
NON-NEGATIVE SPARSE CODING

Patrik O. Hoyer
Neural Networks Research Centre
Helsinki University of Technology

P.O. Box 9800, FIN-02015 HUT, Finland
patrik.hoyer@hut.fi

To appear in: Neural Networks for Signal Processing XII
(Proc. IEEE Workshop on Neural Networks for Signal Processing)

Martigny, Switzerland, 2002.

Abstract. Non-negative sparse coding is a method for decomposing multi-
variate data into non-negative sparse components. In this paper we briefly
describe the motivation behind this type of data representation and its relation
to standard sparse coding and non-negative matrix factorization. We then give
a simple yet efficient multiplicative algorithm for finding the optimal values of
the hidden components. In addition, we show how the basis vectors can be
learned from the observed data. Simulations demonstrate the effectiveness of
the proposed method.

INTRODUCTION

Linear data representations are widely used in signal processing and data analysis.
A traditional method of choice for signal representation is of course Fourier anal-
ysis, but also wavelet representations are increasingly being used in a variety of
applications. Both of these methods have strong mathematical foundations and fast
implementations, but they share the important drawback that they are not adapted to
the particular data being analyzed.

Data-adaptive representations, on the other hand, are representations that are
tailored to the statistics of the data. Such representations are learned directly from
the observed data by optimizing some measure that quantifies the desired properties
of the representation. This class of methods include principal component analy-
sis (PCA), independent component analysis (ICA), sparse coding, and non-negative
matrix factorization (NMF). Some of these methods have their roots in neural com-
putation, but have since been shown to be widely applicable for signal analysis.

In this paper we propose to combine sparse coding and non-negative matrix fac-
torization into non-negative sparse coding (NNSC). Again, the motivation comes
partly from modeling neural information processing. We believe that, as with previ-
ous methods, this technique will be found useful in a more general signal processing
framework.

NON-NEGATIVE SPARSE CODING

Assume that we observe data in the form of a large number of i.i.d. random vectors
xn, where n is the sample index. Arranging these into the columns of a matrix X,
then linear decompositions describe this data as X ≈ AS. The matrix A is called
the mixing matrix, and contains as its columns the basis vectors (features) of the
decomposition. The rows of S contain the corresponding hidden components that
give the contribution of each basis vector in the input vectors. Although some de-
compositions provide an exact reconstruction of the data (i.e. X = AS) the ones that
we shall consider here are approximative in nature.

In linear sparse coding [2, 8], the goal is to find a decomposition in which the
hidden components are sparse, meaning that they have probability densities which
are highly peaked at zero and have heavy tails. This basically means that any given
input vector can be well represented using only a few significantly non-zero hidden
coefficients. Combining the goal of small reconstruction error with that of sparse-
ness, one can arrive at the following objective function to be minimized [2, 8]:

C(A,S) =
1
2
‖X−AS‖2 +λ∑

i j
f (Si j), (1)

where the squared matrix norm is simply the summed squared value of the elements,
i.e. ‖X−AS‖2 = ∑i j[Xi j − (AS)i j]

2. The tradeoff between sparseness and accurate
reconstruction is controlled by the parameter λ, whereas the form of f defines how
sparseness is measured. To achieve a sparse code, the form of f must be chosen
correctly: A typical choice is f (s) = |s|, although often similar functions that exhibit
smoother behaviour at zero are chosen for numerical stability.

There is one important problem with this objective: As f typically is a strictly
increasing function of the absolute value of its argument (i.e. f (s1) > f (s2) if and
only if |s1| > |s2|), the objective can always be decreased by simply scaling up A
and correspondingly scaling down S. This is because setting A := αA and S := 1

α S,
with α > 1, does not alter the first term in (1) but always decreases the second term.
The consequences of this is that optimization of (1) with respect to both A and S
leads to the elements of A growing (in absolute value) without bounds whereas S
tends to zero. More importantly, the solution found does not depend on the second
term of the objective as it can always be eliminated by this scaling trick. In other
words, some constraint on the scales of A or S is needed. Olshausen and Field [8]
used an adaptive method to ensure that the hidden components had unit variance
(effectively fixing the norm of the rows of S), whereas Harpur [1] fixed the norms
of the columns of A.

With either of the above scale constraints the objective (1) is well-behaved and
its minimization can produce useful decompositions of many types of data. For ex-
ample, it was shown in [8] that applying this method to image data yielded features
closely resembling simple-cell receptive fields in the mammalian primary visual
cortex. The learned decomposition is also similar to wavelet decompositions, im-
plying that it could be useful in applications where wavelets have been successfully
applied.

In standard sparse coding, described above, the data is described as a combi-
nation of elementary features involving both additive and subtractive interactions.
The fact that features can ‘cancel each other out’ using subtraction is contrary to
the intuitive notion of combining parts to form a whole [6]. Thus, Lee and Seung
[6, 7] have recently forcefully argued for non-negative representations [9]. Other ar-
guments for non-negative representations come from biological modeling [3, 4, 6],
where such constraints are related to the non-negativity of neural firing rates. These
non-negative representations assume that the input data X, the basis A, and the hid-
den components S are all non-negative.

Non-negative matrix factorization1 (NMF) can be performed by the minimiza-
tion of the following objective function [7, 9]:

C(A,S) =
1
2
‖X−AS‖2 (2)

with the non-negativity constraints ∀i j : Ai j ≥ 0, Si j ≥ 0. This objective requires no
constraints on the scales of A or S.

In [6], the authors showed how non-negative matrix factorization applied to face
images yielded features that corresponded to intuitive notions of face parts: lips,
nose, eyes, etc. This was contrasted with the holistic representations learned by
PCA and vector quantization.

We suggest that both the non-negativity constraints and the sparseness goal are
important for learning parts-based representations. Thus, we propose to combine
these two methods into non-negative sparse coding:

Definition 1 Non-negative sparse coding (NNSC) of a non-negative data matrix X
(i.e. ∀i j : Xi j ≥ 0) is given by the minimization of

C(A,S) =
1
2
‖X−AS‖2 +λ∑

i j

Si j (3)

subject to the constraints ∀i j : Ai j ≥ 0, Si j ≥ 0 and ∀i : ‖ai‖ = 1, where ai denotes
the i:th column of A. It is also assumed that the constant λ ≥ 0.

Notice that we have here chosen to measure sparseness by a linear activation penalty
(i.e. f (s) = s). This particular choice is primarily motivated by the fact that this
makes the objective function quadratic in S. This is useful in the development and
convergence proof of an efficient algorithm for optimizing the hidden components
S.

ESTIMATING THE HIDDEN COMPONENTS

We will first consider optimizing S, for a given basis A. As the objective (3) is
quadratic with respect to S, and the set of allowed S (i.e. the set where Si j ≥ 0) is
convex, we are guaranteed that no suboptimal local minima exist. The global mini-
mum can be found using, for example, quadratic programming or gradient descent.

1Note that error measures other than the summed squared error were also considered in [6, 7].

Gradient descent is quite simple to implement, but convergence can be slow. On the
other hand, quadratic programming is much more complicated to implement. To
address these concerns, we have developed a multiplicative algorithm based on the
one introduced in [7] that is extremely simple to implement and nonetheless seems
to be quite efficient. This is given by iterating the following update rule:

Theorem 1 The objective (3) is nonincreasing under the update rule:

St+1 = St .∗ (AT X) ./ (AT ASt +λ) (4)

where .∗ and ./ denote elementwise multiplication and division (respectively), and
the addition of the scalar λ is done to every element of the matrix AT ASt .

This is proven in the Appendix. As each element of S is updated by simply mul-
tiplying with some non-negative factor, it is guaranteed that the elements of S stay
non-negative under this update rule. As long as the initial values of S are all chosen
strictly positive, iteration of this update rule is in practice guaranteed to reach the
global minimum to any required precision.

LEARNING THE BASIS

In this section we consider optimizing the objective (3) with respect to both the basis
A and the hidden components S, under the stated constraints. First, we consider the
optimization of A only, holding S fixed.

Minimizing (3) with respect to A under the non-negativity constraint only could
be done exactly as in [7], with a simple multiplicative update rule. However, the
constraint of unit-norm columns of A complicates things. We have not found any
similarly efficient update rule that would be guaranteed to decrease the objective
while obeying the required constraint. Thus, we here resort to projected gradient
descent. Each step is composed of three parts:

1. A′ = At −µ(AtS−X)ST

2. Any negative values in A′ are set to zero

3. Rescale each column of A′ to unit norm, and then set At+1 = A′.

This combined step consists of a gradient descent step (Step 1) followed by pro-
jection onto the closest point satisfying both the non-negativity and the unit-norm
constraints (Steps 2 and 3). This projected gradient step is guaranteed to decrease
the objective if the stepsize µ > 0 is small enough and we are not already at a local
minimum. (In this case there is no guarantee of reaching the global minimum, due
to the non-convex constraints.)

In the previous section, we gave an update step for S, holding A fixed. Above,
we showed how to update A, holding S fixed. To optimize the objective with respect
to both, we can of course take turns updating A and S. This yields the following
algorithm:

Algorithm for NNSC

1. Initialize A0 and S0 to random strictly positive matrices of the appro-
priate dimensions, and rescale each column of A0 to unit norm. Set
t = 0.

2. Iterate until convergence:

(a) A′ = At −µ(AtSt −X)(St)T

(b) Any negative values in A′ are set to zero

(c) Rescale each column of A′ to unit norm, and then set At+1 = A′.

(d) St+1 = St .∗ ((At+1)T X) ./ ((At+1)T (At+1)St +λ)

(e) Increment t.

EXPERIMENTS

To demonstrate how sparseness can be essential for learning a parts-based non-
negative representation, we performed a simple simulation where the generating
features were known. The interested reader can find the code to perform these ex-
periments (as well as the experiments reported in [3]) on the web at:

http://www.cis.hut.fi/phoyer/code/

In our simulations, the data vectors were 3×3 -pixel images with non-negative
pixel values. We manually constructed 10 original features: the six possible hori-
zontal and vertical bars, and the four possible horizontal and vertical double bars.
Each feature was normalized to unit norm, and entered as a column in the ma-
trix Aorig. The features are shown in the leftmost panel of Figure 1. We then
generated random sparse non-negative data Sorig, and obtained the data vectors as
X = AorigSorig. A random sample of 12 such data vectors are also shown in Figure 1.

We ran NNSC and NMF on this data X. With 10 hidden components (rows of S),
NNSC can correctly identify all the features in the dataset. This result is shown in
Figure 1 under NNSC. However, NMF cannot find all the features with any hidden
dimensionality. With 6 components, NMF finds all the single bar features. With a
dimensionality of 10, not even all of the single bars are correctly estimated. These
results are illustrated in the two rightmost panels of Figure 1.

It is not difficult to understand why NMF cannot learn all the features. The
data X can be perfectly described as an additive combination of the six single bars
(because all double bars can be described as two single bars). Thus, NMF essentially
achieves the optimum (zero reconstruction error) already with 6 features, and there
is no way in which an overcomplete representation could improve that. However,
when sparseness is considered as in NNSC, it is clear that it is useful to have double
bar features because these allow a sparser description of such data patterns.

In addition to these simulations, we have performed experiments with natural

Features Data NNSC NMF (6) NMF (10)

Figure 1: Experiments on bars data. Features: The 10 original features (columns of
Aorig) that were used to construct the dataset. Data: A random sample of 12 data vec-
tors (columns of X). These constitute superpositions of the original features. NNSC:
Features (columns of A) learned by NNSC, with dimensionality of the hidden represen-
tation (number of rows of S) equal to 10, starting from random initial values. NMF (6):
Features learned by NMF, with dimensionality 6. NMF (10): Features learned by NMF,
with dimensionality 10. See main text for discussion.

image data, reported elsewhere [3, 4]. These confirm our belief that sparseness is
important when learning non-negative representations from data.

RELATION TO OTHER WORK

In addition to the tight connection to linear sparse coding [2, 8] and non-negative
matrix factorization [6, 7, 9], this method is intimately related to independent com-
ponent analysis [5]. In fact, when the fixed-norm constraint is placed on the rows of
S instead of the columns of A, the objective (3) could be directly interpreted as the
negative joint log-posterior of the basis vectors and components, given the data X,
in the noisy ICA model [4]. This connection is valid when the independent compo-
nents are assumed to have exponential distributions, and of course the basis vectors
are assumed to be non-negative as well.

Other researchers have also recently considered the constraint of non-negativity
in the context of ICA. In particular, Plumbley [11] has considered estimation of the
noiseless ICA model (with equal dimensionality of components and observations)
in the case of non-negative components. On the other hand, Parra et al. [10] con-
sidered estimation of the ICA model where the basis (but not the components) was
constrained to be non-negative. The main novelty of the present work is the ap-
plication of the non-negativity constraints in the sparse coding framework, and the
simple yet efficient algorithm developed to estimate the components.

CONCLUSIONS

In this paper, we have defined non-negative sparse coding as a combination of sparse
coding with the constraints of non-negative matrix factorization. Although this is
essentially a special case of the general sparse coding framework, we believe that
the proposed constraints can be important for learning parts-based representations

from non-negative data. In addition, the constraints allow a very simple yet efficient
algorithm for estimating the hidden components.

APPENDIX

To prove Theorem 1, first note that the objective (3) is separable in the columns of S
so that each column can be optimized without considering the others. We may thus
consider the problem for the case of a single column, denoted s. The corresponding
column of X is denoted x, giving the objective

F(s) =
1
2
‖x−As‖2 +λ∑

i
si. (5)

The proof will follow closely the proof given in [7] for the case λ = 0. (Note
that in [7], the notation v = x, W = A and h = s was used.) We define an auxiliary
function G(s,st) with the properties that G(s,s) = F(s) and G(s,st) ≥ F(s). We
will then show that the multiplicative update rule corresponds to setting, at each
iteration, the new state vector to the values that minimize the auxiliary function:

st+1 = argmin
s

G(s,st). (6)

This is guaranteed not to increase the objective function F , as

F(st+1) ≤ G(st+1,st) ≤ G(st ,st) = F(st). (7)

Following [7], we define the function G as

G(s,st) = F(st)+(s− st)T ∇F(st)+
1
2
(s− st)T K(st)(s− st) (8)

where the diagonal matrix K(st) is defined as

Kab(st) = δab
(AT Ast)a +λ

st
a

. (9)

It is important to note that the elements of our choice for K are always greather than
or equal to those of the K used in [7], which is the case where λ = 0. It is obvious
that G(s,s) = F(s). Writing out

F(s) = F(st)+(s− st)T ∇F(st)+
1
2
(s− st)T (AT A)(s− st), (10)

we see that the second property, G(s,s′) ≥ F(s), is satisfied if

0 ≤ (s− st)T [K(st)−AT A](s− st). (11)

Lee and Seung proved this positive semidefiniteness for the case of λ = 0 [7]. In
our case, with λ > 0, the matrix whose positive semidefiniteness is to be proved is
the same except that a strictly non-negative diagonal matrix has been added (see the

above comment on the choice of K). As a non-negative diagonal matrix is posi-
tive semidefinite, and the sum of two positive semidefinite matrices is also positive
semidefinite, the λ = 0 proof in [7] also holds when λ > 0.

It remains to be shown that the update rule in (4) selects the minimum of G. This
minimum is easily found by taking the gradient and equating it to zero:

∇sG(s,st) = AT (Ast −x)+λc+K(st)(s− st) = 0, (12)

where c is a vector with all ones. Solving for s, this gives

s = st −K−1(st)(AT Ast −AT x+λc) (13)

= st − (st ./(AT Ast +λc)).∗ (AT Ast −AT x+λc) (14)

= st .∗ (AT x)./(AT Ast +λc)) (15)

which is the desired update rule (4). This completes the proof.

REFERENCES

[1] G. F. Harpur, Low Entropy Coding with Unsupervised Neural Networks, Ph.D.
thesis, University of Cambridge, 1997.

[2] G. F. Harpur and R. W. Prager, “Development of low entropy coding in a recurrent
network,” Network: Computation in Neural Systems, vol. 7, pp. 277–284, 1996.

[3] P. O. Hoyer, “Modeling receptive fields with non-negative sparse coding,” in E. D.
Schutter (ed.), Computational Neuroscience: Trends in Research 2003, Elsevier,
Amsterdam, In press.

[4] P. O. Hoyer and A. Hyvärinen, “A multi-layer sparse coding network learns contour
coding from natural images,” Vision Research, vol. 42, no. 12, pp. 1593–1605, 2002.

[5] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis, Wiley
Interscience, 2001.

[6] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[7] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Ad-
vances in Neural Information Processing 13 (Proc. NIPS*2000), MIT Press, 2001.

[8] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images,” Nature, vol. 381, pp. 607–609, 1996.

[9] P. Paatero and U. Tapper, “Positive Matrix Factorization: A Non-negative Factor Model
with Optimal Utilization of Error Estimates of Data Values,” Environmetrics, vol. 5,
pp. 111–126, 1994.

[10] L. Parra, C. Spence, P. Sajda, A. Ziehe and K.-R. Müller, “Unmixing Hyperspectral
Data,” in Advances in Neural Information Processing 12 (Proc. NIPS*99), MIT
Press, pp. 942–948, 2000.

[11] M. Plumbley, “Conditions for non-negative independent component analysis,” IEEE
Signal Processing Letters, 2002, in press.

ACKNOWLEDGEMENTS

I wish to acknowledge Aapo Hyv ärinen for useful discussions and helpful comments
on an earlier version of the manuscript.

