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NON-NEGATIVE SOLUTIONS OF LINEAR

PARABOLIC EQUATIONS : AN ADDENDUM

by D. G. ARONSON

Let D be a domain such that D B D ~ 0, and suppose that in D we
have a solution (in some sense) of a certain partial differential equation.

Depending upon the particular context, there are many problems which

arise naturally concerning the behavior of the given solution. One such

problem is always that of deternlining if the given solution has a trace on

D B D. Recently E. Magenes [2] has solved this problem and its converse

in certain domains for distribution and ultradistribution solutions of linear

elliptic and parabolic equations with analytic coefficients. In the elliptic
case D is a bounded open set ~3 c En with analytic boundary and the

trace on aS2 of a distribution or ultradistribution solution is always an

analytic functional. Conversely, given any analytic functional on aD there

corresponds a unique distribution solution defined in S~ whose trace on c~
is the given functional. For the parabolic case, D is the cylinder D x (0, T]
and the results are analogous but not as simple to describe.

In April 1969 the author presented some of the results from reference

[1] in a lecture at the University of Pavia. After the lecture, Professor

Magenes observed that the Widder Representation Theorem and its gener-
alizations are related to the results obtained in [2]~ and asked if it is

possible to obtain a complete characterization of the trace on t = 0 of a

non-negative solution in En X (0, T] J of an equation of the type considered

in [1]. The purpose of this note is to provide such a characterization. We

are indebted to Professor Magenes for suggesting this problem and for his

interest in this work. The arguments which we give here are based entirely on

reference [1] and are quite different from those of reference [2]. Since this

note is an addendum to [1] we will make free use of the definitions, nota-

Pervenuto alla Redazione 1’ 11 Marzo 1970.
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tions and results of [1] without further explanation. We will also use this

occasion to correct some typographical errors in [1].

THEOREM. Suppose that .L satisfies (H) in .E" X (0, T]. Then 
is a non-negative weak solution of .Lu = ~ in En x (0, 1B] for some

Ti E (0, T] ] if and only if

-where e is a non-negative Borel measure on En such that

for some a &#x3E; 0, and r is the weak fundamental solution of .Lu = 0.
In the sequel the word solution will always mean a weak solution,

and the word measure will always mean a non-negative Borel measure on En.

PROOF. Suppose first that u is a non-negative solution of Z~ = 0 in

S1. 1. Then according to Theorem 12 there exists a unique measure e such

that

Iu view of Theorem 10 (ii) there exist constants c1, c2 &#x3E; 0 such that

Note that the constants el C2 depend on T and the structure of L,
but are independent of T~. Since every solution is locally bounded and

continuous in its domain of definition we have

Therefore
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Now suppose that C) is a measure which satisfies (2) for some a &#x3E; 0.

For integers let yk (x, t ; ~, z) denote the weak Green function for

.L in the cylinder ( ;x I  k) X (0, T]. By Lemma 7, we have yk / r as
lc - oo. lBforeover, according to Theorem 9 (ii), if we hold x, t and fixed

with T  t then, for all k, such that x ~ ~ k, the function yk (x, t ; ~, r) is

continuous ]  k with yk (x, t ; ~, r) = 0 for 1$1 = k. Extend the domain
of definition of yk by setting yk = 0 for 1 $ I &#x3E; k. Then it is clear that, for

fixed (x, t) and k sufficiently large, yk (x, t ; ~, 0) is p-integrable and we have

as k ~ oo. In view of Theorem 9 (iii) there exist constants °3’ c4 &#x3E; 0 in-

dependent of k such that

It is easily verified that if then

Therefore

and the same inequality holds in the limit as k- oo. In particular, it

follows that 
-

for every 6 E (0, Ti), where T1 is any number in the set (0, 04/0) n (0, T]. Thus

satisfies the hypothesis of Corollary 12.1 and is a non-negative solution of

Lu = 0 in S1 for T1 E (0, c4 ja) n (0, T].
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We have shown that there is a one to-one correspondence between non-

negative solutions of Z~ = 0 and measures which satisfy (2). Roughly speak-

ing, given a measure e which satisfies (2) we can regard the function u

given by the representation formula (1) as the solution of the Cauchy problem

To make this precise we must, however, determine the manner in which u

assumes its initial data o.

Let u be a non-negative solution of Z~ = 0 in 8.. To 2c there corres-

ponds a unique measure o which satisfies (2) for some a &#x3E; 0. Define

Clearly a [u] &#x3E; 0. Moreover, from the first part of the proof of the theorem

we have a [u] ~ c2/Ti, where C2 is the constant which occurs in the lower

bound for the fundamental solution r. Recall that c2 depends only on T

and the structure of L. In the example on page 638 of [1] we have T, 
 1/4A, e (dx) = x 12 dx and, since we are dealing with the equation of

heat conduction, c2 =1 j4. It is easily verified that in this case u [t1] = I =
inf le 21T1 : 0  T,  1j4~~.

COROLLARY. Let u = M (x, t) be a non-negative solution of Lu = 0 in S1
and e the corresponding measure. Then

for all ~y E C (En) such that I tp (x~)  x 12 for some constants K &#x3E; 0 and

b ~ g [u].
Note the similarity between (3) and the definition of initial values for

a general weak solution given on page 619 of ( 1 ~.

PROOF. Assume for the moment that 1Jl ¿ 0. Then, by (1) and the Fu-

bini-Tonelli theorem,

We will show first that the integral on the right hand side is finite for

all sufficiently small t. Note that for fixed t &#x3E; 0,f is

En
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a continuous function of ~ E En. Moreover,

It is easily verified that

and
/8

In view of the definition of c

Thus if

it follows that

and

Since 03C8 E C (En) we conclude from Lemma 8 that

for all ~ E En. Therefore, by the dominated convergence theorem,

In view of (4), this completes the proof in the special 0. For

general 03C8 we write 03C8 = y+ - y and apply the above argument to y± in
the usual manner.

School of Mathematics

University of Minnesota
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Added in Proof. I am indebted to Professor B. Frank Jones for the

observation that another corollary to our theorem is a pointwise result of

Fatou type. Specifically, let u be a non negative solution of L1t = 0 and

let o be the corresponding measure. Then, for almost every x E we have

where f is the density of the absolutely continuous part of the Lebesgue

decomposition of ~. The proof of this assertion is based on the representation
formula (1) and the bounds for the fundamental solution. We omit further

details since the proof is essentially the same as the proof of the corresponding
result for the equation of heat conduction given in [3].


