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Abstract
The relaxation of magnetization, a well-accepted part of ferrofluid dynamics, is
shown to give rise to a broad range of non-Newtonian behaviour in ferrofluids,
including shear thinning or shear thickening, normal stress differences, a visco-
elastic response and a varying Trouton, or elongational, viscosity.

1. Introduction

Since its inception, the ferrofluid-dynamics has given us a concise understanding of a number of
varying phenomena. The theory was derived by Shliomis assuming spherical, non-interacting
magnetic particles, rotating against the viscosity of the carrier liquid. Consisting of two
essential elements, (1) the relaxation equation for the magnetization M and (2) a torque
1
2εi jk(H × M)k in the stress tensor �i j , the theory has been successfully applied in numerous
circumstances, particularly negative viscosity [1, 2]. (H, and B below, are the two magnetic
fields.) Recently, denser and more strongly magnetized ferrofluids were found to display
strikingly non-Newtonian behaviour, including shear thinning and normal stress differences [3].
Experiments, microscopic theories [4] and simulations [5] all show this to be the result of
magnetic particles forming short chains in the presence of fields, making ferrofluids resemble
polymer solutions. Facing the need for a similarly concise macroscopic theory for these
ferrofluids, the general feeling is that its construction would require ‘new physical ideas’ and
‘concepts of polymer physics’ [6], and that the result would be a combination of the Shliomis
theory with polymer fluid dynamics. There have been a number of rather useful microscopic
results considering the influence of particle interaction on the dynamics [7], chain formation [4]
and chain flexibility [8], but such a macroscopic theory has not yet been formulated.

In 2001, Müller and Liu [9] published a paper on the thermodynamic framework of
ferrofluid dynamics, the main result of which is that ferrofluid dynamics as given by Shliomis
can be divided into two parts: structure and coefficients. While the structure is determined
by general principles that are always valid, the coefficients (such as the relaxation time) are the
result of simplifying assumptions (especially the particle shape and lack of particle interaction),
and are therefore much more restricted in their range of validity. This is a relevant insight,
because it implies that one may take the same set of equations to account for any system having
a slowly relaxing magnetization simply by choosing the appropriate coefficients depending
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on particle shape (be it spherical or elongated) and the type of relaxation (Neél or Brown).
Following this view to its logical end, one concludes naturally that the given set of equations
also holds for chain-forming ferrofluids—although the chains as ‘constituent particles’ are
rather elongated, and the relaxation rate of magnetization is a composite quantity, restricted
not only by how fast the chains may be oriented but also by how quickly particles can be
transported and assembled to form chains of the proper length.

It is hardly surprising that polymer solutions and chain-forming ferrofluids differ in some
fundamental ways in their macroscopic dynamics. Being a negative statement, the term ‘non-
Newtonian’ lacks specificity, and there may well be different versions of non-Newtonian
behaviour (polymeric, ferrofluid one . . .) requiring different descriptions. Since polymer
strands are entangled without shear, but get aligned along the flow by it [10], while magnetic
chains are aligned along the field without shear, and are broken into pieces by it [3], their
similarity must be rather restricted.

Although polymer solutions are amenable to many competing descriptions [10], they are
in essence characterized by transient elasticity, with their rheology well accounted for by a
relaxing strain field [11]. An important (and perhaps confusing) point here is that there are
polymer-like magnetic fluids that also need the strain field as an extra variable: if the magnetic
particles are large enough, they will, in the presence of a strong field, form long chains bridging
the whole system. This is the jamming transition, after which the system is truly elastic [12],
and needs the strain field for a description of its static and dynamic properties. Close to the
transition, the strain should be a critical, relaxing variable, because two chains, neither quite
bridging the system, temporarily get in the way of each other. This implies transient elasticity.
Here we shall deal with magnetic fluids that are either incapable of the jamming transition, or
far enough away from it, and refer to them as ferrofluids. The accepted term for magnetic fluids
capable of forming long chains is magneto-rheological fluids (MRF), though a term such as
magnetic elastofluids may be more descriptive.

The question we raise in this paper is whether the relaxation of magnetization suffices
by itself to fully account for non-Newtonian ferrofluids forming short chains [13]. We do
not aim for a full, quantitative answer to this conjecture, but only seek a qualitative answer,
an understanding of whether the structure of ferrofluid dynamics is rich enough to support
non-Newtonian behaviour. To do this, we consider a mono-disperse ferrofluid containing a
single population of magnetic particles, all participating in chain formation. Such a ferrofluid
is characterized by a single relaxation equation, that of the total magnetization. Furthermore,
we assume a linear constitutive relation and incompressible flows, so fully analytical solutions
for varying geometry and field orientation are possible. This is an important first step, because
it establishes the fact, firmly and incontrovertibly, that some typical aspects of non-Newtonian
behaviour are indeed the result of magneto-relaxation. In addition, the explicit solutions
should also considerably ease the analysis and understanding of these aspects of ferrofluid
non-Newtonian behaviour. On the other hand, the analytical results obtained below cannot be
compared to experiments directly and quantitatively.

2. Ferrofluid dynamics

We start our consideration with the equations
d

dt
Mi + (M × Ω)i − λ2 M jvi j = −(Mi − Meq

i )/τ, (1)

�i j = P̃δi j − 2η1vi j − Hi B j + 1
2 [(Mi h j − M j hi ) − λ2(Mi h j + M j hi)]. (2)

The first is the relaxation equation for the magnetization, the second (with vi the velocity) gives
the stress, defined by local momentum conservation ġi + ∇ j(�i j + ρviv j ) = 0.



Non-Newtonian behaviour in ferrofluids and magnetization relaxation S2625

For λ2 = 0, equation (1) describes magneto-relaxation in the co-rotating frame, as
originally employed by Shliomis (Ω ≡ 1

2∇×v is the rate of rotation). Given our assumption of
a linear constitutive relation, the equilibrium magnetization is simply Meq

i = χ Hi . A finite λ2,
proposed in [9], accounts for the influence of an elongational flow, vi j ≡ 1

2 (∇iv j + ∇ jvi ).
It was measured using various ferrofluids by Odenbach and Müller, who obtained values
between 0 and 0.88 [14], demonstrating its relevance. They also tentatively relate λ2 to the
chain length at zero shear, with λ2 ≈ 0 appropriate for single-particle ferrofluids, while
0.88 indicates chains averaging around five particles. (More coefficients, accounting for
magnetic anisotropy, are permitted by symmetry, cf [9]. Although some may be necessary
for quantitative comparisons with experiments, their inclusion here would only obfuscate the
present, emphatically qualitative, consideration.)

The scalar P̃ in the total stress equation (2) contains all diagonal terms [9], not only the
pressure P . It is not further specified, as it is relevant only for compressional flows such
as considered in [15]. The transport coefficient η1 is the shear viscosity without field, and
the conjugate variable h is given as h ≡ M/χ − H = M 1+χ

χ
− B. (For nonlinear constitutive

relations, we have h ≡ Heq − H = Beq − B, where Heq(M) is the inverse of Meq(H), and
Beq(M) that of Meq(B), see [9].) The two expressions preceded by λ2 in equations (1) and (2),

λ2 M jvi j = 1
2λ2 M j (∇iv j + ∇ jvi ),

1
2λ2(Mi h j + M j hi ),

are counter terms, which due to the Onsager reciprocity relation are necessarily present
simultaneously. Similarly,

(M × Ω)i = 1
2 M j (∇iv j − ∇ jvi ),

1
2 (Mi h j − M j hi ),

are also counter terms, which share the material-independent coefficient of 1. Because
Mi h j − M j hi = εi jk(M × h)k , and h = Heq − H with Heq ‖ M, the term 1

2 (Mi h j − M j hi ) =
− 1

2εi jk(M × H)k is the Shliomis torque. This torque is frequently falsely understood to be
present only if magnetic grains rotate against the fluid matrix. Yet it is rather more general and
always present. As mentioned above, it is the thermodynamically necessary counter-term to
M × Ω that merely transforms Ṁ into the co-rotating local rest frame and has nothing to do
with the difference between Neél and Brown relaxation.

The transport coefficients η1, λ2, τ are material-dependent parameters, and functions
of thermodynamic variables such as density, concentration and temperature, but they are
emphatically independent from shear. As discussed in [9], the dependence of transport
coefficients on non-equilibrium quantities such as shear goes beyond the well-verified linear
force-flux relation of Onsager, and may even lead to negative entropy production or violate
other general principles. Moreover, it pre-empts any theory: simply taking the viscosity
depending on shear and field as measured leaves no room, nor need, for a theory. Although
a presumed shear dependence is an accepted and practical way to frame experimental results,
see e.g. [14], real understanding can only be claimed if such dependence is eliminated by
employing a more complete theory: experiments on magneto-vortical resonance [16] were
accounted for by a shear-dependent relaxation time τ . Yet equal agreement with the data was
achieved with a constant τ , after a finite λ2 was introduced [9].

3. Different experimental situations

3.1. Shear thinning and shear thickening

Now we employ equations (1) and (2) to consider the first of four examples: simple shear,
v = γ̇ yx̂, with the velocity along x̂, the gradient along ŷ, and the external field either
perpendicular to the surface and along ŷ or parallel to the surface and x̂ (see figure 1). Since the
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Figure 1. The orientation of the fields in a sheared ferrofluid, if the external field is either
(a) perpendicular or (b) parallel to the surface.

equilibrium magnetization Meq is in the xy-plane in both cases, stationarity or d
dt M = 0 imply

that equation (1) is a linear, 2 × 2 matrix equation, AM = Meq. Inverted, it reads

Mx = 4Meq
x + 2 (1 + λ2) ξ Meq

y

4 + (
1 − λ2

2

)
ξ 2

, (3)

My = 4Meq
y − 2 (1 − λ2) ξ Meq

x

4 + (
1 − λ2

2

)
ξ 2

, (4)

where

ξ ≡ γ̇ τ (5)

is the dimensionless shear rate. Equations (3) and (4) already contain the essence of shear
thinning: the magnetization goes to zero in the limit of strong shear, ξ → ∞, implying the
vanishing of any magneto-viscous effect, because the second line of equation (2) also vanishes.
This fact was partially recognized by Shliomis, who remarked in [2]: ‘The reduction of the
magnetization [by shear] leads in turn to some decrease in the rotational viscosity’. We see
that the magnetization is in fact eradicated, for arbitrary values of λ2 except 1. Also there is
considerable numerical correction from λ2 at finite shear, especially if λ2 approaches 1.

The force density on an infinitely extended plate in the xz-plane, being dragged along x̂
on top of a ferrofluid layer, is ��xy ≡ �air

xy − �ff
xy . The stress of air, �air

xy , is −Hx By , and
that of the ferrofluid, �ff

xy , is given by equation (2). (Because Hx By is continuous, ��xy is
calculated from the second line, in addition to the term −2η1vi j .) Taking the total viscosity
as η1 + ηr ≡ −��xy/γ̇ , the magneto-viscous contribution ηr is evaluated by inserting
equations (3) and (4) into (2) for the boundary condition of either perpendicular or parallel
external field H0.

Because of the typical geometry for viscometers, the experimentally more convenient
configuration is given by B0 = H0 along ŷ, perpendicular to the plate. As By = H0, Hx = 0
are continuous, the internal fields are B = (Mx , H0), H = (0, H0 − My), with M = B − H =
(Mx , My) and Meq = χH = χ(0, H0 − My). Using these in equations (2), (3) and (4), we find

η⊥
r = (1 + λ2)

2[4 + (1 − λ2)
2ξ 2]

[4(1 + χ) + (1 − λ2
2)ξ

2]2
τχ H 2

0 . (6)

For vanishing shear, ξ → 0, the viscosity η⊥
r grows with τ , χ H 2

0 and λ2. More generally, η⊥
r

decreases monotonically with shear if

χ � 1 + 3λ2

1 − λ2
, (7)
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Figure 2. The magneto-viscous contribution to the shear viscosity, in units of τ H 2
0 , as a function of

ξ ≡ γ̇ τ , from λ2 = 0 to λ2 = 0.9 in steps of 0.1, for a perpendicular external field H0, with χ =1.
Shear thinning is obvious for the chosen parameters, but shear thickening is also possible.

and displays a maximum and partial shear thickening otherwise. Figure 2 shows a case in
which equation (7) is satisfied, and the magneto-viscous contribution decays monotonically as
a function of shear, for χ = 1 and 10 different values of λ2, from 0 to 0.9.

If the external field H0 = B0 is parallel to the plate, along x̂, again because By, Hx

are continuous, the internal fields are B = (H0 + Mx , 0), H = (H0,−My), and Meq =
χ(H0,−My). Using these in equations (2), (3) and (4), we find

η‖
r = (1 − λ2)

2
[
4 (1 + χ)2 + (1 + λ2)

2 ξ 2
]

[
4(1 + χ) + (

1 − λ2
2

)
ξ 2

]2
τχ H 2

0 . (8)

In the limit of low shear, ξ → 0, η
‖
r still grows with τ, χ H 2

0 , but now decreases with λ2. (For
λ2 = 0 and χ 	 1, both shear viscosities are the same, η⊥

r = η‖
r , as they should be: this is the

limit where the rotation of the magnetic particles against the fluid matrix holds, then any field
orientation perpendicular to  is equivalent.) For finite shear, η

‖
r decreases monotonically with

ξ only if

χ � 3λ2 − 1

2(1 − λ2)
(9)

is satisfied. In figure 3, this is the case only for λ2 � 0.6. Assuming, in equations (7) and (9),
that λ2 lies between 0 and 1 (for which there are no general reasons, only model-independent
ones), and χ is around 1, the monotonicity of the magneto-viscous contribution to the shear
viscosity can be read off the map of figure 4.

The plots of figures 2 and 3 are of more conceptual interest, demonstrating shear thinning
as a result of magneto-relaxation and quantifying the influence of λ2. In an experiment, of
course, λ2 cannot be varied for a given field. Besides, both λ2 and the relaxation time τ are
functions of the external field, so η/τ H 2

0 is not field-independent. But one may of course
compare η⊥

r to η
‖
r for given field, τ , and λ2. Depending on λ2, the normalized magneto-viscous

shear contribution, as a function of the shear rate ξ , is given in figure 5.
Finally, we calculate the ratio between η⊥

r and η
‖
r at vanishing shear,

η⊥
r (ξ → 0)

η
‖
r (ξ → 0)

= 1

(1 + χ)2

(
1 + λ2

1 − λ2

)2

. (10)
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Figure 3. Magneto-viscous contribution to the shear viscosity as a function of ξ ≡ γ̇ τ , from
λ2 = 0 to λ2 = 0.9, for a parallel external field H0, with χ = 1. A growing λ2 diminishes the
effect, possibly because the chains are already aligned along the flow, in the same way as polymer
strands at high shear. Monotonic shear thinning prevails only for λ2 � 0.6.
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Figure 4. There is a maximum in the magneto-viscous contribution to the shear viscosity, and shear
thickening occurs, if χ versus λ2 lies to the left or right of the line, respectively. The dots represent
parameters used for the above two figures for the perpendicular and parallel case.

3.2. Normal-stress differences

It is well known from polymer physics [10] that quite a number of non-Newtonian behaviours—
including especially the Weissenberg (or rod-climbing) effect already seen in ferrofluids [3]—
derive from finite normal-stress differences. As our second example, we therefore calculate
normal-stress differences, N1 ≡ �xx − �yy and N2 ≡ �yy − �zz . Note, however, that as a
result of the Maxwell stress, N1, N2 are in general finite even for vanishing shear, ξ = 0, in
ferrofluids. (An example is the magnetic force that leads to the elongation of spherical droplets.)
We shall assume a geometry in which this contribution either vanishes or is compensated
(say because the droplet is already elongated), and subtract from our result the normal stress
difference at vanishing shear,

−γ̇ 2�1 ≡ N1 ≡ [
�xx (γ̇ ) − �yy (γ̇ )

] − [
�xx (0) − �yy (0)

]
, (11)

−γ̇ 2�2 ≡ N2 ≡ [
�yy (γ̇ ) − �zz (γ̇ )

] − [
�yy (0) − �zz (0)

]
, (12)

where �1,�2 are the so-called normal stress coefficients. They are calculated as

�⊥
1 = − (1 + λ2)

[
4 (1 + χ) (1 − 3λ2) + (1 + λ2) (1 − λ2)

2 ξ 2
]
τ 2

[
4 (1 + χ) + (

1 − λ2
2

)
ξ 2

]2

χ

1 + χ
H 2

0 , (13)
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r taking χ = 1. Clearly, we have η⊥
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r at larger values of λ2. Both are equal for λ2 = 1/3.
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Figure 6. The first normal stress coefficients, �⊥
1 and �

‖
1 , respectively for normal and parallel

external fields, in units of τ 2 H 2
0 , as functions of ξ . We have χ = 1, and vary λ2 from 0 to 0.9 in

steps of 0.1, depicting all curves with λ2 > 1/3 as dashed ones.

�
‖
1 = − (1 − λ2)

[
4 (1 + χ) (1 + 3λ2) + (1 + λ2)

2 (1 − λ2) ξ 2
]
τ 2

[
4 (1 + χ) + (

1 − λ2
2

)
ξ 2

]2 χ H 2
0 , (14)

and are depicted in figure 6. The coefficients �⊥
1 and �

‖
1 differ strongly at vanishing shear,

�⊥
1 (ξ → 0) = −1

4
(1 + λ2) (1 − 3λ2) τ 2 χ

(1 + χ)2 H 2
0 , (15)

�
‖
1 (ξ → 0) = −1

4
(1 − λ2) (1 + 3λ2) τ 2 χ

1 + χ
H 2

0 , (16)

and switch their behaviour especially, at λ2 = 1/3: for smaller λ2, �⊥
1 remains negative for all

values of shear. For larger λ2, there is a zero crossing.
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The second normal stress coefficient, for the two cases of field orientation, are given as

�⊥
2 = (1 + λ2) (1 − λ2)

2
[
4 (1 + χ) + (1 + λ2) ξ 2

]
τ 2

[
4 (1 + χ) + (

1 − λ2
2

)
ξ 2

]2

χ

1 + χ
H 2

0 , (17)

�
‖
2 = 4 (1 + χ) λ2 (1 − λ2)

2 τ 2

[
4 (1 + χ) + (

1 − λ2
2

)
ξ 2

]2
χ H 2

0 , (18)

and are depicted in figure 7. If λ2 = 0, we have �⊥
2 /�⊥

1 = −1 and �
‖
2/�

‖
1 = 0 for all values

of ξ .

3.3. Visco-elastic responses

Third, we probe the linear, visco-elastic response of ferrofluids at a given frequency ω,
showing that it is, amazingly, exactly mappable onto the polymer case. Because of molecular
entanglement, that needs a time τ1 to disentangle, the polymer response to a small, oscillatory
shear perturbation γ̇ is viscous at low, but elastic at high, frequencies,

�xy = −[η1 + K τ1/(1 − iωτ1)]γ̇ , (19)

with K denoting the shear elastic coefficient. Turning to ferrofluids, we consider the same
geometry as above, linearize equation (1) with respect to the fluctuating components, δM ≡
M − Meq and v, Fourier transform them, Ṁ → −iωδM and γ̇ → −iωγ , again yielding a
linear, algebraic 2 × 2 matrix equation. The result is inverted and inserted into equation (2),
leading again to equation (19), with K and τ1, respectively, given as

K ⊥ = 1
4 (1 + λ2)

2χ H 2
0 /(1 + χ)2, τ⊥

1 = τ, (20)

K ‖ = 1

4
(1 − λ2)

2χ(1 + χ)H 2
0 , τ

‖
1 = τ

1 + χ
. (21)

(H0 still denotes the external field that is either perpendicular or parallel to the oscillating plate.)
Taking ωτ → 0 in equation (19) yields the enhanced viscosities at vanishing frequencies and
small shear flow. So the results are the same as taking ξ → 0 in equations (6) and (8).

3.4. The Trouton viscosity

Fourth, we consider the so-called Trouton viscosity [10]. The velocity field is now elogational,
v = (− 1

2 ε̇x,− 1
2 ε̇y, ε̇z), with Ω ≡ 0, and ε̇ the parameter quantifying the flow rate (similar to
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0 , as a function of the dimensionless elongation rate τ ε̇. λ2 varies from 0.1 to 0.9 in steps
of 0.1.

γ̇ before). Since Ω vanishes identically, there is no effect whatsoever without λ2. Equation (1)
is again inverted, leading to

Mx = χ Hx/(1 + 1
2λ2ε̇τ ), (22)

My = χ Hy/(1 + 1
2λ2ε̇τ ), (23)

Mz = χ Hz/(1 − λ2ε̇τ ). (24)

(Clearly, the possible divergences of Mi show that a linear constitutive relation fails here.)
Inserting these expressions into equation (2), one can easily calculate the Trouton viscosity, as

ηT = [(�xx − �zz) − (�xx − �zz)|ε̇=0]/ε̇. (25)

The term Hi B j is now finite, and included. But the normal stress difference at vanishing flow,
ε̇ = 0, is again subtracted, for the same reason as in equations (11) and (12).

We take the external field B0 = H0 to be along ẑ, with the ferrofluid in the shape of a thin,
long cylinder, also along ẑ, implying that the ferrofluid column is either getting thinner and
longer or, conversely, fatter and shorter, depending on the sign of ε̇. Then all internal fields are
also along ẑ, with the internal H -field essentially constant, H = H0, while the other fields are
B = H0 + M , Meq = χ H0. The magneto-viscous contribution η̄r to the Trouton viscosity ηT,
given as

η̄r ≡ ηT − 3η1 = λ2τ (1 + λ2 − λ2τ ε̇)

(1 − λ2τ ε̇)2
χ H 2

0 , (26)

is depicted in figure 8.
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[5] Ilg P and Kröger M 2002 Phys. Rev. E 66 21501
[6] Shliomis M I 2003 Phys. Rev. E 67 43201
[7] Ilg P and Hess S 2003 Z. Naturf. a 58 589–600
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