s form of the
Sobolev theorem [20] )

20l (&) << K | w0, 1% (&) | 0 {I3#(0)

for p > 1 and almost all t€[0, 7'}, where 1?:{(1)’—1—1)/%/5]1/1‘. Hence

T
; ~ - olp
“w”gg,'.‘,q,sKZq I w“g:lolg /(f!wz [?dw) at <<
¢ 0

= K T o [ || o 200
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1 1 1
provided that 1 — ?= ?2? Thus it follows from Young’s inequality
that

o0 2 0 << B2 00 |00 B2 | 00s [ < 2T {0 2, + || 200 |12}

ProoF oF LEMMA 1. Without loss of generality we may set 8 = 0. To
derive the required estimate it is necessary to take {2 ¢**u as the test
fanction in (2.2). It is obvious that this cannot be done directly since
{? et u is not a C'(Q,) function with compact support in £, and in par-
ticular, it does mnot have a derivate with respect to ¢ even in the dis-
tribution sense. Thus the proof is divided into two parts. In the first
part we show that the equation obtained by formally substituting ¢ = {?
ey in (2.2) is in fact valid. That is, if 4 is a global weak solution of
(2.1) in @ then u satisfies

1
> f {2 et da |, +/f§2 et {Ayu,, Uy +
Q Q.
+(4; — Bj) ugu + (— he — O)u* + Fyuzy — Quj de dt -

(2.5)

+2 f f e (A v, why + ) Cay + Uhe) d dt = — f {2 o2 w2 dt g

¢ Q

for all 1€[0, T']. To accomplish this we use a regularization technique as
in reference [3]. The second part of the proof consists of the actual deri-

vation of the required estimate from (2.5).
In view of the choice of (,

w(m, ) =¢ (@) e u (e, t) € L [0, 75 L ()] nL*[0, v ; H'* ().

Thus, in particular, there exists a sequence {w*] of (! (Q.) functions with
compact support in £ such that

[l w— wk ||z, o 4 || 0z — wE ||, s — 0 a8 k— oo,

where the norms are computed over the set ¢, for fixed z € (0, T’]. Let K,(¢)
be an even averaging kermel with support in |t| < 1/, where ! is a posi-
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tive integer. Let wf denote the couvolution of w* with K; on (0, 7), that is,

wk (2, t) = f Ky (t — n) w* (@, 9) dy
¢

and define w; similarly, For each value of ¥ and ! it is clear that

¢ (@, ) = (@) +® D wp (a, 1)

is a (!'(Q,) function with compact support in . It is therefore an admis-
sible test function in (2.2) and we may set ¢ = @} to obtain

f{‘ ¢* wkf ude |-, 4+ fe" {— Cu (wk + wkhy) +
2 9,
{(2.6) (A ug,+ Aju 4 Fy) wfzj — {(Bjug; + Cu + @) wf 4
(A.',' U, + A,-u + FJ) (Chzj + c’j) u‘ﬂ dx dt = U, Cet 'w:‘ dx |¢=o .

We assert that if we hold ! fixed and let k- oo in (2.6) the result is
that (2.6) is valid with k deleted. By Minkowski’s and Schwarz’s inequal-
ities together with the standard properties of averaging kernels [20]

nw,*—wz||zu>sfm— ) || w0 — w [, (n) dy <
0

~ Y 12
([K;(t—n)dn) (}K;(t—n)”w"——wl;g(q)dn) =
~—00 [}

iy 12
([Kl(t — ) || w* — u‘||§ (n) d1;> ,
0

whence

| wF — 20 ||2'2 < || w* —'w]|2‘2 .
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Similarly, since wy,, = wy ,

” w;‘z — W, ”2 2 = ” w: — W, ”2,2 ’

fih =l p = ( [ 1K1 =l an) 0t — ],y = O, — e,
—

and
o]

172 )
ot — o< ( [K3e—mn) et — 0] = G|t =l

for every t€[0,]. Thus
I} 0F — 01 [|s, 0 << C1 || 05 — 0 ||z, 2
and, by Lemma 2,

I 0] — wy llog, 20 << KT || wg — w, ”2 2+ if f| 0% — w0}

1
for all exponents p’, ¢’ such that % + 7g 1. Note that w itself also be-

longs to L% (@),) for the same range of exponenents. Using these facts
together with the hypotheses satisfied by L, F;, @ and u, it is not difficult
to check that each term in (2.6) tends as ¥ — oo to the corresponding term
with k deleted. We omit further details.

Consider the integral

V= f/é‘ et wwoy, dx dt =[/wwudw dt.
‘Qr !‘)l’

By Fubini’s theorem and the definition of w; this can be written

V=/-gfflﬁ'(t-—n)w(m,t)w(x,n)dtdn;dx.
2 9

Thus, since K, (t) i8 an even function of ¢, it follows that V = 0. Using the
translation continuity of the norm ]| - ||, , one shows, in a standard fashion
[20], that | w, — w,|ls,2 — 0 and [fw,— 10|35 —> 0 a8 { — oo for all ap-
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propriate p, ¢. Consider

1t
fw(w,t) w (xz, ©) de =fK;(o)([w(w, t)w(w,r—o)dw) do
2 0 2

for 1/l << 7. Since u (v, )€ L?(2) and (2.4) holds we have

lim | w(x,)w(®, 1 — o)dr = [w” (%, 7) do.
o—0, o
2

Thus given any & > 0 there exists § > 0 such that

l!w(x,z)(w(w,t—o)-—'w(a:,t)]dx <

for all |o| < 8. In particular, if 1/l < 6 then

|
'fw(w,r)w;(w,r)dw——[ (@, 7 !
/K;(a)[/ (@, 7) {w (2,71 — o) — w (%, 1)} dov| do < ¢,
that is,
lim | w(x, 1) w0, (%, 1) de = — f w? (2, 1) da.

-

(\‘.

Similarly,

lim ["o (%) £ (=) 2@ 9 a0, (x, 0) dx = % [Cz (x) €2h=: 01 42 (&) duw
l »o0
Q Q

Using these observations it is not difficult to verify that if we first let
k — oo in (2.6) for fixed ! and then let ! — oo in the resulting equation
we obtain precisely the equation (2.5), This completes the first part of the
proof of Lemma 1.

For the integrands of the second and third terms on the left in (2.5)
we have the estimates

3’)’ B 2 9
Aijug, Uy + . — GHZT [ >+ {— hy— O — —;—Z(A,- — Bl u? —

2 ;
=¥ —|Gu
I4
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and

2| e u (Aijoug b + - -}-ClEi‘,-ha,j)|g_z_gzeu|uI 2+

2 gon 2 (B2 e 2 2
¢ et (= |, P 2 247 2| h, ) +
8n? M?
ezhuzlcxlz( "v +2)+262hczz‘pj2,
where -
, 422 & — £|? : 1
ho 2 = : > 1 _—— 2 _
[ g | %a =0 and h; 40‘|h,| 8.

Let 7,,7, be such that 0 <<7, <<7,<< T’. Write (2.6) for t =1, and v =1,,
form the difference between these expressions, and apply the estimates
given above to obtain

}—)[Czezhuzdx I::—l—%—f]ﬁe?"lux |2dxdt+[f%(m,t)&'2e2"u2dxdt
2.7 +(£;—€,)ff§262"u2|hx|2dwdt£€,ffe“"u2|Cz [* da dt

+2(1—|--i—)f[e”é‘zz‘ﬂ'fdwdt+f/¢‘2e2h|Gu]da:dt.

22
Here C, = 2 (1 + 4,'&,,}! ) ,
Y

2
By t)y=f— C— 2 (4;— B! — 23 A},

and the double integrals are computed on the set Q< (7,7,
Set

14

g =M, (1 + o0 M, 22 M")

and define

V(14 2) 20+ By 410, tor 2] < By

0 for || = R,.

7("'7 1) =
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Since I satisfies (H) it is easily seen that

(3.8) [f% (@, ) % e 0 dow dt = —ff?(w, t) £ eh u? dx dt.
The functions 4], B;,C and G each belong to some space L™’ with
1
p and ¢ satisfying (s«). Let 0 denote the minimum value of 1 —% Y

for the 2n 4 2 pairs (p, ¢) involved. Note that 0 <0 << 1. Assume 7, <<
1, << ¥, + 6, where 6 << 1. By Hdlder’s inequality and Lemma 2

f FeEer P dodt << KC,o® (|| Cerul , + [[(Cer u), |2 ),

where

& =2(1+2) 204+ B+l

with the norms computed on the set @,. Similarly, using the inequalities
of Holder and Young together with Lemma 2, we have

f (2| Gu|dodt < || " u o, 20 || £ € G llapipt, 2001

1 1 ,
=5 liceta (12 o141, 201041 + - Ko (| e w2 e+ [|Ce" ) |3 o).

Finally we note that
1€ w12, <2 Seh w2, + 4w, I, + 411 Eebub, [,

In view of these estimates,

1
(2.9) _U:? o (Ful 4 | Gu |)dz a6 < — [ L6 6 B0, o0 T

1 .
08 (€ 4 ) () G0t I 1180w [ o+ 2 whe 3+ 2 el
Choose
min (1,») V¢

8K (€, + -})

o = min | 1,
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and o« such that

1 )
Z&=€, +—2—mm(l,v)-

Note that 2K<Gz+ %) 0 << —} min (1, »). Thus using (2.8) and (2.9) it fol-

lows from (2.7) that
(2.10) fczeﬂh w? dz |;;+T:_ff52e2h| u;lexdtg&ffe”‘uz|Cx}2dxdt+
3 :

mlnlv

. ; 1)
8 @ By, s + 4 1+ 5 SN 1L+ L1

where @3 = 2C, 4 min (1, »).
Let

X (@) =[C2 () 2" @0 2 (2, t) dx
and B

J=ea ” et uCz“ + lCe"G‘ ”zp'p+1 2qq+1+4(1 + )Z;H Cahlf;”;z,

where the norms are computed on the set £ >< (0, 7’). Then (2.10) implies

mmlv

(2.11) X(x)+ — ff et |u, Pdrdt << ——— || {et u ” + X(vl) 4 J

for 7, <7<t + 0. Here the integral is taken over the set £ < (1,,7)
and the norm is eomputed over the set 2 < (z;,7, }+ o). If we ignore the
second term on the left in (2.11) it is easily seen that

X(@=<2X(r)+ 27
for iy, <t <7 4 o If (j —1)6 <7< jo, it follows by iteration that
{2.12) X(@)<<2X(0)4+ 22— 1)J < % {X(0) 4 2J}.

On the other hand, if we ignore the first term on the left in (2.11), set
7, = (j — 1) 6 and apply (2.12) we obtain the estimate
! . 1
(2.13) f fcz ¢ |y |2 dx df < 2:(1 +—-) (X (0) 4 2J).
i 4

(i<1e 0
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Suppose that (! — 1)o < T’ << lo for some integer ! = 1. Then (2.12)
implies
| Ceh w2 << 24T {X (0) 4 2J},

and summing the estimates (2.13) on j from 1 to ! yields
ot 1 .
L lehug |F < 2HTe (1 + 7) {X(0) + 2J1}.

Combining these two estimates, we obtain the assertion of Lemma 1.

{The conditions (H) which are imposed on L are sufficient but not
necessary to guarantee the simultaneous applicability of the results enu-
merated in section 1 and of Lemma 1. To use theorems of section 1 in the
strip § one needs, in addition to uniform parabolicity, only that each of
the functions A,?, B? and C belong to some space L7 1(). However, to ob-
tain Lemma 1 it i3 necessary to have some further restriction on the be-
havior of the coefficients of L for large values of xr|. An examination of
the proof of LLemma 1 reveals that the essential use of (H) is in obtaining
a lower bound for the expression

O ={{dspi+ (4;+ B ulpy— (ke + C) Lu* + 2u (A p. + 4, w) Chey + Lz,

where { = 0 and

ale—£2
—c “ ,;,,_ﬁ‘/t_..g%

2u — (t—3)
and that the proof can be carried throngh under less restrictive conditions
on L. For example, we can assume that : (i) Each of the functions A}?, B}? and
C belong to some space L7 7(J) with p and ¢ satisfying (sx), and (IL.1)
holds. (ii) There exist positive constants «, b ¢, # and a function ¥ (z,1?)
which is the sum of a finite number of non-negative functions each belong-
ing to some space L? 9(8) with p, q satisfying. (#+») such that

O=al|p |2—|—(4-1d——b>é'u'z [ he 2 — (e| Lo |2 4 LTF) 02

holds for all >0, u >0, € E™, 3€{0,T) and (x,t)€ E* > (s, T']. |

In proving the existence of weak solutions we use Lemma 1 to obtain
a sequence of functions {v™} such that |v™|? 4 | v>|? , is uniformly
bounded. From such a sequence we then extract a subsequence which con-
verges to the eventual weak solution by means of Lemma 2 and the fol-
lowing lemma.
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LEMMA 3. Let [v™] be a sequence of functions in L * (D) which converges
weakly to a limit function v in L22(D). If || v™ |20 << C independent of m
then || v |5, 00 < C.

PRrROOF. According to the Banach-Saks theorem [17] there exist a sub-
sequence ;v"‘"] such that the averages

1 k m;
h=_" 3 p"M
ki:;

strongly in L* 2(D). Therefore, there exists a subsequence {leg of the aver-
ages which converge to v almost everywhere in D. Let m{t) denote the

n-dimensional measure of the set of x €3 for which 5"i—/—> v(z,t) and E,
denote the set of t€ [0, '] for which m (¢) &= 0. The measure of E, is zero,
for otherwise we would have a contradiction to ;:k"—> v almost everywhere
in D. Let E, denote the set of ¢ € [0, T'] for which || v™ (-, ¢){|zs(z) > [|v™ |}z, oo-

Then for each m =1 the measure of E, is zero. Hence the set ¥ — ml:l_0 E..

A A
. ks
also has measure zero. For any t€l B we have v* —» v and hence (v"P —
— v? almost everywhere in 3. By Minkowski’s inequality

A 1 k "
|| o% (-, “LZ(E)ST-_ZI 0™y 0 ll2e 5 =C.

Thus, it follows from Fatows lemma that || » (-, t) ||z2 5 < © for every tef E
Since the measure of E is zero this proves the Lemma.

2. The Boundary Value Problem.

Let £ be a fixed bounded open domain in E™ and @ = £ < (0, T']. Given
functions Fj€ 122{(), G € L? 9(Q) with p, ¢ satisfying (++), and w, € L?(£2) we
consider the boundary value problem

Lu = {Fj(x, t)}x]. + G (x,t) for (x,t)€Q
(3.1)
u(x, 0) = u, (x) for x€ 2, ux, t) =10 for (x, t)€882 < [0, T,

where [ satisfies (H). A function n = u(x,t) is said to be a weak solution
of problem (3.1) if v is a global weak solution of equation (3.1) in @ with
initial values u, on t=0 and if we L’[0, T; H) (2Q)].
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By the convention adopted in the Introduction, L is defined for almost
all (x, t), Extend the domains of definition of the F;, G and wu, by setting
Fij=6G =0 in 6@ and v, =0 in { 2. Let 4}, 47,.., G™ denote integral
averages of A;, Aj,..., G formed with an averaging kernel whose support
lies in |z |* 4 ¢ < m~? for integers m =1 and define the operators

m m m m m
L7 u = uy— (Ajj uy, + Aj Uy — By g, — C” u.

By the standard properties of integral averages [20] it is easily verified
that these operators have a uniform structure with respect to m which is
completely determined by the structure of L. Let u, denote the integral
averge of u, formed with a kernel whose support lies in || << m~L If u,
has compact support, so does uy for m sufficiently large. Let (2™} be a
sequence of open domains with smooth boundaries such that Qme Qnilc
c Q1 e Q for all m >0 and lim Q" = Q. If u, has compact support in

Q set (=1, otherwise for each m > 1 let {m={(, (x) denote a Cg (")
function such that {,, =1 on Q™! and 0<C{, <<1.
Consider the sequence of boundary value problems

L™u=F + G™ for (z,1)€ ¢" = Q" < (0, T]
(3.2)
u (2, 0) = L (@) ug" () for € 2", u(r, ty=0 for (r,t)€ 9" <[0, T].

Since the coefficients of L™ and the data are all C* functions, and §Q™
is smooth it follows from the classical existence theory {10] that for each
m>=>1 such that supp ({,.uy) < 2™ the problem (3.2) has a unique classical
solution u™ = w™ (x, t) and uw™ € C* (™).

THEOREM 1. Snppose that L satisfies (H), Fje L>%(Q), G € L? 1(Q) with

p and q satisfying (), and wu, € L*(£2). Then there exists a unique weak so-
lution u of the bondary value problem (3.1). Moreover, u is the weak limit in
L2[0, T; H.2(8)) of the sequence (w™ of clussical solutions of problems (3.2)
If each F; belongs to some space LP 9(Q) with p and q satisfying (s) then u
has the following additional properties.

(i) u is the uniform limit of (u™} in any compact subset of Q.

(ii) If m, << wuy<<m, almost everywhere on £ then

m, —Chk, <u@w, ty<sm, + Ck,

in Q, where C depends only on T, £ and the structure of L, and the k; are
the same as in Theorem A.
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(iii) If uy€ C3(Q) and 8Q»has property (A), then w 18 the uniform
limit of {u™] and is continuous in Q.

PROOF. Since u™ € ¢! (™) and u™ = 0 for x € 2™ it follows that u™ (-, t)€
€ H'® (2™ for each t€[0, T}, (ef. [20]). Thus, in particular, ¥™ is a weak
solation of problem (3.2). By Lemma 1, with { =1, s =0 u = oo,

(2 2 F’
1l o, gm =+ 125 5 gm< 6" € H%fhmm+2ﬂ e, on +

X
Ia” ”2P/P+1v 29/g+1, @™’

where g and C are independent of m. It is easily verified that

([t

Ly ™) = ” uo ”L!(_Q)? H ij ”2 2, @M = ” Fj ”3, 2. ¢

and

z’—l)mﬂ(q—l) 2q ” G ”

{
” e ”21)’q+1 2g/q+1, @™ = I ¢ H21'lp+1 2q/g+1, @ == ’ Q ! ». 9 Q"

Thus

2 T 2 j 2
| um ”; o0, QM + ” M:' ||2' 2, @m = eﬂ e ” uO “911"0) +]£l ” ‘F’J ”2) 2, +

[ QT @ [5,q, 00 = €y
and by Lemma 2,

. 6
Hum 2, g on < ET°€, =€,

for all p’,q’ whose Holder conjugates satnfy (x»). Extend the domain of
definition of w™ by setting u™ = 0 in Q \ Q”’ It ls clear that the extended
function belongs to L™ [0, T'; L*(£)]a L0, T; HS? ‘£2)], and that the last
two estimates can be rewritten as

(3.3) [m 12 o Flwr o<
and
(3.4) _ o lZp’ 2 @ = G,.
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Let @€ C! (Q—) with compact support in £ and suppose that ¢ vanishes
in a neighborhood of ¢t = T. If m is so large that [suppe]n@ c @™ and
supp ({m u7) € ™ then

m

(3.5) ff(— " @y + Af ug, Pz + A7 ™ Pz + Fy" @4 — Bj Uy p —
) .
—_ Um “m @ — Gm le dt = m g
lp) ax = Cm ('l') “0 (.1') '] (.I/‘, 0) dz.
)

In view of the weak compactness of bounded sets in L’[0, T; H, *(£)] and
L7 2% () it follows from (3.3) and (3.4) that there exists a subsequence of
the w™, again denoted by »™, which converges weakly to an element % in
L*{H{"?] and in any finite collection of L*"* (@) spaces. Moreover, it fol-
lows from (3.3) and Lemma 3 that u € L= (). Since the integral averages
of the coefficients and the data converge strongly in the appropriate spaces,
the limit as m — oo of the integral on the left in (3.5) exists and is equal
to the corresponding integral with m deleted. Moreover, ||, u™— u, | g0
as m — oo. Thus

(3.6) ff(— u @ + Ay ug @z + Ajugs + Fj o, — B, Uy @ — Cup— Gop)ydedt=
Q

[ @) 9@ 0z

Q

for all @€ C!(§) with compact support in £ which vanish near t = T. In
particulair, if ¢ € Cg(Q) then (3.6) holds with zero on the right hand side,
and hence u is a global weak solution of equation (3.1) in ¢. By an argu-
ment similar to the one employed in section 1 to derive (1.3) from (2),
it follows from (3.6) that )

futpdw |e=s +ff(—-— wp, + Ay Uy, @r, + .. — Go) dedt =ju0 (x) ¢ (x, 0) dx
P ZX(0, v

for all t€[0, T] and for all @€ C'({) with compact support in Q. If we
take @ = @ (€)€ Cy (L) then

lim | u(z,t)p(x)de = f“u () @ () dex.
0 o
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Thus » is a weak solution of problem (3.1). The uniqueness is a trivial
consequence of Lemma 1. Note that since u is unique the whole sequence
{u™} converges to u.

If Fye L?1(Q), with p, q satisfying («), then the results of section 1 are
applicable. Let K be a compact subset of ¢ and consider m so large that
K < Q™. By (3.4) and Theorem B, the sequence {«™} is uniformly bounded,
and, by Theorem C, it is equicontinuous in K. Therefore, there is a sub-
sequence which converges uniformly in K. Since any convergent subsequence
from {w®] must converge to u it follows that »™ — u uniformly in K. To
prove (ii) we first note that m, << w, << m, implies m <<{ i << m,. More-

2°
over, if m is sufficiently large || W™ | m<C]| W"‘HQ<2|| W||, for any

We L5, 7(8). Thus, by Theorem A, for any (x,t)€ @ and m so large that
(z, )€ Q™

(3.6) my — Cly < u™(x,t) < my + Cky,

where @ depends only on 7, £ and the structure of equation (3.1). Asser-
tion (ii) follows from (3.6) and (i).

If 382 has property (4) then the sequence {£2™} can be chesen so that
{082™} has property (d4) uniformly whith respect to m. Moreover, the integral
averages u;* have the same modulus of continuity as u,. Thus, in view of
(3.6) and Theorem D (ii), for m sufficiently large each u™ has a bound and
a modulus of continuity in Q™ independent of m. If we extend the u™ by
setting «™ = 0 in Q\ Q™ the resulting sequence is uniformly bounded and
equicontinuous in Q. Thus the assertion (iii) follows from Arzela’s theorem
and the uniqueness of w.

In various special cases it is possible to simplify the construction of
the approximating sequence {w™} in Theorem 1. For example, if 42 is
smooth and u, has compact support in £ we can omit the approximation
of £ by smoothly bounded domains and take for {u™} the sequence of clas-
sical solutions of the boundary value problems

r ,z]—lr-(i for (x,t)€ @
(3.7)
u (x, 0) = w2 (x) for €D, u(x,t)=10 of (x,¢)€ 5L [0, T]

with m sufficiently large. If 94 is smooth and u, is Holder continuous on
2 with u;=0 on 0% then {u™} can be taken to be the sequence of
classical solutions of problems (3.7) with the initial values w (», 0) = u, ()

ingtead of u (x, 0) = w}* ().
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4. The Cauchy Problem.

In this section we consider the Cauchy problem

(4.1) Ln = {Fj(x, l)],j + @ (x,t) for (x,1)€ 8, u(x,0)=u,(x) for x€ E",

where L satisfies (H), and the F,, @, u, are given functions. The data will be
required to satisfy certain conditions which will be specified later. A function
u=u(zt) is said to be a wenk solution of problem (4.1) if it is a weak so-
lution of equation (4.1) in § and has initial values u, on t= 0. In partic-
ular, a weak solution of problem (4.1) is a global weak solution of equation
{(4.1) in @ with initial values u, on ¢t =0 for any bounded cylinder @ c 8.

We are going to prove an existence and a uniqueness theorem for prob:
lem (4.1). Before doing so however let us recall some of the limitations on
uniqueness and solvability of the Cauchy problem for the one dimensional
equation of heat conduction

(4.2) Upy = U,
Tihonov has shown that if w is a solution of (4.2) in S, then u (x, 0) = 0 and
(4.3) u (z, t) = 0 (et 12

in § for some 4=>0 imply v = 0. On the other hand, there are examples
which show that « (#,0)= 0 and u = 0(¢*#*T*) do not imply = 0. Thus
one cannot expect to have a unique solution of the Cauchy problem without
excluding solutions which grow too rapidly as |&|—> co. The unique solu-
tion in the class of functions which satisfy (4.3) of equation (4.2) with the
initial condition u (z, 0) = ¢**' is given by

% (x, t) == (1 — 42 8)7'2 exp {Ax?/(1 — 44 1))

Clearly this solution is valid only for ¢€[0,1/41). Thus if the data grow
exponentially for large |#| we cannot expect the solution of the Cauchy
problem to exist for arbitrary values of t. Analogous restrictions enter into

the statements of the results given below.
A function % = u(x,t) defined and measurable on § will be said to
belong to the class €2(8) if there exists a number 1 == 0 such that

ff e~ 12 y2 (%, t) doe dt < oo.
§

It is clear that if w satisfies (4.3) then u € €*(N).
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THEOREM 2. There is at most one solution of the Cauchy problem (4.1)
in the class C2(8).

PROOF. If there were two solutions of the problem (4.1) in the class £2(8),
then their difference 10 would also belong to ¢%(S) and be a weak solution
of the problem

Lw=0 for (x,t)€S,w(x, 0)=10 for x€ ™.

We will show, using Lemma 1, that this implies w = 0. Set s =& = 0.
Then for 0 <<t < 2u we have h (#,8) << — a | 2 [*/2u. If 1 = 0 set u = + oo,
otherwise set u = a/A. Then h{x,t)<< — 1|x|?/2 and hence e w € L*2(§),
where 8" = E" =< (0,T’) and T’ =min(T,u). For R=>1 set {=_z (2),
where (=1 for |z|<<R,{zg =0 for |z|=>R+1,0<<lpr<1, and |{r:|
is bounded independent of R. By Lemma 1

T’
(4.4) | Cp e w ||j mg(—?/fc?hwz | Cre '2dmdtg€]jfe2"w2dxdt,
SI

0 |zj2R

where @, is independent of R. Since ¢#w € L*2(8’) the integral on the right
in (4.4) tends to zero as K — co. Hence

max [e'”‘("v Y w?(x, t)yde =0
fo. ] .
o <e
for arbitrary ¢ > 0 and it follows that w=0 in §’. If T’ = T this com-
pletes the proof, otherwise the proof can be completed by a finite number
of applications of the same argument on E* < (T’, 2T’), E* < (2T’, 3T’), etc.

THEOREM 3. Let y =0 be fired and assume T << a/4y. Suppose that L
satisfies (H), e~7VP F,e L>2(8), e-r13 G € L7 9 (8) with p and ¢ satisfying
(x%) and e~v 12l u € L* (B, Then theve exists a weak solution u of the Cauchy
problem (4.1) in 8. Moreover

I 2, I : —~y 2,2
l| e u Hfm+l|°‘ "xll-f,-zéelile i "OHL‘Z(E")JF‘
—_ 2 9 —_ 2
-{—?He i 1’11”52'*‘”" i G |5}

where C is a positive constant which depends only on T and the structure of
equation (4.1), and

P

al.v|;_—ﬂ(.

27—

hr, t)y = —

o banady delle Novela Norm. Sup. Pwsa
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In particular, u belongs to the class £2(8) and hence is the unigque solution
of problem (4.1) in E2(8).

PrOOF. Let Q= 5, < (0,T), where 3y = |v;|x| < ¥} for integers
k=1, and consider the boundary value problems

Lu = Fj o+ G for (z,t)€ Q
(4.5)
u (x, 0) = u, (x) for £ € Zp, u(x,t)==0 for (x,t)€ 03, < [0, T}

By Theorem 1, for each value of & there exists a unique weak solution w*
of problem (4.5). Since w*€ L*[0, T'; H}'*(5y)] it follows from Lemma 1 with
8=§¢=0,u=1T and { =1 that

W) lewlp e, < el [eerdwas 2o n, +

Zy

2
+ || €" 6 |lip+1, 201041 { »

where C is independent of ¥ and the norms are taken over the set Q. For
0<<t<T we have L(x,t)+ y|x*< —»|x|?, where » = «/47. Thus

fezh(z. 0) u?, dr < ” Py % ”:ﬂ(Eﬂ) ’ u ehFj “2'2 < “ Pitdal F, ”2‘2, s
2
and
h =) - -
Il 6" G llzpip41. 201041 < A Nl capio—n, gm || € ne g ll 5. g5

Therefore (4.6) implies that

" [ co Il € ez 52 << Cy () 67" g [ 2 gm + 2 || 67 Fy |0, s +
J

e @, 051 =6,

where C, depends only on T and the structure of the equation. If we ex-
tend the domain of definition of the w* by setting u* =0 for |a| >k and
0<t<T, then u ¢ L [0, T; L, (E"] 0 L*[0, T; HL.* (E)] and

4.7) || €" ut “j w8 T I| €® uk ||§ 2 s = 82 .
Furthermore
(4.8) leb k|, s < (TCHM2,
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In view of (4.7) and (4.8) there exists a subsequence of the vectors
(e uk et uil y e y € uf ), which we again index by k, and a vector (¢* u, e u, , ...
n

eyt u,) such that e* u* — e¢*u and et u:'—> et u; weakly in L% (S). Let @
be any bounded cylinder in § and let ¢ be an arbitrary L>2(¢) fumctjon.

Let Ze denote the characteristic function of ¢ and set ;= P2q - Lhen
clearly @e—"*€ L*»2(S). Thus

f[(pu" dx dt =f[(;;e"')(u"c") dxdt ——rff(%e‘") (uet) dxdt =ff¢p u dz di,
. . P, g

Q s

that is, u* —> u weakly in L2 (@) for any bounded @ c 8. Similarly, u:‘—> %,
weakly in L? 2(¢)) for any bounded ¢ c 8. Since

ff{p,iu"dwdt=—[f¢u: dz dt
. i
5 s

for all @€ C!(S) with compact support in E", it follows that u; is the dis-
tribution derivative of » with respect to x; and we will write u,, instead

of u;. Note that for the limit function we have
(4.9) || €* wllg, 2, s < (TG, | €*uzlly, 2 s Cl2

and w€ L%|0, T'; Hy.’ (E™]. Moreover, it follows from (4.7) and Lemma 3
that
[ €" % lo, 00, s << C}f°

and u € L*[0, T'; Ly, (E™)}

Let £ be an arbitrary bounded open set in E* and let £2° be another
bounded open set such that 2 cQ’. Let ¢ ={(x) be a €5 (E") fonction
such that £ =1 on @,C:O on I:.Q’, and 0 <<{ < 1. By Lemma 2

l| Cu® {lapr,ngr << KTOE)| Sk |2 4 2| Sk [} 5 + 2 12, w® 13 5
for all p’ and ¢’ whose Holder coniugates satisfy (xs). Thus

(| €* (e, 0, @< KTO [ WX |2 o + 2[1 0515, o + 2 max [E 2 || u* [}, o)
where @ = 2°<(0,T) and ¢’ = £2><(0,T). Let H=mine¢*. Then H> 0

v

and according to (4.7) and (4.8) we have {u* |, < H7' @2, [luk]l,, o <
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= H—_l 8;’2 and ” ut ”2, 2, ¢ < H-'T ez)‘/z - Hence

[l

w20, @<= Gy

independent of k. Therefore, in any bounded cylinder ¢, we can select
a subsequence of the subsequence selected in the last paragraph which
converges weakly to w in any finite collection of spaces L% (Q) with p’
and ¢’ whose Holder conjugates satisfy (x«).

Let ¢ be an arbitrary C!(S) function with compact support in E” which
vanishes near ¢ = 7. For all ¥ so large that (supp ¢)n8 = ¢ we have

{4.10) U(— wk @+ Agug, P2+ Ajut oo+
"%

+ Fj@g — Bj“:jtp— ot g — G(p)dxdt=fuoqp(x, 0) de.

m

If we let k—> oo through the appropriate subsequence it follows from
the considerations of the two previous paragraphs that (4.10) also holds
with k& deleted. Thus, as in the proof of Theorem 1, we conclude that =
is a weak solution of the Cauchy problem (4.1). Since h = — o |z [¥/T — 8T
we have, in view of (4.9),

[fe—“‘“’l'/T u (¢, t)de dt << T C, *T.

Hence » belongs to the class ¢2(8) and is the unique solution of problem
(4.1) in &?(8). Note that any convergent subsequence of the #* must con-
verge to funection €?(8) and, therefore, to w. It follows that the whole se-
quence u* — 4 weakly in the appropriate spaces.

COROLLARY 3.1 Suppose that L satisfies (H), and the functions G and
uy satisfy the hypotheses of Theorem 3. If for each j, the function e=7121" F; be-
longs to some space LP 7(8) with p and q satisfying (») then the sequence
{u¥} of weak solutions of the boundary value problems (4.6) converge uniformly
to u in any compact subset of S. Moreover

” ehull 4| et u,ﬂg‘zge{ [le=7i=itu, ”izwn)-{-—%‘”e*rlxlej”;'q_'_

+ e a |,
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where C depends only on T and the structure of equation (4.1), and h is
given in Theorem 3.

ProoF. Observe that
|| €* Fjllz, o, g << T'1-22 || e=* 12 || a2 gm || €712V B[ 5,q, 5 -

Thus the proof of Theorem 4 can be carried through without essential change
in the present case. In view of (4.8), the sequence {u*} is uniformly bound-
ed in the L>® norm in any bounded subset of S. Therefore, since the
F; and G are locally in the appropriate L? ¢ spaces, it follows from The-
orems B and C that the sequence {«*} is uniformly bounded and equicon-
tinuous in any compact subset of §. The uniform convergence of u*to u
then follows by Arzela’s theorem and the uniqueness.

We now consides the special case of problem (4.1) in which y = 0 and
%y == 0. In this case, using Theorem B and Lemma 1, we derive a point-
wise bound for |« |in terms of the F; and G-

COROLLARY 3.2. Let u be the weak solution in the class E2(8) of the
Cauchy problem

(4.11) Lu = Fj 5 + G for (7, ) €8, u(x,0)=0 for z € E™,

where L satisfies (H) each F;€ L?-9(8) for some p and q salisfying (+), and
G e Ly (8) with p and q satisfying (s+). Then for all (x,8)€ S

(4.12) |ui@ 0] < C(Z| Fllp.qs + 1 € |5, q,8)
7
where @ is a positive constant which depends on T and the structure of the

equation. Moreover, u is uniformly Holder continuous in 8.

PROOF. Let & be an arbitrary fixed point in E*. By Lemma 1, with
(=1,

‘ g . 2 By 2
| e" 1" |2 0., < € f}z | " By 13,2, 0, | €" G oot 21041, 04}

where C is independent of k¥ and

r — 2
hix, t) = — “LT:%’—'— pt.
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Since h (x,t) << — a|® — &|%/2T it is eagily verified that

n

” ¢t “r 5.8 << (2E%n[aryrizr T?""

1
3
for all exponents r,s =1, where

E=fe"|‘|'dz.

B

Thus, by Holder’s inequality,

y—1ig
| 6" Fjlle,2, 0, <<€* T % || Filip,qs,

1 n 1 n+2
=———— 0 =T a d
where 6 2 2p p >0 and N 1 an
h % A ';"H" )
It e* @ |l2pip+1, 2q1041, 0 <C' T | 6 llpqs>
1 n 1
where 9’ = ?(1 — 3 ?) > 0. Here C* and €’ depend only on the

structure of the equation, It follows that

I e* u¥ ||z, 2, ¢, < C, T¥ {_JZ | Eillp.q, 8 + 11 G ll5,q. )

where ©, depends only on T (or an upper bound for 7') and the structure
of the equation. Let D, = [|x — &| < 3VT/2} > (0, T]. If k is so large that
D, = @y then

9
~2 gy
I| 6* u |, 2, g, = || €" 0¥ |la,2, p, =€ * T

|-z. 2, Dy

and hence
I * lla,2, 0, << @y T {;? [ Fillpg.s + 1 Gllpq sl =Cs,

where C, depends only on T and the structure. Since u* — u weakly in
L%2(Dy) it follows that ||« ||z, 2, p, < @;. Extend the domain of definition
of u by setting u =0 for t < 0 and let D, = { |z — §| < 3VT/2) x (— 97T, T].
Then clearly || ||z, p, << @;. By the Extension Principle and Theorem B,
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for |x—-§|gVT/2 and 0 <<t < T we have

|u i@ ) < C(T~N| w2 p + T (2 I Fsllp, 0. 2+ 1] G llo, 0. 2} <

+ G + T l]_Z | Esllp.q.8 4+ 1| Gllp.q 5} -

Since & is arbitrary this proves the first assertion. The second assertion
follows immediately from the Extension Principle, Theorem C and (4.12).
Consider the sequence of Cauchy problems

(4.13) L"w= Fj, 4 G™ for (x,1)€ 8, u(x,0)=10 for €K™,
for integers m = 1, where
L™ w=un,— |4y Uz, + A7 u},j—— B* Uy — " u,

and W™ denotes the integral average of W formed with a kernel whose sup-
port lies in |z [?4-t*<m—2. As we noted in section 3, the equations (4.13)
have a uniform structure.

COROLLARY 3.3. Under the hypotheses of Corollary 3.2, u is the uniform
limit in any compact subset of 8 of the sequence {u™} of classical solutions
of the Cauchy problems (4.13).

ProoF. For each integer m > 1, the problem (4.13) has a unique clas-
sical solution »™ in the class €?(8) (cf. {10]) and it is easily verified that
w™ is also the weak solution of problem (4.13) in class &#(8). By Corollary
3.1 and the fact that integral averaging on § does not increase norm

et wm |} o 4 Iletwm B, < CIZNE I, + 161 )

where @ depends only on T and the uniform structure. It follows, by the
argnument used to prove Theorem 3 and the strong convergence of integral
averages, that the sequence {u™} converges to u weakly in the appropriate
space. In view of Corollary 3.2, the sequence {#™] is uniformly bounded
and equicontinuous in S. The assertion then follows from Arzela’s theorem
and the uniqueness.
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5. Non-negative Solutions of the Cauchy Problem.

The results obtained in the previous three sections are not restricted
to non-negative solutions of linear parabolic equations. Beginning with this
section, however, we shall use these general results together with the re-
sults quoted in section 1 to study the properties of various non-negative
solutions. Specifically, in this section we will characterize the non-negative
weak solutions of the Cauchy problem

(5.1) Lu=0 for (x,t)€8, u(r,0)=u,(xr) for x€E",

where L satisfies (H) and %, is a given function in L%, (B"). 1t is easily
seen that if the problem (5.1) admits a non-negative solution then we must
have u, =0 almost everywhere in E". Our first result is a generalization
of a theorem first proved by Widder [22] for the equation of heat conduction.

LEMMA 4. Suppose that L satisfies (H). If u is a non-negative weak
solution of the Caachy problem (5.1) with uy =0 then u =0 in 8.

ProoF. Extend the domain of definiton of u by setting v =0 for t < 0.
The extended function is non-negative, locally bounded and continuous in
B < (— oo, T]. By the Extension Principle and Theorem E

2
u(a;,t)gu(O,T)exp@(l'pl T )

T Ty

for all (z,t) € E™ > (— T, T]. Let ¢>> 0 be arbitrary and set 8, = E" <0, T—é].
Then for (»,t)€ S,

(5.2) % (2, ) << [ (0, T)exp C} exp C| « |¥/e.

Clearly, if v (0, T)=0 then v =0 in S,. On the other hand, if » (0, T)>0
then (5.2) implies that « € £?(8,) and it follows, as in the proof of Theorem 2,
that « =0 in §,. Finally, since ¢ is arbitrary and % is continuous we
conclude that » =0 in 8.

Since the difference between two non-negative functions does not neces-
sarily have a constant sign, Lemma 4 does not imply uniqueness of a non-
negative solution of problem (5.1). The uniqueness does follow from our
next result which characterizes a non-negative solution of problem (5.1) as
the limit of a certain well-defined sequence of functions associated with
L and u,. :
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Let 3y ={x;|a| <kl and Q= 3;><(0, T]. For each integer k=3,
let ¢, = {; (z) denote a CF (E™) function such that { =1 for |u|<<k—2,
Lr=0 for |#|=k —1, 0 << <1, and | (| is bounded independent of k.
Consider the sequence of boundary value problems

Lu =0 for (z,t)€ Q;
(5.3)
u (@, 0)={p(®)uy(x) for €3y, u(x,t)=0 for (x,t)€83; < [0, T]

According to Theorem 1, for each k there exists & unique weak solution u*
of the boundary value problem (5.3). Extend the domain of definition of u*
by setting u* =10 for |2/ =k and 0 <<t << T.

THEOREM 4. Suppose that L satisfies (H) and u,€ L, (E™). Let u be a
non-negative weak solution of the Cauchy problem (5 1). Then at every point of 8,

Hm u* (z, t) = u (, t),

k—oo
where {u¥} is the sequence of weak solutions of the boundary value problems
(5.3). Moreover, the convergence is uniform on every compact subset of 8.

PROOF. We first show that the sequence {u*} is non-negative and
non-decreasing, that is,

(5.4) 0 < u¥ (x, t) < W+ (2, 1)

for all (»,¢t)€ 8 and all ¥ = 3. Acoording to Theorem 1 (i) and the remark
at the end of section 3, w* is the limit at each point of ¢ of the sequence
ut-™ of classical solutions of the problems

L™ u =0 for (xt)€ Q;
u (%, 0) = {{i (@) uy ()™ for 2 €3, u{m,t)=0 for (x,t)€02r < [0, T]

ixtend the domain of definition of u*™ by setting ux™ =0 for |x|=Fk
and 0<<t<<T. Clearly u*™ =0 and hence u* > 0. Let ™ (w, 1) =
wkthm (g ) — k™ (2,t). If |2|=k and 0<<t<<T, then uw*™=0 and
w™ = y*¥tL™ = (. On the other hand, %™ =0 on the parabolic boundary of
@%. Since L™ w™ = 0 in (), it follows from the classical maximum prin-
ciple that w™ >0 in ¢,. Therefore u*+1.m >u%:m in § and we obtain (5.4)
by letting m — oco.

We assert that the sequence {u*} is bounded above by u, that is,

(5.5) uk (2, 0) < % (2, 0)
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for all (x,t)€S and all k > 3. Since the inequality (5.5) is trivial for |x| =k
and 0 <t < T, it suffices to prove it for points in ¢. Let (x,,?,) be a
fixed point in Q. For fixed &k and integers [ such that ¢, > 1/l consider
the sequence of boundary value problems

Lv=0 for (x,)€2y < (1/l, T]= Qu
(5.6) cv(e, 1/ =0 (x)u{x,1,]) for x€X,;,

Lv(x, t)y=0 for (», 0)€82, < [1/, T)
Since 33} is smooth and £, (x)w (x, 1/1)€ C) (Zy), it follows from Theorem 1
(iii) and the remark at the end of section 3 that for each ! the problem
\5.6) has a unique weak solution v¢! and % '€ C° (Qu). Set whl=u—vki
Then w*!€ C°(Qy), w*'=0 on the parabolic boundary of @y, and wk!

is a weak solution of Lu = 0 in Q. Hence, by Theorem 4, w*'>0 in
@x . In particalar,

(5.7) vhE(@g, ty) << wlay, tg)

for I > 1/t,. It remains to be shown that v*! — u* as | — oo.
Define the function

) vkl (z, t) for (x,t)€ (Jkl
vk, i (w’ t) =
Ce@) ui@, b for (@, 0)€ Ty < (0, 1/1].

Clearly vk LE OO (Qx)- Moreover, it is easily verified that kg L2[0, T Hy 3 Z)
and satisfies

[f("" ;’k' L, + 4y ;:Ll Pz; + A4; ;;k' ! Pz — B; ;;’;}l r— (":’k' Lyydua dt
Qx

(5.8)

+ff {— wAij iz, P2, + wp (A;+ Bj) Cerj + P Ay Uz, (ika)} dor
ZX(0, 141

=f§k (@) uy (x) @ (x, 0) dx
Zy

for all g€ C! (Q_,‘) with compact support in 2, which vanish near ¢t = 7. By
Lemma 1, with { =1, s =1/l and u = + oo,

105 2 g F N PE Iy g < €7 C| Conia, 1B, < T C w2, =€,
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independent of I. On the other hand, since u is a weak solution of the
Cauchy problem, we have

N2 1 0+ 1€ E 5 g, = Co < 0o
Therefore

A A
| 05 o g TSI 2 o, =< Ca

independent of I. In view of Lemma 2, there exists a subsequence of the

% ! which converges weakly to a function v in L? [0, T'; Hy? (3] and
L% %" (@) for any finite collection of admissible exponents p and ¢. Moreover,
according to Lemma 3, t;kEL?v”(Q,,). Note that the second integral on the
left in (5.8) tends to zero as I -» co. Thus, letting !— oo in (5.8), we

conclude that v* is the weak solution of problem (5.3). Therefore v = uk,
Finally, by Theorems B and C, the sequence [;" % is uniformly bounded

and equicontinuous in any compact subset of ¢. Hence, ;""(wo,to)——r
u* (x,,t,) and (5.5) follows from (5.7).

According to (5.4) and (5.7), the sequence {u*} is non-decreasing and
bounded above by u in §. Hence there exists a function w=w («, t) such that

(5.9) 0w, t)< u(w,t)

and uk (x,t) — w(x,t) a8 k— oo for all (¢, #)€ 8. In view of (5.5) and Theo-
rem O, the sequence {«*] starting from a sufficiently large k is bounded
and equicontinuous in any compact subset of 8. Therefore the limit funec-
tion w is continuous in 8. We assert that u is a weak solution of the
Cauchy problem (5.1).

Let 2 and £’ be arbitrary bounded open domains in E" such that
Qe Q=09>x(0,T) and ¢ =2 > (0,T]. Let {=1_(x) be a C7(E™)
function such that =1 on 5, suppl c £’ and 0 << << 1. Take k so large
that 2’ ¢ 3. By Lemma 1, with 2= 0 and u= - oo,

N+ 10 I g s emed [atuiast [[erie pavar]
2 &

Therefore, since uf << w,

=e,

10 g+ 0t g = b7 (e + max | [ [t av a
]

Qf
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independent of k. Moreover, by Lemma 2,
515 0, @ < 1EWF IS o << BTO (IS0 [ o o + 1 G0, 1 5 o} < 6,

independent of k for any admissible exponents p and ¢. It follows that
there exists a subsequence of the w* which converges weakly to a function
w in L? [0, T; H'2(2)] and any finite collection of space L2 27 (()), where,
by Lemma 3, ':;EL?'“’(Q). However, since #* — w pointwise in § we have
» = w. Thus, in particular, we L= [0, T; L2 ()] n L2[0, T; H"2(Q)).

Let ¢ be an arbitrary C!(§) function with compact support in E* and
which vanishes near ¢t = 7. Choose £2 so that {suppe}n8c . For k so
large that @ = 3 we have

/f(—-— uk(p,—l— Ay u:i Pz + Aju" Pzj — B,-u:j @ — cuF @) dw dt =
s

_—._fck () %y () @ (2, 0y dx.

E®

In view of the results of the last paragraph, if we let k¥ — oo we obtain

ff(— WQ: + A 10, @z + A0z — Bjwz, @ — Cwe)dr dt = [uo (x) @ (2, 0)dzx
) .

ET

and it follows that w is a weak solution of the Cauchy problem (5.1).
The function v — w is a weak solution of the Cauchy problem

Iv=0 for (x,t)€N, v(z,0)=0 for x¢€E",

and, in view of (5.9), ¥ — w =0 in §. We therefore conclude from Lemma 4
that w =1u in 8. Since u* converges monotonically to « and since w» is
continuous in compact subsets of §, u* — u uniformly on compact subsets
of § by Dini’s monotone convergence theorem.

An immediate consequence of Theorem 4 is the uniqueness of a non-
negative solution of problem (5.1).

COROLLARY 4.1. If L satisfies (H), uy€ Lin. (E™) and uy==0 almost
everywhere in E*, then the Cauchy problem (5.1) admits at most one non-
negative weak solution.



of Linear Parabolic Equations 651

On the other hand, the proof of Theorem 4 can be reinterpreted to
yield the following criterion for the existence of a non-negative weak solu-
tion of problems (5.1).

COROLLARY 4.2. Suppose that I satisfies (H), u,€ L (B") and uy =0
almost everywhere in E™. The Cauchy problem (5.1) possesses a non-negative
weak solution if and only if there exists a function U (x, )€ L2[0, T ; Li,. (E™))
such that w* << U almost everywhere in 8.

PROOF. If there exists a non-negative weak solution u of problem (5.1)
then u € L°[0, T'; Lj. (E")] and, in view of (5.5), «* < w in 8. Thus we may
take U =wu, If w* < U almost everywhere in 8, then, since {w*} is a non-
decreasing sequence of non-negative functions,

lim w* = 10

k +»oo

exists almost everywhere in § and 0 < w << U. The proof that w is a solu-
tion of problem (5.1) is identical to the corresponding part of the proof of
Theorem 4.

6. Existence of the Fundam‘ental Solution and Green’s Function.

Let D=2 < (0, T] where 3 is either a bounded open domain contain-
ed in E” or E* itself, and consider the problem

(6.1) Lu=F,(x,t)— (Fj(x, t)};; for (x,)€D, u(r,0)=0 for reJI,

where I satisfies (H), and the functions F, F,, .., F, all belong to a sin-
gle space L? 9(D) with p, ¢ satisfying («). If ¥ = H™ we take u to be the
weak solution in ¢*(8) of the Cauchy problem (6.1), while if X is bounded
we take u to be the weak solution of the boundary value problem consist-
ing of (6.1) and the condition » =0 on §2 < [0, 7']. In either case, accord-
ing to Theorem 1 (ii) or Corollary 3.2, we have

(6.2) (e, )| < C 2| Fillyq,p-
=0

for all (x,t)€ D,
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Let 2P 9denote the Banach space of vectors W= (W,, W,,.., Wa)
such that W;e L».9(D) for j=0,1,...,n with either of the equivalent norms

n
iw ”qu=]£:0 | Wilpgnor|Wl,,= u;ax | Wills.q. -
According to (6.2), the value at a point in D of the solution u of the bound-
ary value or Cauchy problem (6.1) is a bounded linear functional on
Lre, that is, u (x, t) = G, ( (F), where G, ,€{LP7}* Moreover, || G, .|| < C.

The remainder of this section is devoted to deriving a more precise char-

acterization of G, ..
Denote by Y7 the collection of vectors W € £27.¢ such that

/-f(Wo(p + qu),j) dz dt = 0
D

for all g€ Ci(D). Let u be the weak solution of the boundary value or
Cauchy problem (6.1) and let u be the weak solution of the corresponding
problem for

Lu = i’o — i‘j'zj y
where F = (f’o TN ﬁ.)E Lr.9 with the same p and q as F= (F,,.., F,).
Then
(@, )| < C|| Fllpq
in D, and w=u — W is a solution of the corresponding problem for
Lu = (Fy — Fy) — (F, — Fy,.
In particular, w satisfies
ffl— we, 4+ Ay Wz, x; + 4; Wz, — B Wy P — Cwe—~(F, — ﬁo) Y —
D

—(F)—— iﬁj)‘pzﬂd@‘dt:()

for all @€ 0y (D). Thus, if F— FEQ™ 7 it follows from the uniqueness for
the boundary value or Cauchy problem that w = 0. Therefore F — Fer
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implies that u =1 and (6.2) can be replaced by

(6-3) w@ b | <inf|| Fl,, (F—Feaxrq.

Assume now that p and ¢ satisfy () and are finite, Consider

Flp) = [f(Fo ¢+ Fj q),,j) dz dt,
b

where Fe€0r¢ Since F is defined for all g€ L¥ [H(,'""] we have ¢
€(LY [Hy")* = LI [H"?| (). Let M denote the mapping from L% [H{ %]
to ¢ 9 given by

‘"‘p = ((P, ‘le y ooy (Pxn)'

For the LY [H"¥] norm of ¢ we take

(pdp,g=max (| ¢y ¢ b, P Wl g Dy oo s || P2, |2, 07, D)-

Then, using the |.|,, 4 norm in 2?9, M is an isometric isomorphism of
LY [Hy?) onto a linear subspace NM”'* < L% 7. Define a linear functional
F* on WM# 7 by F*(Me) = F(p). Then

| F(@) | | 7* (Mg) |
= 8
(P, o " | Mo |y, o

| F|. = sup =[7.

By the Hahn-Banach theorem there exists an element & € {27 ¢}* such that
F=9* on M» ¢ and || F||=| F*||. Moreover, since {.£7"7}* is isomet-
rically isomorphic to .27 7 it follows from a theorem of Bochner and Taylor
[8] that there exists a unique y€ 277 such that || F|| = v ||, , and

F(W) = [fl/’j W;dx dt
b
for all We LP 7. It g€ LY [H,"”] then
F (Me) =ff(‘Po @ + vj 9zy) dedt = F* (Mg) =H<Fo ¢ + Fj pz) da dt.
D D
Since Cj (D) e LY [Hy' Y] it follows that F — w€ Y29 On the other hand,

[vllpg=1Fl=1F =17

(% By definition H P (E")=H}'? (K").
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Therefore, we conclude from (6.3) that

lu@ | <€ 7|

where e Li[H ' »), that is, u(x, ) = @, (), where G, (€ (LI[H-1#}}* and

(6.4) || Gr, ¢ “ < C.

We now interpret the result derived above for the specific problems of
interest, Lt u denote the weak solution in ¢%($5) of the Cauchy problem

{6.5) Lu= F, — F; z; for (2, 4)€ 8, u(x, 0) =0 for x € E,

where L satisfies (H) and F = (F,,..., F,)€.£7¢ for p and ¢ satisfying (=),
In this case the constant © in (6.4) depends only on 7, the structure of
L, and the exponents p and ¢ for F. Suppose first that both p and ¢ are
finite. Then since [LY[H™"?|j* = (L7 [H) ”]|* and LY [H,?] is reflexive
it follows from a theorem ot Bochner and Taylor [8] that there exists
a unique I'(z, ¢ ; -,-)€ LY [H,"?') such that {I(x,t; +,+))p. ¢ = || G ]| and

(6.6) u(x, t)=ff[['(x,t; £ 1) Fy (6,1 + Iy @, t5 £ 7) Fy(€, ) déde.
N

In view of (6.4), we have
(6.7) «[‘(@'7 t 's')»p’.q’ = | I t;.,.) ”xi’. ¢. 8 +}_le H I‘Ej (@, 85 +4°) ‘|1/'q’. §=
<@m+1)C

[It should also be shown that [’ is independent of the exponents p and g.
However, this is an easy consequence of Theorem 2 and I'{z,t; -,-)€
€ L'[0, T; Li (E), and we omit it.]

For integers k =11let 3, = |#; |« | <k} and @ = 3 < (0, T}. For any
pair of exponents p’ and ¢’ whose Hilder conjugates are finite and satisfy
(#) we have I'e LI'[0, T; H'.? (E"]. Hence I'¢L*[0,T; H'7(Z:)] for all
exponents r €[1, p’] and s€[1, ¢’}. Let O ? denote the subset .27 7 consist-
ing of vectors which vanish for |z|=>=% and 0 < ¢t < T. If F¢ e 4 with
2 < g< oo then Fe 279 for some finite exponents p and é' which satisfy
(»). Let u be the weak solution in €% (8) of the Canchy problem (6.5) with data
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F=(F,, .., F)€ L q, where 2 < g << co. Then the representation formala
(6.6) holds for » and we have

u =ff(l’F0 -+ I'Ej Fj) d& dx.
[/

Since I'€¢ L' [0, T; H'1(2})] it follows from (6.2) that

(I(x,t5 ':')>l.q', kae,

where C is independent of k. Thus, if we let ¥ — oo, we obtain
(6.8) (L@, t; ) g s<C

In particular then, (6.7) is also valid when p = co and 2 < ¢ << oo.
If Fe L2~9 let F*¥ =y, F, where y; is the characteristic fanction of
¢, and consider the Cauchy problem

Lu=Ff — Ff:, for (@,1)€ 8, u(x,0)=0 for x € E".

This problem has a unique weak solution w* in &2 (8), where, according to
Corollary 3.1,

et wk|l} o g 1" uflly , < CI P, < €| FI, ,-

2.2, 8 —

On the other hand, if g is a C'(8) function with compact sapport in E"
which vanishes near ¢ = T and if &k is so large that {sup ¢}n S c Q. then

f f (—*pe+ Ay s, @+ A;u° 9oy — Fy gu,— Bj uz, 0 — Cu' o — Fp)dadt =0.

By the arguments used to prove Theorem 3 and Corollary 3.1, «* converges
pointwise in S to the weak solution u in &?(8) of the Cauchy problem (6.5)
with data F. For each k, F¥e 27 so that

wk = [ f (I' By + T, € dv.

"Gk
Therefore, in view of (6.8),

k — o0

u=lim ff(]'Fo + I, F))déde =ff(['F0 +I'§j Fy) dé dr
Ok N

9 Annali della Sewola Norm. ~¢
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and the representation formula (6.6) also holds when p = oo and 2 < ¢ << co.

Suppose that F € .27~ with max (n, 2) < p < co. Then Fe L7 ¢ for all
¢ =1 and, in particular, for some finite ¢ such that p and g satisfy ().
Thus if » is the weak solution in €?(8) of the problem (6.3) with data F,
then

u= f f (I' Fy + I'yF)) d¢ dx.
S

On the other hand, I'e L' [0, T; H'? (E*)] for any pair of exponents p’
and ¢’ whose Holder conjugates are finite and satisfy («) implies that
I'e L' [0, T; H-? (E"). Therefore, it follows from (6.2) and the representa-
tion formula that

(T (@, )543 ) 2y, s < C
for max (n, 2) < p < co.

Let % and w be the weak solutions in €2(8) of the Cauchy problem
(6.6) with data F and ¥ respectively, and let w = wu—u If F=F in
8, = E" < (0,t,] for some t,€ (0, T) then it follows from Theorem 2 that
0 =0 in 8§, Thus the valne of the solution of the problem (6.5) at a
point (#,t)€ S is independent of the values of F in E" < (¢, T]. We there-
fore conclude from the representation formula (6.7) that I'(z,t; & 1)=10
for z > t. To summarize, we have proved the following theorem.

THEOREM 5. Suppose that L satisfies (H). Then for each (x,t)€ S there
exisis a unique function of (£,1), I'(x,t; &, 1), defined in S which has the fol-
lowing properties.

(i) For each pair of exponents p,q satisfyng ()1 (x,t; -,-)€ LT{0, T;
HL# (BE") and
LTty ) Ny, g <6,

where C is a constant which depends only on T, the structure of L, aud the
exponents p, q.

(ii) If w is the weak solution in E2(8) of the Cauchy problem (6.5),
where the data F = (F,..., F,)¢ L2 ¢ with p, q satisfyng (x), then for all (x,t)€8

u (x, t) =ff (L@, t; &) Fy(&,7) + 1"5,. (z, t; &, %) F5(&, 7)) d¢ dz.
s

(i) I'(x, t; & 1) =10 for v > 1.
The function I (x,t; & 1) will be called the weak fundamental solution of
the equation Lu = 0. Theorem 5 shows that it is analogous in many ways
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to the classical fundamental solution. The results which will be proved in
the next four sections demonstrate that this analogy is quite complete.
Now let » denote the weak solution of the boundary value problem

In = Fy — Fy ,, for (2,)€ Q = 2 < (0, T]
(6.9)
u(x,t) =0 for (z,8)€[{Q < (t=10)}u{sQ < [0, T},

where Q < E* is bounded and F = (F,,..., F,) €71 with p, ¢ satisfying
(»). If p and ¢ are finite, then by the same argnment which led to (6.6) and
(6.7), there exists a unique y (x,t;.,-)€ L [Hy ¥ ] such that

©10) wimo=[[@t &R E 0+ t5 &0 BE o) deds
Q

and

(6.11) Ly(myts Wy g <<(n4+1)C,

where © depends only on 7, | 2|, the structure of L, and the exponents
P, g. Moreover, the proof that the representation formula (6.10) and the
estimate (6.11) remain valid when p or ¢ is infinite is somewhat simpler
in the present case since {2 is bounded. Finally, it is eagily seen that
y(x,t; & 1) =0 for © > t. The function y (x,t; &, 1) will be called the weak
Greew's function for the equation Lu =0 in Q.

THEOREM 6. Suppose that L satisfies (H) and that Q= Q2 < (0,T],
where £ i3 a bounded open domain in E". Then for each (x,1)€ Q there exists
« unique function of (£,1), y(x,t; & 1), defined in @ which has the following
properties. ’

(i) For each pair of exponents p, q salisfying (»), y (®,t; -,-)€ LT[0, T;
Hy'¥ (2) and
Ly ts o0 Ny g < (A

where C is a constant whick depends only on T,| |, the structure of L, and
the exponents p, q,

(i) It w i8 the weak solution of the boundary value problem (6.9),
where the data F=(F,,..,F,) €079 with p,q satisfying (+), then for all
(*teQ

u(z,t) == f[ {7(-"7‘?59 7) Fo (&, 1) 4 }'gj(.l',t;.f, 7) FTJ(E, 1)] a¢ dr.
Q
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(iii) y (2, t3&,7)=0 for v > t.
It is clear that everything which has been done in this section ap-
plies, with obvious modifications, to the adjoint operator 1~}, and, in par-
ticular, to the adjoint Cauchy problem

Eu:Fo—Fj‘ % for (x,t)€S,u(x,T) =0 for x€ E*,
and the adjoint boundary value problem

L= Fy— Fj o, for (x, )€ Q
u (x, t) =0 for (z,¢)€[Q < (t =T) u{sR x (0, T]}.

The weak fundamental solution F(m,t;f, 1) of Lu =0 satisfies (i) and (the
analogue of) (ii) of Theorem 5, while (iii) is replaced by f(ac, t;6,1)=0
for v < t. Similarly, the weak Green’s function ;(x,t;/,’-‘, 7) of Lu=0 in
@ satisfies (i) and (ii) of Theorem 6 together ';(m,t;é, 1) =0 for v <t

7. Classical Fundamental Solution and Green’s Functions.

We consider the operators L and I strip 8. If L satisfies (H.1)

and if the coefficients of L are bounded and smooth, then L and I possess
classical fandamental solutions in § and Green’s funetions in smoothly bound-
ed cylinders @. In this section we enumerate various known properties
of these functions and derive bounds for them. This information will be used
in the next section to show that the weak fundamental solutions and Green’s
fanctions are limits of the corresponding classical functions and share many
of their properties. Since the degree of smoothness beyond that required
for the construction of classical solutions is irrelevant, we will make the
usual quantitative assumption that L satisfies (H) and the temporary qual-
itative assumption that the coefficients of L are 0°°(§) functions.

Under the assumptions given above, it is well known that there exists
a classical fundamental solation of Lu = 0, that is, a function I'(z,t; ¢, )
defined for (x,¢, & 1)€8 < 8 except when both # ==& and ¢ = 7, which is
continuous for ¢ > 7, and which has the following properties (cf. {10] and [12]).

(F.1) I'iw,t;6,7)=0in §>< S for t >7 and Iz, ¢;&1)=0 in
S 8 for t<n1. :
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(P.2) I'(xyt;&7)< Kgu(w— &t —1) in § < § for ¢t > 7, where
g (&, t) = (47 2t)~"2 exp (— | = [*/4xt)

is the fundamental solution of x4 u = u,, and the positive constants K, »
depend on the bounds and moduli of continuity of the coefficients of L. In
particular, I'(-,-;& 1) and I'(x,1;.,-) belong to L#:¢(8) for all p’,q’
whose Holder conjugates satisfy (= «).

(F.3) For fixed (&,t)€ B* < [0, T), I" is continuously differentiable with
respect to ¢, twice continuously differentiable with respect to z, and satis-
fies LI'= 0 as function of (#,t) in E" X (z, I']. For fixed (z,t)€ E» < (0, T}, I"
is continuously differentiable with respect to 7, twice continnously differen-

tiable with respect to &, and satisfies LIr=0 as a function of (&,7v) in
Er < [0, ¢).

(F.4) Suppose ¢~7isl"u(z)e L B'") for some y=>0 and G (z,t)€ C=(S)NLP 9 (8),
where p and ¢ satisfy (» «). Then

u(w,t)=fr<x,t;e,z)uo<f>de+ffr<w,t;e,n)a(e,mdsdq
Eﬂ

¢ Em

is a classical solution of Lu = G in E" < (z, T*] for T* = T* (y) sufficiently
close to 7, and

v(f,t)=]F(m,t;&,t)uo(z’)da‘+f [I’(w,n,f,z)(i(x,n)dwdq
,,;n i

: B

is a classical solution of Lv = @ in E» X [T77,¢) for T’ = T’ (y) sufficiently
close to ¢ If y is sufficiently small then T/ = 0 and I™ = T. Moreover, if
%, i8 continuous at # =y then

lim u{x,t)= lim v (&, 1) = uy ().
(@, t) = (y, =) (&)~ (. t=)

(F.5) For all ne€(z,1)

F(wyt;fﬂ)=f1‘(‘”;t;é'9’7)F(Cy"])fst)di-
En

According to Theorem 5 there exists a weak fundamental solution of
Lu = 0. We temporarily denote the weak fundamental solution by I’ and
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show that we can identify it with the classical fundamental solution I' To
this end, consider the Cauchy problem

(7.1) Lu = G (x,t) for (z,t)€8,u(x,0)=10 for x€ E7,

where G € C=(8)Nn L»?(8) for some fixed finite p > n -} 2, In view of (F.4),

u (m,t):f fl'(w,t;é,z)G(E,z)dé dr

o E"

is a classical solution of this problem, which, in view of (F.2), is bounded
and therefore in class &?(S). Moreover, it follows from the Schauder type
theory for parabolic equations [10] that u is continuously differentiable with
respect to ¢t and twice continuously differentiable with respect to x in any
compact subset of 8 = E" >< [0, T]. Thus  is also the weak solution in ¢€?(8)
of problem (7.1) and, by Theorem 5, we have :

t
u(w,t):] ff’(w,t;&,z)G(E,z)dEdt

0 EP

for all (z,t)€ 8. Consequently

t
(7.2) f f[l"(w,t;f,r) — I (b5} G r)dédi= 0

0 E®

for all (x,t)€ 8., According to (F.2) and Theorem 5 (i), both I" and I'’ be-
long to L¥ ?'(8) as functions of (& 7). Since €= (8)n L##(8) is dense in
L»? (8), it follows from (7.2) that for every (z,t)€ § we have I'(x,¢;4,7) =
=TI’ (x,t;§,1) for almost every (&, 7)€ 8. Therefore it is unnecessary to dis-
tinguish between the weak and classical fundamental solutions of Lu = 0.
Note that, in view of (¥.3),

(7.3) I, t;679= i:(fv T;,1),

where I is the fundamental solution of Lu = 0 in the variables (& 1)

The upper bound for I" given in (F.2) depends on the moduli of con-
tinuity of the coefficients of L and is therefore not applicable to the study
of weak solutions of equations whose coefficients are not necessarily contin-
uous. This bound does, however, hold for all parabolic equations with
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smooth coefficients regardless of whether the equation has divergence struc-
ture or not. As the next theorem shows, if we restrict our attention to di-
vergence structure equations it is then possible to derive upper and lower
bounds for I" which have the same form as the upper bound in (F.2), but
which are independent of the smoothness of the coefficients of L.

THEOREM 7. Suppose that I, satisfies (H) and the coefficients of L are
smooth. Then there exist positive constants a,, e, and C depending only on T
and the structure of L such that

Clg w—gt—n)< D', ;87 < Cgy(@ — &t —1)

Sor all (x,¢,£,7)€ 8 >< 8 with ¢t >> 1, where g; (x,t) is the fundamental solution
of a;Au =wu, for i=1, 2.

PROOF OF THE LOWER BOUND. Since I'(z,t; £, 7) is a non-negative weak
solution of Lu = 0 for (x,t)€ E" < (v, T) it follows from Theorem F that

(T4) T t60>=€ Mt — - exp(— C|o— [ (¢ — )

if for some » > 0

M= inf f['(w,t;f,r)dw)ﬂ.
<t T
|2—§]2 < x(t—7)

Here @, is a positive constant depending only on %, T and the structure of
L, and G, is a positive constant depending only on T and the structure of
L. Hence in order to establish the lower bound in Theorem 7 it suffices to
make an appropriate choice of x and estimate < from below.

Let (£,7) be an arbitrary fixed point in § and let ¢ be an arbitrary
fixed point in the open interval (z, T'). Consider the function

v(y,s)=f1‘(a:, tiy, 8)dx
[2—&? < »(t—v)

for 8 < t, where x» = 16/T. In view of (F.1), (F.2) and (F.4), v is non-nega-
tive and bounded in E™ x< [0, ¢], Lv =0 for (y, 8) € B™ < [0, t), and

Iim v(y,8)=1
R

for all y such that |y -— &2 < x(t —1). It follows from the Schauder-type
theory [10] that » is continnously differentiable with respect to y for (y.s)



662 D. G. ARONSON : Non-Negative Solutions

in any compact subset of {{o — &|® < x(t — )} < [0,t]. Hence v is a weak
solution of Lu=0 in {|o — &[> < %(t —7)] < [0,¢) with initial values 1
on 8 =¢{. Extend the domain of definition of » by setting v =1 for s > ¢,

Then, by the Extension Principle and Theorem H (for Lu = 0) with & =
=R =ux(t —7)/16 << 1, we have

I'(z,t;8,7)dz=v (¢, 7) = v (&) exp
| 2 i< (¢—1)

efr e

=exp [— C(T + 1)},

where C depends only on T and the structure of L. Therefore for x == 16/T
we have W = exp {— C(T + 1)} independent of (£, 7) in § and the assertion
follows from (7.4).

To prove the validity of the upper bound in Theorem 7 we will need two
lemmas concerning weak solutions of Lu = 0. For both of these lemmas
the smoothness of the coefficients of L is totally irrelevant. The first re-
sult can be derived from Corollary 3.2 if the coefficients 4; and C belong
to the appropriate L? 7(8) spaces. In any event, the proof is quite simi-
lar to that of Corollory 3.2.

LEMMA 5. Suppose L satisfies (H) and let 8, = E" < (5, T} for any
n€[0, T) If u is the weak solution in C2(8,) of the Cauchy problem

Lu =0 for (x,t)€8,;u(r,n)=1 forx€ B
then
O<u(r,t)<<C
in 8, , where C is a constant which depends only on T and the structure of L.

Proor. It suffices to prove the Lemma for » = 0. For integers k> 1,
let Si={x;|2| <k and Q= 3; < (0, T] If u* denotes the weak solu-
tion of the boundary value problem

Lu = 0 for (z,t)€ Qs
%(x,0) =1 for 2 € ¢ , u(x,t) =0 for (2, ) €83, < [0, T)

then, as we have seen in the proof of Theorem 3, u* — u weakly in L?2(Q)
for any bounded cylinder @ c 8. By lemma 1, with ¢ =1,

4 . g < © [etie0a,

2k
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where © depends only on 7 and the structure of L, and

alz— &

h(x,t) = — Y-

At

for an arbitrary fixed £€ E", Since

T n/2
fe”'““‘da'g(——) fe‘lzl’dz
o
P

B
it follows that

I| et uk|ly o, 6= e 17,

where C, depends only on 7 and the structure of L, and N = (n 4+ 2)/4.
Let Dy=(|o — &| < 3V T/2} < (0, T]. If k is so large that D, c Q. then
Ya

|r uk ‘l2.2,D‘,S G, 84_+

8T T¥—@, T¥

and hencel|u ||, 3, p, << @, T¥. Extend the domain of definition of u by set-
ting u=1 for t <0 and let D = (| — &| < 3/7T/2) < (— 9T, T). Clearly
[l 200<<@yT¥, where C, depends only on T and the structure. By the
Extension Principle and Theorem B we have ‘

|u (@ )| < Cy T |u|s2p<GCC

for |& — & gﬁ/? and 0<t< T. Since ¢ is arbitrary this proves the
assertion.
If 4 is the solution of the Cauchy problem

(7.5) Lu = 0 for (x,t) € 8, , u(x, ) = u, (x) for x€ B

and if »#,=10 in some ball X centered at x =y, then it is plausable to
expect that u(y,t) will be small when ¢ — 5 is small in relation to the
radius of 3. The next lemma gives a precise formulation of this observation.

LEMMA 6. Suppose that L satisfies (H) and u, is a L*(E®) function
such that wu, (r) =10 for |x —y| <o, where y€ E* and o > 0 are fived. If
ue L>(8,) is the weak solution of the Cauchy problem (7.5), then for any
r€(n, T) such that 0 < r — 9 <<¢*

|y, 1) | << @ — 0304 [ g ][ 2 o, €XP {— t0®/4 (r — )},

where C is a constant which depends only on T aud the structure of L.



664 D. G ARroxsoN : Non-Negative Solutions

Proor. It suffices to prove the Lemma for y =% =0. For R>1,

let (gp=~{_r(x) be a C; (E") function such that {z=1 for |z |< R, {p=0
for ja | =R+ 1,0<<(r<C1 and |lg.| is bounded independent of R. By
Lemma 1, with { ={g,s=&=0and pu=r

[utulg o= [ chereo@an ot uty, It
E

where the norms are computed over the set {|z|<C R + 1} < (0,r) and €
depends only on 7 and the structure of L. Since u€ L<(S8) and e** €
€ L1 (E™ < (0,7)) it follows that || ¢* ulp;|l»,2 — 0 as R —» co. Thus

172
{7.6) sup fe”"”- 9 u? (a, t) dx% <
o<t

lzpP<r/a

1,2

CU2 || €M@ ug fly pmy = C,§ | ¥ 02l dw

lz| 2o

For |z 2 < r/4 and 0 <<t <,

20 |x®
2y — ¢t

— %h (&, 1) = +26t < o + 26T,

while for [#|?=o* =1

a z?__ a | ao®

—2h(z, 0) = ‘r 2?4— TR

We therefore conclude from (7.6} that

12
sup g fu’*(x,t) dw} < efTC |u |2 g €O
o<ty S

|z[3<r/d

Let @ = (|« |> < r/4} >< (0,7]. Then
el s @<t ]y o g =2 ePTC [0z yn e
and it follows from Theorem B that

(0,0} < CrH il liz, 2.0 U 82 Il v il 22

—aa?i4r
(En) € ’

where , depends only on T and the structure of /.
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Note that results analogous to T.emmas 5 and 6 also hold for weak
solutions of the adjoint equation. Let S",, = E™ < [0,9) for n€(0, T]. Then
if v is the weak solntion in S\; of the Cauchy problem

In=0 for (,, €N, v(En=1 for é€cE"

we have 0 << v (£, )<< C in :\7,7. Moreover, if v€ L>*(8,) is the weak solu-
tion of the Cauhy problem

Tv=0 for (§0€EN,, vif ) =uy (@) for &€ B

where u, satisfies the conditions of Lemma 6, then for any r€[0,#) such
that 0 <9 — » << 0®

|0 (3 1) = @y — 7= ||, 2 m XD [— 0?4 (7 — 7).

PROOF OF THE UPPER BOUND. We begin by establishing the prelimi-
nary estimate (%)

(7.7) (@65 &0 < Ct — 7)™

in 83< 8§ for ¢t > 1, where C depends only on 7 and the structure of L.
Let 1€{0, 7) be fixed and consider the Cauchy problem

Lu=0 for (%, t)€S8,, u(x,7)=1 for x€ E™

This problem has a unique classical solution w in &£?(S,), and w is conti-
nuous and continuously differentiable in &, (cf. [10]). Thus w is also the
weak solution in ¢?(8,). In view of the properties of I, we have

w(w,t):f[‘(w,t; & 1) dE
En

and it follows from Lemma 5 that

(1.8) osfm,t; g odE<e,
E?D

(3) This estimate is due to Nash [16] in the special case in which L is given by (7).
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in §,, where @, depends only on 7T and the structure of L. Now hold
(x, t)€ B >< (0, T'] fixed. Then, according to (F. 1) and (F. 3), I" is a non-
negative classical solution of Lu =0 as a function of (&,v) in E™ [0, %)
It is therefore also a non-negative weak solution of Lu=0 for (£,7)€ B" < [0, t).

The assertion (7.7) then follows immediately from Theorem ¢ (for Tu= 0)
and (7.8). Note that, by a similar argument, we can supplement (7.8) with

(1.87) 0< f[’(x, t; &) dr < C
En

for (£, v)€ E™ < [0, t).
Let ye E» n€[0,t) and o > 0 be fixed. For fixed » such that 0 <r—
— n << 6® consider the function

u (x, t) =[F(w,t; L I'(y,r; &ymdl

ly=¢ 2o

in S,. We will use Lemma 6 to derive an estimate for u(y,»). In view
of (7.7) and (7.8),
0<Cu(, )< C(r— )"0

in S,,, where C depends only on 7 and the structure of L. According
to (F. 4), u is a classical solution of Lu = 0 in §,, and for # such that
le—y|+o

lim w (%, t) = u, (x),
t—9+
where
s 0 ifly—z| <o
(7.9) U, () =
LT, r; o if [y —2| =0

Therefore u is a weak solution of Lu =0 in §,, and, by the bounded
convergence theorem

lim+ /u (£, )y (x) dzx =/u0 () y (v) dx

t— g

Eﬂ ER

for any y¢€ C (E™). For any 2€(0, T —m), w is bounded, continuous and
continuously differentiale in §,;,. Thus it is the weak solution in &*(§,4.)
of the Cauchy problem

Lv=0 for (r,)eN, ., vir,n + & =u(x.g 4 ¢ for x€ B,
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By Theorem 3, with y > 0 sufficiently small,

{ u ”g. oo, s,ﬁ_,"“ I e “acnzz, 28,4, = C(r— ’7)-”'/2 I e riet ”L”(E"))

where © depends only on 7 and the structure of L. Letting ¢— 0 we
conclude that « € L™ [y, T; L%, (B™}n L[, T'; H\} (E™). Therefore u € L>s,)
is the weak solution of the Cauchy problem (7.5) with w, given by (7.9).
Since, by (7.7) and (7.8), u,€ L?(E") we can apply Lemma 6 to u to
obtain
osun=[I*wrs Gna<

|y~ | 20

< C(r — )" exp {— ac?/4 (r — p)} g f I'*(y,»;2,9)de "

ly—z|20e

Thus
(7.10) I'?(y,v; L) d < C(r — n)—"2exp [— ao?/2 (r — y)}

ly={| 20

for r€(y, T] such that 0 < » — 5 < ¢% where C depends only on 7T and
the structure of L. Similarly, '

(7.10%) fr2 (€ 0395 7) 4 < C (5 — 1)~ exp [ — a0%/2 ( — 7)]
|ly—¢| 2o

for » €[0,n) such that ¢ <9 —r << o%
_ Let (z,t) and (&, 7) be arbitrary fixed points of § with ¢ > 1. Set o =
= |o— £|/2 and assume that 0 <<i¢ —7<<¢®. By the Kolmogorov identity (F.5)

F(wyt;6,7)=fr(x,t;C;’])F(C,ﬂ;Eﬁr)d57
BN
where y = (t 4 )/2. Write

I8 = fF(w,t;c,n>r<¢,n;e,z>d:+

lz—¢| 20

f T, t; 8T ;60 =Jd, +J,.
to—={ | <o
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By the Schwarz inequality
. 12 1/2
JﬁQ%fIH%tﬂmMM;g.[FHLnﬁﬂMC :
lz—l =0 lz=zl=a '

Using (7.10) to estimate the first factor on the right and (7.7), (7.8%) to
estimate the second, we obtain

J, < Ct—r1)™exp{—a|ax— &8t — 1),

where C depends only on 7 and the structure of L. To estimate J, we
note that |& — { | <o = |2 — ¢|/2 implies |§ — (| =& — x| — |2 —(|=0.
Thus

J, < 't ', ps &0 <

|2—¢|=o

g ‘12 1/2
S; /Fz(a",t;cyﬂ)dé’§ 3[1'2(5377;577)‘1( .

|E=2 20 1= =0

Using now (7.7), (7.8) to estimate the first factor on the right and (7.10%)
to estimate the second, we find

Jo, < C{t — )™ exp |[— a|w— £33 (t — 1)} .

It follows that I"(x,t; &, r) has the required upper bound in case 0 < 4{f{ —7)<<
<|oe—EPR If jo — &P < 4(t —7) then, by (7.7),

F,t;5,0) < C(t —r)™2expla|z—EP/8(t —1))exp({—a x—EPR/S{t—1))<<
< Cel(t —r)y™rexpl—al|r— &R (t— 1)

This completes the proof of Theorem 7.
The following result is obtained from Theorem 7 by a simple computa-

tion.
COROLLARY 7.1. For each pair of exponents p, q which satlisfy (x+)
I @5 ) oy <€ and [[I'(-y- 560 Iy g < G

where C depends only on T, the structure of L, and the exponents p,q.
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Let Q be a bounded open domain in E® and ¢ = 2 < (0, T]. We as-
sume that L satisfies (H), the coefficients of L are in C>(8), and 99 is
smooth. Then it is well known that there exists a classical Greepn’s func-
tion for Lu = 0 in @, that is, a function y (z,¢; &, 1) defined in Q < @ ex-
cept when both x = £ and ¢ = 7, which is continuous for ¢ >t and which
has the following properties (ef. [10] and [12]).

(G.1) y(2,t;85,7)=0 in @< Q for t>t y(r,t;50)=0 in @< @
for t < ¥, and for ¢t >+ with either & or & on 3Q.

(G.2) y(w,t; 5, 1) <TI'(x,t;& 1) in @ < @ for t > .

(G.3) For fixed (&, 7)€ 2 < [0, T), y is continuously differentiable with
respect to ¢, twice continuously differentiable with respect to x, and satis-
fies Ly =0 as a function of (z,¢t) in & < (r, T). For fixed (x, t) € 2 > (0, T},
y is continuously differentiable with respect to 7, twice continuously difter-
entiable with respect to £ and satisfies r y =0 as a function of (£, 1) in
£ > [0, t).

(G.4) Suppose that u,(x)€ L?(£2) and @ (z,t)€ (= (Q). Then

t
u(w,t).—_fy(w,t;é',r)uo(&)d& -+ {{ﬂw,t;&,n)(}(f,o))dédr]
& V@
is a clasgical solution of Lu = G in 2 < (r, T] and

. t
”(5,1)=f7(w,t;E»r)uo(ﬂv)dw+f/r(w,mf,f)a(w,ﬂ)dwdn
Q 2

T

is a classical solution of Lvr = G in 2 < [0, ¢). Moreover, if u, is continuous
at y € 2 then
lim w(x,t)=lim v & 7) = ugy ().
(=8~ 4+ 0=t

According to Theorem 6, there also exists a weak Green’s function for
Lu =0 in @, but, by the argument we used for the fundamental solution,
we can identify the weak and classical Green’s functions. Thus, in parti-
cular,

(7.11) p@,tsE 1) =0n(&t; ),

where ';7 is the Green’s function for Lu = 0 in ¢ in the variables (&, ). In
view of (G.2) and Theorem 7,

(7.12) y@ b &) <<Ct—7) " exp|{—alx —EF8({t— 1)}
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for all (x,t) and (4, 7) in @ with ¢ > 1, where C depends only on T and the
structure of L. Note that the bound (7.12) is independent of the domain
@ and the smoothness of the coefficients of L. There is also a lower bound
of the same form for y, but unlike (7.12) it is a local bound.

THEOREM 8. Suppose that I satisfies (H), the coefficients of L are
smooth, and 982 is smooth. Let ' be a convex subset of 2 such that the
distance & from £’ to 582 is positive. Then there exist positive constants C,
and C, depending only on 6, T and the structure of L such that

y(@, ;8,7 =C (t — 1) "2exp {—Co|xz—¢& [/t — )}
holds for all x, £ €52 and either

t < t < min 1',1+—:—d2(5,a.0')§

Jor arbitrary z€[0, T) or \

max O,t—-—i—dg(m,a!)')§§1<t

Jor arbitrary te€(0, T'].

PrOOF. Let (£ 1) be a fixed point of £’ < [0, T). Since y is a non-
negative weak solution of Lu =10 for (2,0)€82 > (z, T], it follows from
Theorem I that if for some » > 0

M = inf y(x, t; & 1)de > 0,
<t T*
|z—t Tl 2 t—1)

where T* = min | T, 1 4 —l- @ (&, 00) ! then

y (@ t58,7) = C{ WM (¢t — 1)~ exp (— €, | x — & it — 1)

for all x€ &’ and 1 <t < min{ T, 7+ % d? (&, aQ’);. Here ©] depends only
on &, %, T and the structure of L. Hence in order to prove the first part of
the Theorem it suffices to make a suitable choice of » and estimate N
from below. If we set » = 16/T then exactly as in the proof of the lower
bound in Theorem 7 we find W = exp {— C(T + 1)} independent of (£, 7).
The proof of the second part of the Theorem is completely analogous with
the roles of L and L interchanged. We omit the details.
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8. Weak Fundamental Solution and Green’s Funetion.

In section 6 we showed that if L satisfies (H) then there exists a
weak Green’s function y (z,t; & 1) for Lu = 0 in any bounded cylinder ¢.
In particular, y belongs to certain L? [H," ) spaces in @ and gives a rep-
resentation formula for the solution of the boundary value problem (6.9).
Here we will derive additional properties of y which are analogous to
(G. 1-4) for the classical Green’s function. This derivation is based on the
fact that y can be approximated by classical Green’s functions. We will
also obtain similar results for the weak fundamental solution of Lu = 0.

Let 2 be a bounded open domain in E” and @ = 2 < (0,T]. For
1, € L*(2) and G (x,t)€ L? 9() with p, ¢ satisfyng («») we will show, among
other things, that y gives a representation for the solution of the boundary
value problem

Lu = G (x,t) for (z,t)€ @
(8.1}

u (@, 0) = u, (x) for x€ 2, u(x,t)=0 for (x,8) €9 Q < [0, T]
and the adjoint problem

Iv=06(,)for ¢1)€Q
‘o (& T) =u, (§) for £€ 0, v(&v)=0 for (§,7)€00Q2 < [0, T}

(8.2)

In stating our result we use the following notation. If 7 is an arbitrary
point in [0, T) we set @, = & < (v, '], while if ¢ is an arbitrary point in
(0, T] we set §,=Q > [0,1).

THEOREM Y. Suppose that L satisfies (H), u,€ L?(Q) and G € LP1(Q),
where p,q satisfy (sx). Then the weak (reew’s function y (x,t; & 1) of Lu =0
in @ has the following properties.

(i) plx, t; &)= ;’(E,t; o, t) in Q> Q for t > 1, where 7’7 8 the weak
Green’s function for Iv=0 in Q.

(if) If 952 has property (A), then y iz ocontinuous as a function of
(x, ) in Q > (¢, T'] for each (g, z)E'()T, and as a function of (§,7) in Q< [0,0)
Jor each (x,1)€ Q. Moreover, y =0 for either x or & in 082 and t > 7.

(iit) The bound (7.12) and the conclusion of Theorem 8 hold for p.

(iv) For fixed (£, 7)€ GT’ y( &0 LPv4d, T Hol'z(g)]fm' arbitrary
0€(0, T — 1) with

<<]'(‘~' : E,Y) >>_)3§ C)()—“4-

1. Annali della Scucla Norm. Sup. - Pua



672 D. G. Aroxson : Non-Negative Solutions

where the norm i8 computed over the set Q.1;, and C depends only on T and
the structure of L. Moreover, y 8 a weak solution of Lu =0 for (z,t)€Q,.
For fized (x,t)€ Qy, y (®,t; +,-)€ L*[0,6 — 8; Hy' *(Q)] for arbitary 5€(0,t) with

Uy @, 85 +y0) g < C O

where the norm is computed over the set ’6;_5, and @ depends only on T
and the structure of L. Movevoer, y i8 a weak solution of Lv=0 for
&DE Q.

(v) For fixed (£, 7)€ 61 let 3 denote an arbilrary open domain such
that 2 c Q\ {£). Then y is a global weak solution of Lu=0 for (r,t)€
€3 X (v, T) with initial values zero on t=1. For fived (x,t)€ Q, let Z de-
note an arbitrary open domain such that 3 < Q\ |z}. Then y is a global

weak solution of v=0 Jor (&, 7)€3 < (0,1) with initial values zero on
v ==1.
(vi) The weak solution of the boundary value problem (8.1) is given by

u(w,t)=fy(x,t; 5’0)“o(£)d§+ff7(w’t; LG vdid
a Q

and the weak solution of the boundary value problem (8.2) is given by

v(E,r):fy(a:,T; & 1) uy (o dx 4 ffy(m,t; &, 1) G (x, t) dedt.
Q2 Q

If u, is continuous at a point y in Q2 then

lim w{rt)= lim v(1)=u,{y).
(=, ) = (y. 0) &)~ T)

Note that using the Extension Principle and Theorem C it follows
from (i), (iii), (iv) and (v) that y is continuous as a function of (z,t) in
O\[(§,v)} aud as a function of (§,7) in @\ {(x,?)}. Thus the behavior of y
in the interior of @ is independent of whether or not 42 has property (A),
and the assertion (ii) is actunally only a statement about the boundary be-
havior of y.

PRoOOF. As in Section 3, let

m m m m
L™ w=u — (A5 uz, + A} W)y — Bj" uy — ™ u,
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where the superscript m on a function denotes an integral average formed
with a kernel whose support lies in | |* 4 ¢* < m—2 for integers m = 1, and
let {2™] denote a sequence of smoothly bounded open domains suech that
Qre Qmhic Qmtlc Q for all m, and lim 2" = Q. Recall that the operators

m — o0

L™ have a uniform structure which is, in turn, determined by the structure
of L. Throughout this proof we will use C to denote any constant which
depends only on T and the structure of L.

We assert that

(8.3) YRyt )= v (X, b5 .ye) and p™ (-, 5 &, T)—*;(EV’; )

weakly in L¥"? (@) for any exponents p’, ¢’ whose Hoilder conjugates satisfy
8.4) 2L < oo and d + 1 !
(8. P q 2p 2 < 3

where y™ is the Green’s function for L™ u =0 in @™ = Q™ < (0, T]. Let F
be an arbitrary L? ?(¢) function with p, ¢ satisfyng (8.4) and consider
the boundary value problem Lu = F in ¢, 4 = 0 on the parabolic boundary
of ¢. According to Theorem 6, the weak solution of this problem is given by

u(m,t):]fy(a:,t; & 1) F (& 1) dé dr.
Q

On the other hand, in view of Theorem 1 (i) and (G.4), for each (x,?)€Q

lim U 5 & 1) Fm (& 1) dtdz—/f (@, t; &) F (& 1) dE dr,

where we have set y™» = 0 for £€( 2" Since F™ — F strongly in L7 7(Q)
the first part of (8.3) follows immediately. The second part of (8.3) is proved
by applying the same argument to the adjoint equation.

Let (§,7)€ 61 be tixed. For arbitrary d € (0, T — 7) and m so large that
EeQm, ym(x, t; & 1) is the classical solution of tiie boundary value problem
L™ =0 for (x,t)€ Q™
wr,t 4 ) =y™(r,v 4 6; &) for xeQm,

wlr, )y =0 for (a, e - [v 46, T)



674 D. G. AronsoN : Non-Negative Solutions

Since y™ is continuously differentiable in Qﬁ.‘; and y™ =0 for x€30m, it
is also the weak solution of this problem. By Lemma 1, with [=1, s=
=148 and u= 4 oo,

” Y™ (s f,‘l)llng‘l"”}’:'('y' H 5ﬂ)||§,2£°’”€|l y™(,t+0; 5"‘)”;,:(9,7

where the norms on the left are computed over the set Q:'_‘,,a. In view of
(7.12) and Theorem 7

fym (2405 &) ”22(9) < Q62
Thus we have

(8.5) 7™ (e &R o+ 7m0 5 £ D3, < @

where if we set y™ =0 for x € l: Q™ we can regard the norms as being com-
puted over the set @, ;. It follows from (8.5) and Lemma 2 that there
exists a subsequence of the »™ which converges weakly to a limit function
in L[« + 8, T; HY'*(2)] and any finite collection of L7 (., ;) spaces for
suitable exponents, and it follows from (8.3) that the limit function is '}7
From this we conclude that ;7 (¢,7;x,t) is a weak solution of Lu =0 for
(2, 1) € Q, and K7 & 150 Wa << @8, If we hold (v,t)€ @, fixed and
apply the same argument to »™ considered as a function of (£, 7), we find
that y (2, ¢;&7) is a weak solution of Lo =0 for (§,7)€ ¢, and {y (z,¢;
sy Wy, a < GO,

On the other hand, for fixed (&, t)EZhv, it follows from (7.12), Theorem
7 and Theorem C that the sequence {y™} is uniformly bounded and equi-
continuous for (z,t) in any compact subset of ¢,. Thus y’"—)? uniformly
in any compact subset of @, . Similarly, for each (x,?)€ @, , y™ — y uniformly
in any compact subset of 6:. Thus, in particular, (i) and (iii) hold. More-
over, in view of the previous paragraph, (iv) also holds.

If 982 has property (4) then the sequence {£™] can be chosen so that
{942™) has property (4) uniformly with respect to m. Let (£,1)€ 2}1 be fixed
and set ym =0 for z €[} 2™, where we assume m so large that &€ Q™. For
arbitrary 6 €(0, T — 7) the sequence {y™) is uniformly bounded in Q.s2,
and in view of Theorem 1), equicontinuous in Z),_H . Therefore y is contin-
uous for (z,t)€ 2 (z, 7'} and y = 0 for x € 3£2. The proof of the continuity
of y as function of (& 7) is similar and we omit it.

For fixed (& 1)€ E)'T, let = be an arbitrary open domain such that
2 c O | and let D, = 3 > (zr, T]. Then for m sufficiently large y™ is a
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weak solution of Lmu =10 in D,. If | —&[{>=8> 0 and ¢ > ¢ then
gx (@ — &t — 1) 272 g,, (2 — &, ¢t — 1) exp [— 8%/8x (t — 1)},

where g, denotes the fundamental solution of x4 u = u,. Thus it follows
from (7.12) that

t—1

limjym(w,t;é,t)w(m)dx=0

for all we Cy(2). Let { =¢ (¥) be a (= funetion with compact support in
2\ &} such that =1 on 5 and 0 << <1. By Lemma 1, with s =7} ¢
for arbitrary ¢€(0, T —1) and g = + oo,

8.8) (G5 ED o FUE G5 S5 =<

fTC[ ™ (-t 46567 ”L?(zf) + i L™ (eyes &) ”;,2)’

where 3/ == supp { and norms are computed over the set 3’ < (v e, T).
If jg—&[=6>0and t>7 then g2(w — &t —1)<<g, (8, —7)9g, (8 —§
t — 7). Thus in view of (7.12) the first term on the right in (8.5) tends to
zero a8 ¢ —> 0 and the second is bounded independent of m or e. Therefore,
letting ¢ — 0, we obtain

(8.6) | Crm (oye 5 & M2 o 11 E72 (50 5 & |I2 , << const.

independent of m, where the norms are computed over the set 3’ < (r, T').
In particular, each »™ is a global weak solution of L™ u = 0 in D, with ini-
tial values zero on ¢ ==7. Moreover, we conclude from (8.6), Lemma 2 and
the pointwise convergence of y™ to y that {y™} converges weakly to y in
12[r, T; H2(2)] and in any finite collection of L2#"%7(D,) spaces with suit-
able exponents. Ilence it follows that y is a global weak solution of Iu =0
in D, with initial values zero on f==1t. The corresponding result for the
adjoint equation is proved analogously.

According to Theorem 1 (i) and (G.4), if u is the solution of the prob-
lem (8.1) then for each (x,t)€ ¢ we have w™ (x,1)— u{x,t), where for m
sufficiently large

u™ (2, {) = [;ﬂ" (x, t: & 0)Lm (&) u (& d& 4 ff y™ (b5 E 1) Q™ (&, 1) dEdr
a Q



676 D. G. ARronsoN: Non-Negative Solutions

and we have set y™ =0 for & cfQm. In view of (7.12) the sequence
{y™ (@, t;-, 0)} is uniformly bounded in L?(£) for ¢ > 0 and | y™(z,t,-, )]
is uniformly bounded in L?“? (Q). Hence if p and ¢ are finite there exists
a subsequence which converges weakly to y(x,¢;-,0) in L?(£) and to
y(@ t; +,) in L#"7(@Q). On the other hand (™ — u, strongly in L2 (Q)
and G™ — @ strongly in L?» ?(Q). It follows that if G € L? 9(Q) with finite
exponents p, q satisfyng (= #) then

% (@, 1) = lim u™ (@, t) =| y (w, £ 5 & 0) wy (§) dE +{f7(w7t;§v 1) G (&, 7) dé, dx.
Q

m — oo
Q

If GeLr7(Q) with p, q satisfyng (= ») and either p or ¢ infinite, then, since

Q is bounded, we also have G ¢ L?4(() for some finite exponents p,q sa-

tisfyng (« »), and hence the representation formula is again valid. The proof

of the representation formula for problem (8.2) is similar and we omit it.
Suppose that u, is continuous at a point y € L. The function

w(:v,t)=u°(y)fy(m,t;E,O)d&-{—ffy(x,t;E,t)(w‘(f,z)dfdt
2 )

is the weak solution of problem (8.1) with the initial condition u (x, 0) = u, (y)
for # € Q. Extend the domain of definition of w by setting w (x, t) = u, (y)
for t << 0. By the Extension Principle and Theorem C,w is continuous in
any compact subset of £ >< (— T, 7]. Thus, in particular, w (2, t) — vy (y)
as (x,t)—> (y, 0). Write the solution of problem (8.1) in the form

(@, t)=w (1) + [ y (@, 15 & 0) [y (€) — no ()] A& = w0 (, 1) + J (@, 1),
o

and write J as the sum of an integral J, taken over the set {£;|& — y| < o}
and an integral J, taken over the set Q, = {£;£€Q,|& — y| = p}, where g
is smaller than the distance from y to 6£. Thus, in view of (7.12),

|Jy| <<€ max |uy (&) — uy(y)|-
E—wi<e

Moreover, if | —y| << o/2 then |&—y|==p implies | — | > /2 and
hence

| s [ << Cllug (+) — o W) |72 95 (0/2, B),

where » depends only on T and the structure of L. Since u, is continuous
at y, given ¢ > 0 we can fix a ¢ = o (¢) > 0 such that . J,| < &2, Then for
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|e—y| < 0/2 there exists an #>0 depending on ¢ and g (¢} such that 0<¢t<(y
implies |J, | < &/2. Therefore J— 0 and u{z,t)— u,(y) as (», ) —>(y, 0).
The proof of the corresponding statement for » (£, 7) is similar and we omit it

We are going to prove a theorem concerning the properties of the weak
fundamental solution of Lu = 0 which is analogous to Theorem 9. Before
doing so, however, we pause to prove a lemma which establishes a useful
relationship between the weak Green’s function for certain domains and the
weak fundamental solution. In stating this result we use the notation
Sr=|w;]2| <k} and Q= Z: >< (0, T] for integers k = 1.

LeMma 7. Suppose that L satisfies (H). Then the sequence {y* (x,1; &, 1)}
of weak Green’s functions for Lu= 0 in @ increases monotonically with k
in § <8 for t > 1 and
lim y* (w, 858, 1) = I'(x, ¢3¢, 1),

k » oo
where I' is a representative of the fundamental solution which is continuous
a8 « function of (x,t) in E™ < (1, T} for fized (&, 1), and as a function of
(&, 1) in B < [0,0) for fived (z,t).

Proor. We extend the domain of definition of y*(x,¢; & t) by setting
y*¥ = 0 if either x or £ are in BZ,, . Let (x,t) and (&, ) be fixed points with
0<<t1<{t<<T. We assert that

(8.7) Pl t; 60 =yt (2, 856, 7)

for all k. The assertion is trivial if for a given k,x or & are in c E—k, and
in view of Theorem 9 (ii), also if # or & are on 03 . Hence we may assume
that x and £ are in 3, . Let @ (y) be a non-negative (g (Z}) function such
that {£} c supp ¢ and consider the boundary value problem

{ Lu=0 for (y,8)€ 2 < (v, T)

( w(y,t) =@ (y) for y € Zp,u(y,8) =0 for (y, 8) € 63, < [v, T).
By Theorem 1 (iii), this problem has a unique solution u* for each k, and
u* is continuous in X < [v, T']. Since «*t! =0 =u* on 43 < [r, T] and

w1 (y, 1) = wk (y, 1) for y €3, it follows from Theorem 1 (ii) that w*t! (x,
t) == u* (x,t). Thus, in view of Theorem 9 (vi)

(8.8 [7’““ (x, t 5w, 1) () dy :/ ylr sy 0 g (y) dy.

-

ki1 3
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If we now replace ¢ in (8.8) by a sequence of €y (2 functions which ap-
proximates the Dirac distribution concentrated at y = &, it follows that (8.7)
holds for # and ¢ in 3. According to Theorem 9 (iii) the sequence [y*} is
bounded above. Therefore, lim y* exists in §< 8 for £> 1t In view of

k -+ c0

Theorems 9 (iv) and C, the sequence {y*(x,¢; &, 1)}, starting from some suf-
ficiently large k, is bounded and equicontinuous for (»,t) in any compact
subset of E™ < (r, T] with (&) fixed, and for (£, 7) in any compact subset
of E® < [0,t) with (x,t) fixed. Hence the limit function is continuous as a
function of (»,¢) and as a function of (£, 1) for ¢t > .

Let F be an arbitrary function in L?.¢ (§), where the exponents are
finite and satisfy (8.4), and consider the Cauchy problem

Lu=F for (x,t)€ 8, nu(x,0)=0 for x€ E*.

By Theorem 5 (ii) the weak solution in &2 (8) of this problem is given by
u (x, t)=ffl‘(w, t; & 1) F (&) dé dr,
§
On the other hand, by Corollary 3.1 and Theorem 9 (vi),

fjr(w,t;e, ) F (¢, 1) dé dv = lim f[;v"(x,t;f,z)[f’(é,t)d&dz
k—+ o0/
S

for each (x,t)€ 8, where we have set y* =0 for £€{ ;. Thus yE(x, t5,0)
— I'(z, t; -,-) weakly in L?" ¢ (8). Since the sequence [y*} converges point-
wise it follows that the pointwise limit is also I

We will now prove the analogue of Theorem 9 for the fundamental
solution. Suppose that for some y =0 we bave e—7!%"u, (x) € L? (E*) and
e—71=2 G (x,t)€ L7 9(8) where p and g satisfy (»x). We will show, among
other things, that I" gives a representation formula for the solution of the
QOauchy problem

(8.9) Inu = @ (x,t) for (x,1)€ 8, u(x,0) = u,(x) for x€ E*

and for the adjoint problem

(8.10) Lv = G (& 1) for (£,7)€8, 0 (& T)=u, () for £ € Bn.
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In stating the result we use the following notation. If z is an arbitrary
point in [0, T) we set §, = E" < (r, T), while if ¢ is an arbitrary point in
(0, T] we set Ny = E">< [0, ¢).

THEOREM 10. Suppose that L satisfies (), and that for some y = 0 we
have e 1¢I'uy € L2(E™) and e~ r|2P G € Lr1(Q), where p, q satisfy (sx). The
weak fundamental solution I'(x,t;é,1) of Lu=0 has the following prop-
erties,

(i) 'z, t5 & 1) = f’(f,z; x,t) M8 <8 for t>1, where I is the
Jundamental solution of Iv=o.

(ii) The conclusion of Theorem T holds for I.

(iii) For all n€ (v, t)

I'(x,t;&,7) =f1'(w)t;c: (€, n;é& 7)dE.

Eﬂ

(iv) For fived (§,7)€N8r, (-, ;& 7)€ L2 [t-+ 6, T; HL2(E™)] for ar-
bitrary 6€(0, T — 1) with
(e 56,1000y, 0= GO,
where the norm is computed over the set 8,15 and C depends only on T and
the structure of L. Moveover, I' is a weak solution of 't = 0 for (x,¥)€8,.
For fized (x,t)€ Sy, I' (2, t; .,-) € L? [0,t — 635 H.2(E")] for arbitrary 6€(0, 1)

with
L@, 5 +,0) 0, 2<< CO—™4,

where the norm is computed over the set S_g and @ depends only on T and
the structure of L. Moreover I' is o weak solution Lv = 0 Jor (&,7)€ A

(v) For fixed (£, 7)€ St let 3 denote an arbitrary bounded open domain
such that 3 c E"\[&). Then I is a global weak solution of Lu=0 for (z,t)€
2 < (r, T] with initiul values zéro on t =v. For fized (x,8)€ 8, let 2 de-
note an arbitrary bounded open domain such that 3 c Er\[x). Then I'is a
global solutiou of Lv=0 Jor (&, 7)€ X2 < [0,t) with tnitial values zero on
T==1.

(vi) Suppose that T < 1/16a,y, where «, is the constant obtained in
Theorem 7, Then the weak solution in (2 (8) of the Cauchy problem (8.9) is
given by

u(x,t)_—_—f (x5 0)%(56’5-}-[[ (858, 1) G (& 7)A€ de
En 8
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and the weak solution in E*(8) of the Cauchy problem (8.10) iz given by

v (& 1) =fl’(.r, T; 8, 1)u,(x)de —*—ffl’(.r, 158,71 G (x,t) de dt.
s

En
If u, i8 continuous at a point y € E" then

lim  w(xt)y= lim v (&1 = u,(y).
@, t) =y, 0 (s,0; »'y, T

Proor. Let F be an arbitrary L? 9(S) function for (p, q) satisfying
(8.4) and consider the Cauchy problem

Ly = F for (x, ) € S, (r,0) =0 for x € E",

According to Theorem 35 (ii) the weak solution in €2 (8) of this problem is
given by

u(x, t) _——f/ ix, by & 1) F(E 1) dE d,
5

On the other hand, by Corollary 3.3 and Theorem 5 (ii)

fff(x,t;f, )y F&vdEidr = lim jf["" (0, 5 & 7) F™ (& v)dE dr,
s S

m » oo

where I'™is the fundamental solution of L™ n = 0, Since F'™ — F strongly
in L?9(8) it follows that I'™ (z,¢; -,-)—> ['(x, t;-,-) weakly in LP"7(§)
for each (x, ¢t) € 8. Similarly, I'™(.,. ; ¢, ‘t)—)T‘(E,‘t; -,+) weakly in L2 ¢ ()
for each (&, 1) € S’}v. ’

Let (£, 7)€ Sybe fixed. For arbitrary 6€(0, T — ), I (x,t; & 1) is the
classical solution in ¢?(8) of the Cauchy problem

L™y =0 for (x, ) € S;qs  u @yt - =I"(xg,v+0;&7)forxe E™,

Since I'™ is continuosly differentiable in b_',_,_(, it is also the weak solution
of this problem. For R=1 let {x =z () be a Cy (E™) function such
that (g =1 for [@ |<C R, {p=0for |x|=R +1,0 << g <1 and | g | bound-
ed independent of R. By Lemma 1, with =, . & =0,5s=1-4+9§ and
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pu =+ oo,
1 T™ 58D e+ 1R TE (580 5. <
SQHICRF“('J+5§E~t)”iz pa TN Cre ™ (56012 L

where the norms are computed over the set S,;;. Here and elsewhere in
this proof (C stands for any constant which depends only on T and the

structure of L. According to Theorem 7 we have || I'™ ||}, pn < eo™”
1m™|j5 s << C0™™2. Thus ||¢rs I'™ |2,2—> 0 as B —> co and it follows that

and

(8.11) I ™55 &0 e+ 1T (-5 £ 1) |30 @

The results of the last paragraph together with (8.11) and Lemma 2 imply
that I'™(.,- ; &1)— I'(&,7; -,-) weakly in L2[t+6, T; H12(E")| and any
finite collection of L?%"2¢ () spaces, where ¢ is any bounded cylinder in
S.+4 . Thus, in particular, I'Y(E,z; z,t) i8 a weak solution of Lu =0 for
{(x, 7)€ 8, and ( f(é,r; ©y*) Ms, 2 << o4, By a similar argument, we find
that for fixed (x,t)€S,, I'(x,t; &) is a weak solution of Zu=0 for
1) €8, and '@, t; -, My o < &4, '

In view of Theorem 7 and Theorem C, the sequence {I'™} is uniformly
bounded and equicontinuous in any compact subset of 8, for fixed (£, 7)€ Sr.
fence I'™ —s [ uniformly for (x,¢) in any compact subset of §,. Similarly,
I'™—» I’ uniformly for (4, 1) in any compact subset of ;§; for fixed (x,t)€S,,
Therefore (i), (ii) and (iv) hold. The assertion (ii) follows directly from the
corresponding result for I'™ using the pointwise convergence of I'™ to I,
Theorem 7 and the dominated convergence theorem. The proof of (v) is
almost identical to the proof of the Theorem 9 (v) and we omit the details.

According to Corollary 3.1 and Theorem 9 (vi), if » is the solution
€% (8) of problem (3.9) then for each (x,t)€ S we have u*(x, t)—>u(z,?)
where for I sufficiently large

u"(x,t):fy"‘(.r,t; & 0) uMé)df—}—f[y"(x,t; £1) @ (& 1) dE .
2 8

Hence y* is the Green’s function for Lu = 0 in @, = 2 < (0, '] and we
have set y* = 0 for ¢ cb=:. By Lemma 7, y*uwu,— In, for almost all
£€ E* and 9% G — I'G for almost all (§,7)€ 8. In view of Theorem 9 (iii),
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yi(x, t; &,1)<< Cg.(x — &t —1), where g, is the fundamental solution of
x Au = u, and » = a, is independent of k. It is easily verified that if
T'<1/16a,y then

(8.12) etélg, (x — &t — 1) << 22 glal g, (& — &, 8 — 7).

For fixed (x,0)€S, ¢s (®x — & )€ L2(E™ and gy (e — &t — 1) € LP Y (§).
Hence | y* uy | << Cg.. | uy| € L' (E® and |y* G| < Cyg. | G| € L"1(8). It follows
from the dominated convergence theorem that

w2y ) = lim wt (z, 1 =f1'<w,t; £, 0)uy (&) ds+ffru,t; 50) G (&) dE dx
Q0 s

k-» o0

for each (x,t)€ 8. The proof of the corresponding statement for the adjoint
equation is similar and we omit it.

The proof that u (x, £) —> u,(y) at points of continuity of wu, is essen-
tially the same as the proof of the corresponding part of Theorem 9. ITere
we must show that for [# — y| < ¢/2 the integral

J,= f I, t; & 0) {ug (&) — uy ()} d

|¢—y |20

can be made small by taking ¢ sufficiently small. However, in view of
(8.12) if t < 1/32xy then

Jy| < Ce1®F g, (0/2 . )| €7V g (+) — ug ()] |IL2(E"|fg2n(x“— §OdE <

En
< Celal g, (0/2, )] e 1 {uy (+) — 1y () ”H(r;"; ,
and the assertion follows. The proof that v (&, 7) — w,(y) is analogous.

We have shown that if u, is continuous at x then

t—0

lim fF(x, t; & 0)uy (&) dé = u, ().
E"

In the next section we will also need the corresponding result when the
integration is taken with respect to .
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LEMMA 8. Suppose that L sotisfies (H) and e~ ?121 u € L*(E") for some
y = 0. Then, if u, is continuous at &,
11m fl‘(x, & 0) ug () de = uy(£).

I;

PrOOF. In view of what we have shown in the proofs of Theorems 9
(vi) and 10 (vi) it suffices to prove that

lim fI'(x,t; £0)de=1
ton'n

for all £¢ E*. For t €(0, T'] consider the family of Cauchy ploblems

~

Lv=0 for (y,8)€8,v(y,ty=1 for ye En

According to Theorem 3 and Lemma 5, for each t€(0, 7] this problem has
a unique weak solution v(y, s; ¢) in the class €2 (S, and

0<<v(ys; )<C
in S",, where C depends on T and the structure of L. Extend the domain of
definition of v by setting v==1 for s >t. Then, by the Extension Principle
and Theorem C, the extended function is continuous in § and for (y,s)€
€ E™ < [0, 7/2] we have
vy, 8; ) —Cs vy, 0; H<< vy 85 1) Ceol

where C depends only on 7 and the structure of L. In particular, if
t€{0, T/2] then setting s = ¢ we obtain

1—~QCtlr<v(y0; y<1 4+ Cter,
Since, by Theorem 10 (vi),

vy, 0; t)=fl‘(x,t; Y, 0) dx

ne

the assertion follows.
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9. Non-negative Weak Solutions.

In section 5 we characterized a non-negative weak solution of the
Cauchy problem

(9.1) Lu=0 for (x,t)€8, u(r,0)=1u,(r) for xcE"

as the limit of a sequence of solutions of certain boundary value problems.
Here we will re-examine this result in the light of the results which we
have obtained concerning the weak Green’s functions and fundamental
solution for L. We show that if problem (9.1) admits a non-negative solu-
tion » then u is given by an integral involving I" and u,. Moreover, we
will use this result to derive a representation formula for any non-negative
weak solution of Lu =0 in S.

THEOREM 11. Suppose that L satisfies (H) and uOEL;'!,,C(E") i3 non-
negative almost everywhere. If u is the non negative weuk solution of problem
(9.1) then

(9.2) u(x,t) = fl‘(w, t; &0) uy (&) dE

EN

for all (z,t)€ 8.

PRrOOF. According to Theorem 4 and Theorem 9 (vi)

u(x, t) =klim [7"’ (x, 5 & 0) Ly (&) ug (£) dE,
ED

where y* is the Green’s funetion for Lu =0 in @ = 2 < (0, T] and we
have set y* = 0 for £¢ 0=:. Recall that ¢, is a ¢y (E™) function such that
Lr=1for |#|<<k—2, (=0 for |[x|=k—1and 0=(,=<"1. In view
of Lemma 7, the sequence {y* (x,¢; & 0) (i (&) 4, (£)} is monotone increasing
and converges to I'(x,t; &, 0)u, (&) for almost all £€ E». Thus it follows
from the monotone convergence theorem that « is given by (9.2).

Corresponding to Corollary 4.2 we have the following corollary to
Theorem 11.

COROLLARY 11.1. Suppose that L satisjies (H), uy€ Li,. (E"), and 1, =0
almost everywhere in E*. The Cauchy problem (9.1) possesses a non negutive
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weak solution if and only if

(9.3) [ Iz, t; & O)yuy (&) dé € L7[0, T; Li (E™)

En
The non-negative solution w if it exisis is given by (9.2).

Proor. If there is a non-negative weak solution u of problem (9.1) then
w € L0, T; L (E™). By Theorem 11, u is-given by (9.2) and hence (9.3)
holds. On the other hand, by Lemma 7,

uk (z, t) = /‘y"' (wyts & 0y Ly g dé g/l’(x, t: & 0)u,dé.

Zk EM

Thus, it follows from Corollary 4.2, that if (9.3) is satisfied then the non-
negative solution u of problem (9.1) exists and u (z,t) = lim u® (a,¢).
k

Therefore, as was shown in the proof of Theorem 11, u is given by (9.2).

THEOREM 12. Suppose that L satisfies (H). If u i8¢ a non-negative weak
solution of Lu =0 in 8, then there exists a unique non-negative Borel meas.
ure o such that for all (x,t)€8 '

(9.4) W= [ Ie,t5 50 0@

)
Lll

The existence part of Theorem 12 was first proved by Widder [22] for
clasgical solutions of the equation of heat conduction and subsequently
extended for classical solutions of general second order parabolic equations
with sufficiently smooth coefficients by Krzyz'alllski [14]). Our existence
proof is almost identical to Krzyiaﬁski’s. Widder also gives a sufficient
condition for a function defined by a formula such as (9.4) to be a solution
of the equation of heat conduction. Our version of this result is given
below in Coroilary 12.1. The uniqueness proof which we give here is an
adaptation of Frostman’s proof that if the Newtonian potential due to a
signed measure is alinost everywhere zero then the measure is identically
zero [11; pp 31-33].

Proor. For any s€(0, T], we know that u (x, 8)€ L (E"™) and u (x, t) is
a non-negative weak solution of the Cauchy problem

Ly = 0 for (x,t)€ E" >< (8, T], v(x,8) = u(x,s) for x€ E"™
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Thus, by Theorem 11,

w(x, 1) = [F(.z', t; &, 8)u (s 8)ds
Fn

for all (x,¢) € E® < (s, T'|. If we restrict ¢ to the interval (0, T/2] then
it follows from Theorem 10 (ii) that

(9.5) f eV P 0 dE < Cu (0, T),

E

"

where y = 1/2a, T and @ depends only on 7 and the structure of L. For
each 8 €(0, T/2] define the Borel measure

0 (B) =f"2"“"“(f, 2) dé.
E
In view of (9.5)

(9.6) 00 (E) < 0, (B" < Cu (0, T)

for all Borel subsets E of E" and
(9.7) os(|@|=R)<Ceru(0,T)

for all s € (0, T/2]. According to the Frostman selection theorem [11; pp 11-13),
(9.6) implies that there exists a sequence s;— 0 such that the corresponding

A

measures g; = g,. converge to a Borel measure . In particular
Qj Os; 0 y

jroo

Tim f 7 & 0 (df) = j J (@108
En £y

for any f€ Cy(KE™.
Hold (r,t)€ § fixed and consider the functions

“7]. (& =T (x, 85 & 8) el
for s; < t. By Theorem 10 (ii), if 0 << 8a,(t—8)y <1 we have

W;(é) = Cldnay (t — 8;)]72 exp [2y | P/{T — Sa, y (t — )]
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Thus if 0 < &<<#2 <t<<t1=a, T/8a,
W;() << @t exp (2 |z |*/a,T ).

Moreover, it is clear that W;(£)€ C°(#*) for each j and W;()— I'(z,t;
& 0) e | ¢1* uniformly for |&|<C R. By Theorem 3 of reference [14], it fol-
lows from (9.7) and the properties of the sequence {W;} that

lim [ W, (&) 0; (&) = f [z, t; £ 0) e 81 (dg),
j oo,
E, B, :

Set

o (B) = [e?ﬂf*’é(d&).
B

Then, since for sufficiently large j
A
[ W; () gj(dé) = u (x, 1),
Eﬂ

we have

u(x, t) = [F(w,t; £, 0) o (d&)

E

for t€(0, 1]. If ¢ > «, then by Theorem 10 (iii), Theorem 11 and Fubini’s theorem

u(:r,l):ff(x,t; L) u (L, 1) dL
En
=f1’(w,t; c,z>”mc,z; 5,0)9<a5)§dc=
En En

[Ur(w,t; L@ &, 0) dc§e<d5)=fr<m,t; £, 0) o (d8),

B gn En

and the existence part of the Theorem is proved.

n
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If 4 is a non-negative solution of Lu = 0 and ¢ is a Borel measure
such that » is given by (9.4), then it follows from Theorem 10 (ii) that

(9.8) f o7 180 g (dF) < Cu (0, T)

E"

where y = 1/4a, T, and C depends only on T and the structure of L.

Now suppose that there are two measures g, and g, each giving a re-
presentation of u in the form (9.4) and such that o, 55 ¢,. Set 6 = g, — g,.
Then

(9.9) 0=ff(w;t; § (')G(df)=fl"(w,t; & 0)er1 ¢ 12 (df)
En B

for all (z,t)€ S, where

A(B) =JW 82 6 (a8,

By the Hahn-Jordan decomposition theorem there is a Borel set 4 such
that A = 0 on all Borel measurable subsets of 4 and 1< 0 on all Borel
measurable subsets of B=0A. Set it (B)=A(End) and 1~ (B)= —
— A(E n B). Then At and i~ are mutually singular and 4= it —i—. Moreover,

1+(E)£fe-r'f" 0, (d¢) and 1—(E)s/'e-r'5" 0, (d€).
E

B

In particular, it follows from (9.8) that 1+ (E*) << Cu (0, T'). Therefore the
measures At and i~ are regular [18; Theorem 2.18].

Since 0 5£0 we have either 1+ (4) or 1~ (B) positive. Suppose that
At (4)=a > 0. We will show that this leads to a contradiction. In view of
the regularity of i+ and i—, there exists a compact set K < A such that
A(K)= it (K)>3a/4 and a bounded open set E> K such that i~ (E)=
=1~ (BE\ K)<ea/4. Let [ =1C_(x) be a continuous function in E" with
{=1o0n K, =0 on { £ and 0 <{ < 1. Define

v(s,t)=f1'<w,t; £ 0)¢ (@) 67121 da.
B
By Lemma 8 we have

(9.10) lim v (§¢)= () er1eR

t—0
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for all §€ £ On the other hand, if 0 <¢<C1/16a,y and E < (z; [v]| <7
then by Theorem 10 (ii)

(9.11) o<<erlitu(f ty<

£
C (4na, ) ™2 | exp —|—a;-&—f|——+y|w|2 dz < G er
2

|z| sr

Thus, it follows from (9.8) and (9.11) that

01 [o@0loan=[o1trrg ol <eo o, 1)

B E™

Hence v is integrable with respect to ¢ for each ¢€(0,1/16a,y) and

fv(é, t)o(d$)=fevlfl’ v (& t) A (dE).

E™ B

Since |1|(E") < o0, we conclude from (9.10), (9.11) and the dominated
convergence theorem that

0
o

lim f v (& 1) 0 (d8) = f CE A (dE) = A (K) + f L+ (d8) — f £ (d8).
P E\K E K
Therefore

. 3a « a
(9.13) lim fv Goa@n> 20825,

"

For fixed ¢t >0, I'(®, t; £,0) is the pointwise limit of a sequence of clas-
sical fundamental solutions I"™(x,t; £, 0). The I'™ are jointly continuous in
(z, &). Hence the I'™ are Borel measurable in HE" < E" and the same is
true for their limit I'. Therefore, in view of (9.12), for each t€(0,1/16a,y)
we have

fv(é, t)c(df)=f fl‘(x,t; £0), (@) e~r1=l dp' o (dE) =

yod E? EN

Ul’(r,t; £, 0)0 (@8)

PR

L(@)er12 de =0
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and
lim v t)o(ds)=0
t—=90

"

in eontradiction to (9.13). Thus we cannot have it (4) > 0. A similar argn-
ment shows that 1— (B) = 0. Therefore 1 =0 and the same is true for o.

COROLLARY 12.1. Suppose that L satisfies (H) and let

w (@, ) = f I, t; 0) (48),
E’IA

where o i8 a non-negative Borel measure. Then u is a weak solution of Lu =0
iR 8 if and only if u €L’ (8, T5 Lic(B)] for every 8€(0, T).

ProoF. If u is a weak solution of Lu = 0 in § then it clearly has the
required properties. To prove the converse, note that € r 6, T; i, (E™)]
for every 8¢€(0, T) implies there exists a sequence {t;} of points in (0, T)
such that ¢;—> 0 and u (., )€ L2, (E™). Consider the Cauchy problem

Lv = 0 for (z,1)€ E™ < (¢, T),
%v(a‘, ) =u(x,t;) for x€ En,

Since “(',tj)Eleoc(E”), it follows from Corollary 11.1 that this problem has
a non-negative weak solution if and onmly if

f T(w,ts& 4 u (g t)dée L’ [t;, T L (E™).
E"

- By Theorem 10 (iii) we have

fI’(z,t;{-’,tj)u(E,t,)dE =fI'(a',t;§, t,-)gfl’(f, 45 L, O)Q(dl)ng
E® B"

Eﬂ
=fUP(w,t;e, 8T 38, 0) dege(dz)= u (2 1),
E® ET

Thus, % is a weak solution in E® >< (¢, T] for any j. Since #;—> 0 we con-
clude that u is a weak solution -in 8.
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We now consider a non-negative solution of Lu = 0 in § which has
initial values on the hyperplane ¢t = 0 except at an isolated point. Roughly
speaking, the result is that such a solution is equal to a non-negative mul-
tiple of the fundamental solution with singularity at the point in question
plus a non-singular solution. Thus, for non-negative solutions, any isolated
singular point at which the singularity is weaker than that of the funda-
mental solution is a removable singular point.

COROLLARY 12.2. Suppose that L satisfies (H), uy€ L (E™) and uy=0
almost everywhere in E™. Let u be a non-negative weak solution of Lu =0
in 8 such that

t—+90

(9.14) lim | u(x,t)y(@)de= [no (@) w (x) dz
E" m

Jor every y¢ o (B"\_{0}). Then there exists a constant n =0 such that

u (x, t)=ﬂ1"(*'y¢§0,0)+f['(wy‘§5,0)“0(E)d5-
B

Note that if u, € L (£") and
u (x, t) =]T(av, t5 & 0)uy (&) as€ L [0, T; Lins (B™)]
En

then, in view of Corollary 11.1,
u(@, ) =nl(x1;0,0)+ uz,1?),
where u is the non-negative solution of the Cauchy problem
Lu =0 for (x,t)€8,u(a,0)==1u,(x) for x€ B",
Proo¥F. It suffices to show that
0(8) =y B) + [ (01 do
B

for every Borel set ¥ — E", where J, denotes the Dirac measure coucen
trated at x = 0, Let v be a non-negative 08(1&‘"\ {0}) function. Then, by
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Theorem 12,

fumnwwWw=f{fmnuammﬁ)

E® E® E®

w(2) do =

fufwmamwwaewa
E EM
In view of Lemma 8

Hmffmm&MW@M=w@
t—+0 o
for all £€ E®». Moreover, if 0 <t < 1/16 a, y and supp y c ;|| <} then,
by Theorem 10 (ii)
0O el fl’(w, t; £, 0)y(r) do < Clmax y) 2™,
B

Thus it follows from (9.14) and the dominated convergence theorem that

(9.15) _ﬁmmme=[wmmm

E™ E®

for any non-negative € C(E™\ (0)).

In view of (9.8), for any compact set K we have g (K) < co. Thus
o is regular [18; Theorem 2.18]. Moreover, since #,=>0 and uy€ I,}OC(E")
the Borel measure

1w, () =fu0 (x) dx
E

is also regular. Let E be any Borel set with compact closure in E" {0}
Let K be any compact set contained in E, and for given ¢ > 0 let ¢ be
an open set with compact closure in E"\ {0} such that E < ¢ and
e(G\ EY<e If w js a C°(E" function such that w=1on K, y=0
on [ @ and 0 <<y << 1 then by (9.15), u,(K) < ¢ (E) -} e Taking the suprem-
um over all K « E and noting that ¢ is arbitrary, we obtain u,(E)< o (F).
On the other hand, if we choose @ such that u, (G E) <e and apply
the same argument we find that ¢ (F) < u,(F). Therefore

(9.16) o (B) =j u, (%) de
E

for all Borel sets E with compact closure in BN [0).
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Let B be an arbitrary Borel set in E*\ {0}. Then

E=,gl Dy,
where
Di=Enl{lj+1<]a|<1jloli <|x|<(j+ D]

Each Dj; is a Borel set with compact closure in E"\ {0} and the D; are
disjoint., It follows from (9.16) that ’

Q(E)=§9(l)j)=§ uodx_—;/uodx.
j=1 ¥ .
j ) J

Therefore, if ¢ has a singular part it must be concentrated on [0} and ¢
has the form

o(E)=ndy(E)+ /“0 dx
‘E

for some constant u. Suppose that # < 0. Then there exists an r > 0 such
that for E = {x; |#|<r} we have

/ o (%) dx < | 9 |/2.
Thus ¢ (E) < n -+ |%|/2=%/2 < 0 which contradicts the non-negativity of o.
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