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NON NEGATIVE SPARSE REPRESENTATION FOR WIENER BASED SOURCE

SEPARATION WITH A SINGLE SENSOR

Laurent BENAROYA, Lorcan M. DONAGH, Frédéric BIMBOT, Rémi GRIBONVAL

IRISA (CNRS & INRIA), METISS, Campus de Beaulieu
35042 Rennes Cedex, France

ABSTRACT

We propose a new method to perform the separation of two

sound sources from a single sensor. This method generalizes

the Wiener filtering with locally stationary, non gaussian,

parametric source models. The method involves a learning

phase for which we propose three different algorithm. In the

separation phase, we use a sparse non negative decomposi-

tion algorithm of our own. The algorithms are evaluated on

the separation of real audio data.

1. INTRODUCTION

We propose a new method to perform the separation of

two sound sources from a single sensor. That is to say, we

observe �✂✁☎✄✝✆✟✞✡✠☞☛✌✁✍✄✝✆✏✎✑✠✓✒✔✁✍✄✝✆ and we want to estimate ✠✕☛☞✁☎✄✝✆
and ✠✖✒✌✁☎✄✝✆ .
If ✠☞☛ and ✠✖✒ are stationary gaussian, the optimal estimates

are given by Wiener filtering, which splits each frequency

component of � into a contribution of each source by relying

on their respective power spectral densities (PSD) [1] :

✗✑✘✠ ☛ ✁✚✙✛✆✜✞ ✢ ✒☛ ✁✚✙✛✆✢ ✒☛ ✁✣✙✛✆✤✎ ✢ ✒✒ ✁✚✙✛✆ ✗ �✥✁✚✙✛✆✗✑✘✠ ✒ ✁✚✙✛✆✜✞ ✢ ✒✒ ✁✚✙✛✆✢ ✒☛ ✁✣✙✛✆✤✎ ✢ ✒✒ ✁✚✙✛✆ ✗ �✥✁✚✙✛✆
where

✗
is the Fourier transform.

Here, we are interested in the larger class of locally statio-

nary (non gaussian) sources and we try to generalize the

Wiener filtering. We naturally work with the short term Fou-

rier transform (STFT) denoted by ✦ .

A simple parametric model of a locally stationary source is

✠✖✧✝✁✍✄✝✆★✞✪✩✫✧✬✁☎✄✝✆✮✭✰✯✱✧✝✁☎✄✝✆
where ✩ ✧ ✁✍✄✝✆✳✲✵✴ is the amplitude parameter and ✯ ✧ ✁☎✄✝✆ is a

stationary gaussian process with PSD ✢ ✒✧ ✁✚✙✛✆ , with ✶ ✞✸✷✌✹✻✺ .
The amplitude parameter is supposed here to be slowly va-

rying compared to the length of the window that is used in

the STFT, that is : ✦ ✠ ✧ ✁✣✙✏✹✝✄✝✆✜✼✽✩ ✧ ✁✍✄✝✆✾✭ ✦ ✯ ✧ ✁✣✙✏✹✝✄✝✆ .

If we are able to estimate ✩ ☛ ✁✍✄✝✆ and ✩ ✒ ✁☎✄✝✆ , the Wiener filte-

ring becomes [2]

✦ ✘✠ ☛ ✁✚✙✏✹✝✄✝✆✜✞ ✩ ☛ ✁☎✄✝✆ ✢ ✒☛ ✁✚✙✛✆✩✿☛☞✁☎✄✝✆ ✢ ✒☛ ✁✚✙✛✆✤✎❀✩✫✒✌✁✍✄✝✆ ✢ ✒✒ ✁✣✙✛✆ ✦ �✂✁✚✙✏✹✬✄✝✆
✦ ✘✠✖✒❁✁✚✙✏✹✝✄✝✆✜✞ ✩ ✒ ✁☎✄✝✆ ✢ ✒✒ ✁✚✙✛✆✩ ☛ ✁☎✄✝✆ ✢ ✒☛ ✁✚✙✛✆✤✎❀✩ ✒ ✁✍✄✝✆ ✢ ✒✒ ✁✣✙✛✆ ✦ �✂✁✚✙✏✹✬✄✝✆

For independent sources, we may estimate the parameters✩ ✧ ✁☎✄✝✆ using the formula ❂ ✦ �✂✁✣✙✏✹✝✄✝✆ ❂ ✒ ✼✡✩ ☛ ✁✍✄✝✆ ✢ ✒☛ ✁✣✙✛✆✬✎❃✩ ✒ ✁☎✄✝✆ ✢ ✒✒ ✁✚✙✛✆ .
This simple model is a bit crude to describe real audio sources,

which may present different timbres or pitches correspon-

ding to different spectral shapes at different times. There-

fore, we propose the following generalized model :

✠✖✧✝✁✍✄✝✆★✞❅❄❆✖❇✌❈✟❉ ✩ ❆ ✁✍✄✝✆✝✯ ❆ ✁✍✄✝✆
where ✯ ❆ ✁✍✄✝✆ is a stationary gaussian process with spectral

shapes corresponding to the PSD ✢ ✒❆ ✁✣✙✛✆ . ❊ ☛ , ❊ ✒ are index

sets with ❊ ☛★❋ ❊ ✒ ✞❍● . the ✩ ❆ ✁✍✄✝✆ are slowly varying am-

plitude parameters.

We summarize below the general framework of our study

General Framework 1

1. Learn the PSD ✢ ✒❆ ✁✚✙✛✆ on training samples of the

sources.

2. Decompose

❂ ✦ �✂✁✣✙✏✹✝✄✝✆ ❂ ✒ ✼ ❄❆✖❇✌❈❏■✝❑❁❈✜▲ ✩ ❆ ✁☎✄✝✆ ✢ ✒❆ ✁✚✙✛✆
Under constraints ▼✛◆ , ✩ ❆ ✁☎✄✝✆❏✲❖✴

3. EstimateP
◗❙❘❯❚❲❱☎❳❁❨❬❩❪❭❴❫ ❵✡❛❯❜❞❝ ■✿❡ ❛ ❱❢❩❪❭✣❣✏❤❛ ❱☎❳✐❭❵❥❛❯❜❞❝ ■✝❦ ❝ ▲✏❡ ❛ ❱❢❩❧❭✣❣ ❤❛ ❱☎❳✐❭ ◗✥♠♥❱☎❳❁❨✣❩❧❭P
◗❙❘ ❤ ❱☎❳❁❨❬❩❪❭❴❫ ❵✡❛❯❜❞❝ ▲♦❡ ❛ ❱❢❩❪❭✣❣ ❤❛ ❱☎❳✐❭❵❥❛❯❜❞❝ ■✝❦ ❝ ▲✏❡ ❛ ❱❢❩❧❭✣❣ ❤❛ ❱☎❳✐❭ ◗✥♠♥❱☎❳❁❨✣❩❧❭
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Section 2 : we discuss the learning phase for both PSD

sets. Three methods will be covered : a plain randomized al-

gorithm, an algorithm based on a correlation function and

an algorithm based on additive mixture of PSD.

Section 3 : we present a new algorithm for sparse decompo-

sition with non negative coefficients constraints.

Section 4 : we evaluate the algorithms on real audio data

with different size of PSD set, ❊ ☛ and ❊ ✒ .
2. LEARNING THE PSD SETS

Given samples ✠✔✁☎✄ ☛❲✆✱✹ ✁✂✁✄✁ ✹ ✠❁✁☎✄✆☎❃✆ of a source ✠ , we aim

here at extracting a set of PSD vectors
✝ ✢ ✒❆✟✞ ❆✖❇✌❈ ❉ , with Card ✁ ❊ ✧❬✆✜✞✠ , representative of the spectra ❂ ✦ ✠❁✁✍✄✱✹✻✙✛✆ ❂ ✒ of this source.▼ ✄☛✡✛✁✚✩ ☛ ✹ ✁✄✁✂✁ ✹✬✩✟☞❃✆ ▼ ✙ ❂ ✦ ✠❁✁✍✄✱✹✻✙✛✆ ❂ ✒ ✼ ❵ ❆✖❇✌❈✜❉ ✩ ❆ ✁☎✄✝✆ ✢ ✒❆ ✁✚✙✛✆ .

As the PSD ✢ ✒❆ ✁✣✙✛✆ are only defined up to multiplicative

constant, we will suppose that ✌ ✢ ✒❆ ✁✣✙✛✆✆✍❧✙ ✞ ✷ .
We use here the notation ✎✑✏ ✁✣✙✛✆★✞ ✒ ✓✕✔✗✖ ✏✙✘ ✚✜✛ ✒ ▲✌ ✒ ✓✕✔✗✖ ✏✙✘ ✚✄✛ ✒ ▲✣✢ ✚ for the nor-

malized spectral vectors of the training signal ✠❁✁✍✄✝✆ .
2.1. Randomized algorithm

We give here a basic way to extract the PSD vectors:

Choose randomly ✠ time indexes : ✄✻☛❞✹✬✄❪✒✕✹ ✁✂✁✂✁ ✹✝✄ ☞ and use

the “local mean” of ✎ ✏✥✤ ✁✚✙✛✆ as a PSD.

Algorithm 1

1: Choose randomly ✠ time indexes : ✄ ☛ ✹✬✄ ✒ ✹ ✁✄✁✂✁ ✹✝✄✆☞ .

2: Set ✢ ✒❆ ✁✣✙✛✆✧✦ ❵✩★ ✢✪✄✫✭✬ ✢ ✎ ✏ ✤ ★ ✪ ✁✚✙✛✆ , where ✍ is a small inte-

ger.

2.2. Correlation based algorithm

The present method uses a correlation measure ✮ ✁ ✎✯✏ ❉ ✹ ✎✰✏✲✱ ✆
in order to group similar spectral vectors ✎ ✏ ✁✚✙✛✆ .
Algorithm 2

1: Initialize the classes ✳ ☛ ✹ ✁✄✁✂✁ ✹ ✳ ☞
by filling them ran-

domly with all the data.

2: For all ✎✰✏ ❉ , compute the score ✴ ✧ ✁ ◆ ✆ ✞
mean ✵ ❇✑✶ ✤ ✮ ✁ ✎ ✹ ✎ ✏ ❉ ✆ or ✴ ✧✬✁ ◆ ✆ ✞ median ✵ ❇✑✶ ✤ ✮ ✁ ✎ ✹ ✎ ✏ ❉ ✆ ,
as a function of the class ◆ .

3: Form the new classes based on :

✳ ❆ ✞ ✝ ✎ ✏ ❉ ❂✆✷✹✸✻✺✽✼ ✫ ☛ ✘✿✾✿✾✿✾ ✘ ☞ ✴ ✧ ✁✥❀❯✆✟✞ ◆ ✞ .

4: Goto 2, until convergence.

We use then the following formula

✢ ✒❆ ✁✣✙✛✆✟✞ mean
✝ ✎ ✏ ❉ ✁✚✙✛✆ ✞ ✖ ✧ ❇✑✶ ✤ ✛ or median

✝ ✎ ✏ ❉ ✁✚✙✛✆ ✞ ✖ ✧ ❇✑✶ ✤ ✛

2.3. Additive mixture based algorithm

We use the algorithm for the learning of additive repre-

sentation exposed in [3] which can be justified in a Bayesian

formalism [4].

Algorithm 3

Repeat until convergence

1: Compute the parameters ✩ ❆ ✁☎✄✝✆ for a given PSD set✝ ✢ ✒❆ ✁✚✙✛✆ ✞ ❆✖❇✌❈ and for given data samples ✠✔✁☎✄ ☛ ✆✱✹ ✁✂✁✂✁ ✹ ✠❁✁✍✄ ☎ ✆ ,
with any sparse, non negative, decomposition algorithm.
2: Update the PSD set❁ ▲✤ new ✖ ✚✜✛ ✫✹❁ ▲✤ old ✖ ✏❂✛ ✬❄❃ ❄❆❅ ❁ ▲❅

old ✖ ✏❂✛ ❄✕❇❉❈ ❅ ✖ ✏❂✛ ❈ ✤ ✖ ✏❂✛ ★ ❈ ✤ ✖ ✏❂✛ ✬ ❈ ❅ ✖ ✏❂✛
The different algorithms above will be compared in sec-

tion 4. We now study a method for the decomposition of a

spectral vector ❂ ✦ �✂✁☎✄✱✹ ✙✛✆ ❂ ✒ on a PSD set (as needed at step

2 in the general framework).

3. SPARSE, NON NEGATIVE DECOMPOSITION

METHOD

In this section, we look for a decomposition algorithm� ✼❋❊❏✩ , ✩ ✲ ✴ , where � ✞❍● ❂ ■ �✥✁✚✙✏✹✬✄✝✆ ❂ ✒✂❏ , ✩ ✞❑● ✩ ☛ ✁✍✄✝✆✱✹ ✁✂✁✄✁ ✹✬✩✟☞ ✁✍✄✝✆ ❏
and ❊❖✞❑● ✢ ✒☛ ✁✣✙✛✆✱✹ ✁✂✁✂✁ ✹ ✢ ✒☞ ✁✣✙✛✆ ❏ .
We optimize the following criterion

✷▼▲❖◆❈✜P❘◗ ✷✺❚❙ ❊❏✩❱❯✑� ❙ ✒✒ ✎❀✙ ✁✚✩✫✆ (1)

✙ is a penalty function of the form : ✙ ✁✚✩✫✆ ✞❳❲ ❵ ✧ ✩❩❨✧ with✴❭❬ ✷ , ❲ being a sparsity parameter.

In the context of unconstrained optimization, this penalty

function leads to sparse solutions [5], that is to say solutions

with few non zero coefficients ✩ ✧ .
For the penalized problem, ▼♥✶ ✩ ✧ ✲ ✴ , we introduce the

Lagrange functional❪ ✁☎✩✏✹✗❫✏✆✜✞ ✷✺❴❙ ❊❏✩❱❯✑� ❙ ✒✒ ✎❵❲ ❄ ✧ ✩ ❨✧ ❯ ❄ ✧ ❫ ✧ ✩ ✧
Where ❫♦✧✜✲❖✴ are the Lagrange multipliers.

The Lagrange functional may be re-written❪ ✁☎✩✏✹✗❫✏✆✜✞ ✷✺ ❙ ❊❏✩❱❯✑� ❙ ✒✒ ✎ ✩❜❛❞❝✳✁☎✩✏✹✗❫✏✆❪✩
where ❝✳✁✚✩✏✹✗❫✏✆✟✞ diag ❡✗❢ ❈❤❣❉ ✬❥✐ ❉ ❈ ❉❈ ▲❉ ❦ .

This remark leads to an iterative scheme formulation

Suppose that we are given an estimate ✁☎✩ ✖♠❧ ✛ ✹♥❫ ✖♠❧ ✛ ✆ of the op-

timal solution of (1). Then, we may improve the estimate

VI - 614

➡ ➡



by replacing ❝✳✁☎✩✏✹✗❫✏✆ with ❝ ✖♠❧ ★ ☛ ✛ ✞✩❝✳✁✚✩ ✖♠❧ ✛ ✹♥❫ ✖♠❧ ✛ ✆ and mini-

mize the Lagrange functional which is now a quadratic form

of ✩ .

We get a new estimate : ✩ ✖♠❧ ★ ☛ ✛ ✞✁� ❊ ❛ ❊ ✎ ❝ ✖♠❧ ★ ☛ ✛✄✂ ✬ ☛ ❊ ❛ �
Remains the evaluation of the Lagrange multipliers ❫ ✖♠❧ ★ ☛ ✛✧ .

As we have ☎ ❪ ✁✚✩♦✹♥❫♦✆✝✆ ☎ ❫♦✧★✞ ❯ ✩✫✧ and ❫ ✧ must be positive,

we use the following gradient ascent method (Uzawa algo-

rithm, [6]). That is ❫ ✖♠❧ ★ ☛ ✛✧ ✞ ✷✹✸✰✺✟✞ ❫ ✖♠❧ ✛✧ ❯✡✠ ❧ ★ ☛✱✩ ✖♠❧ ★ ☛ ✛✧ ✹✬✴☞☛ .✠ ❧ is the learning rate at step ✌ .
Thus we get the following iterative algorithm

Sparse non negative representation algorithm 1

1: Initialize ✩ ✖ ◗ ✛ ✞✎✍✙❊ ❛ ❊ ✎✑✏✓✒✕✔ ✬ ☛ ❊ ❛ � .

2: repeat until convergence (step ✌ ✎✪✷ )
1. ❝ ✖ ❧ ★ ☛ ✛ ✞ ❝✳✁☎✩ ✖♠❧ ✛ ✹✗❫ ✖♠❧ ✛ ✆
2. ✩ ✖♠❧ ★ ☛ ✛ ✞ � ❊ ❛ ❊ ✎❭❝ ✖♠❧ ★ ☛ ✛ ✂ ✬ ☛ ❊ ❛ �
3. ❫ ✖♠❧ ★ ☛ ✛✧ ✞ ✷✹✸✰✺✟✞ ❫ ✖♠❧ ✛✧ ❯✡✠ ❧ ★ ☛❯✩ ✖ ❧ ★ ☛ ✛✧ ✹✬✴☞☛
Finally, as the matrix inversion in step 2 of each itera-

tion may be prohibitive, we use as a variant of the algorithm

with a scaled gradient descent ([6]) in step 2. After simpli-

fication, we get

Sparse non negative representation algorithm 2

1: Initialize ✩ ✖ ◗ ✛ ✞ ✍ ❊ ❛ ❊ ✎✑✏✓✒ ✔ ✬ ☛ ❊ ❛ � .

2: repeat until convergence

1. ✎ ✖♠❧ ★ ☛ ✛✧ ✞ ✖ ❈✘✗ ❅✚✙❉✟✛ ▲❢ ✖ ❈ ✗
❅✚✙❉✜✛ ❣ ✬❆✐ ✗ ❅✚✙❉ ❈ ✗ ❅✚✙❉✙ ✖ ❧ ★ ☛ ✛✧ ✞ ✵ ✗ ❅✚✢ ■ ✙❉✣ ✵ ✗ ❅✚✢ ■ ✙❉ ★ ☛ , ✤ ✖♠❧ ★

☛ ✛✧ ✞ ❈✘✗ ❅✚✙❉✣ ✵ ✗ ❅✚✢ ■ ✙❉ ★ ☛
2. ❡✦✥✚✧✩★ ❚✫✪ ❫ ❡✬✥✩✧ ✪✮✭✜✯ ✧✩★ ❚ � ❳ ✥✩✧✩★ ❚✫✪✱✰✳✲✵✴ ❱ ✲ ❡✬✥✩✧ ✪✱✭ ♠✿❭✷✶✹✸ ✥✩✧✩★ ❚✫✪ ✂
3. ✺ ✥✩✧✩★ ❚✫✪✻ ❫✑✼✾✽✳✿ ✞ ✺ ✥✚✧ ✪✻ ✭❁❀ ✧✩★ ❚ ❡ ✥✩✧✩★ ❚✫✪✻ ❨❃❂ ☛

4. EXPERIMENTAL STUDY

4.1. Experimental protocol

We have tested the proposed general framework for a

mixture of two audio sources : an audio excerpt from the

first “suite” for cello by J.S. Bach ( ✠ ☛ ) and an audio ex-

cerpt from an African drums piece by Saint Pierre ( ✠☞✒ ). The

pieces are sampled at 11kHz and we use a window of length

512 samples ( ✼❅❄✬❆ ms), for the STFT. Note that the sources

are decorrelated (i.e ✒ ❇❖✔ ■ ✘ ✔ ▲❉❈ ✒❊ ✔ ■ ❊❉❊ ✔ ▲ ❊ ✼✪✴ ✁ ✴✌✴●❋ ).

We use the one minute of both excerpts as training parts

(learning the PSD sets), and the next 15 seconds of both

sources are added to form the mixture, in which the sources

will be estimated.

4.2. Evaluation criteria

In the experiments, we have the original sources ✠ ☛ and✠ ✒ and their estimates
✘✠ ☛ and

✘✠ ✒ .
Let us use the projection of the estimated sources over

the vector space spanned by the real sources.

We may write
✘✠☞☛✳✞ ✴ ☛❯✠❞☛✾✎ ✴ ✒✖✠✖✒ ✎■❍✂☛ and

✘✠✖✒ ✞❏✏♥☛✓✠☞☛✮✎✏♦✒❞✠✖✒✟✎✑❍❴✒ .
Then we define the source to interference ratio (SIR) and

the source to artefact ratio (SAR) (in dB)

SIR ☛✾✞✽✺✌✴▲❑◆▼☞❖◗PPPP ✴
☛✴ ✒ PPPP ❙

✠☞☛ ❙❙ ✠ ✒ ❙ SAR ☛✾✞✽✺✌✴▲❑❘▼●❖ ❊❚❙✔ ■ ✬❱❯ ■ ❊❊ ❯ ■ ❊
SIR ✒ ✞❥✺✕✴▲❑◆▼☞❖ PPPP

✏ ✒✏♥☛ PPPP ❙
✠ ✒ ❙❙ ✠☞☛ ❙ SAR ✒ ✞✽✺✌✴▲❑❘▼●❖ ❊❚❙✔ ▲ ✬❱❯ ▲ ❊❊ ❯ ▲ ❊

The SIR is a way to measure of the residual of the other

source in the estimation of each source, whereas SAR score

is an estimate of the amount of distortion in each estimated

signal.

4.3. Evaluation

We evaluate the scores with varying numbers of PSD

vectors (Card ✁ ❊ ✧ ✆✱✹ ✶ ✞❅✷✔✹ ✺ ) for each source, between 5

and 30. In tables 1 and 2, we have the same number of PSD

patterns for the two sources. The figures are the SIR and the

SAR for both estimated sources.

Note that we have used ❲ ✞ ✷✖✴ ✬❱❲ ✹ ✴ ✞ ✷ for the sparsity

parameters in the decomposition method. Indeed, in the ex-

periments, the sparsity is already enforced by the low num-

ber of vectors.

The SAR are globally lower than the SIR. This may be

intrinsic to the Wiener filtering method, as we do not esti-

mate the exact phases of both source, but take the one of

the mixture in both cases. This is may be a limitation of the

source model, which is phase independent.

We can also note that both algorithms 2 and 3 (correlation-

based and mixture-based) perform better than the plain ran-

domized algorithm.

Note the scores for the randomized algorithm have been

averaged over 80 runs.

In tables 1 and 2, the ratios for the drum source get bet-

ter, as the number of PSD vectors increases, whereas they

get worse for the cello source.

Therefore, we have taken, in the other two tables, 5 PSD

vectors for the cello and 15, 20 or 30 PSD vectors for the

drums.

The best scores are obtained by the second algorithm (correlation-

based) with 15 PSD vectors for the drums. Note that the ra-

tios of the standard Wiener filtering are ✷✌✷ ✁ ✷ (cello), ✷✌✷ ✁ ❄
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(drums) for the SIR, and ❋ ✁ � for both SAR.

This suggests that there is an optimal dimensionality of PSD

set for each of the sources, in the separation context. This is

revealed by the ratio values with varying number of PSD

vectors.

Consequently, the sparsity criterion may be further elabora-

ted. The scores would seemingly be increased if we could

use a criterion on the exact number of active components in

the decomposition method in step 2 of the general frame-

work.

# state source random correlation mixture

based based

5 cello 12.2 13.8 13.7

drums 12.7 15.8 15.9

10 cello 11.8 12.0 12.3

drums 15.3 15.6 15.5

30 cello 12.1 11.6 11.0

drums 18.4 17.8 17.0

TAB. 1 –. SIR for each of the sources as a function of the

number of PSD vectors for each source and of the construc-

tion method of those vectors

# state source random correlation mixture

based based

5 cello 5.0 6.5 6.6

drums 5.0 6.2 6.2

10 cello 5.9 6.5 6.5

drums 5.2 5.8 5.9

30 cello 6.3 7.0 7.7

drums 5.0 6.0 6.6

TAB. 2 –. SAR for each of the sources as a function of the

number of PSD vectors for each source and of the construc-

tion method of these vectors

# state source random correlation mixture

based based

5 cello 14.2 15.6 15.8

30 drums 10.5 12.6 12.2

5 cello 14.1 15.5 15.2

20 drums 10.9 12.5 12.6

5 cello 14.2 15.0 15.1

15 drums 11.3 15.0 12.6

TAB. 3 –. SIR for each of the sources as a function of the

number of PSD vectors for each source and of the construc-

tion method of these vectors

# state source random correlation mixture

based based

5 cello 4.6 6.0 5.8

30 drums 5.4 6.6 6.5

5 cello 4.6 5.8 5.7

20 drums 5.4 6.4 6.4

5 cello 4.9 6.6 5.8

15 drums 5.6 6.6 6.3

TAB. 4 –. SAR for each of the sources as a function of the

number of PSD vectors for each source and of the construc-

tion method of these vectors

5. CONCLUSION

We have proposed a new method for separation of two

sound sources from a single sensor. This is a generalization

of the Wiener filtering with locally stationary, non gaussian,

parametric source models. We have studied three algorithms

for the learning phase and we provide a sparse non negative

representation algorithm for the separation phase. On the

tests on real data, the method gives very relevant results.
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