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Non-Newtonian fluid flow in an eccentric annulus was studied for high polymer
aqueous solutions of CMC, HEC and MC. The macroscopic relations between the pres-
sure drop and the flow rate were found to be in fairly good agreement with the results
obtained by application of the conventional variational principle.

Velocity profiles were measured by a hydrogen bubble method in which photographs
were taken of the hydrogen bubbles. The authors observed very interesting secondary
flows in the eccentric non-Newtonian fluid flow which may be due to the viscoelastic
effect of the high polymer aqueous solution. The authors could not observe such second-
ary flows for non-Newtonian fluids in a concentric annulus or Newtonian fluids in an

eccentric annulus.

The authors present an equation giving the relation between the flow rate and the
pressure drop for the flow of a non-Newtonian fluid in an eccentric annulus in terms of

the experimental data for flow in a circular tube.

Introduction

A large number of studies have investigated fluid
flow and heat transfer in a concentric annulus, while
only a limited number of studies have been carried out
on non-Newtonian fluid flow and heat transfer in an
eccentric annulus. The latter may be important for the
case of fluid flow in the die of an extruder.

N.AY. Piercy et al.® and others'®:!31 have in-
vestigated Newtonian flow in an eccentric annulus, but
very little work has been done on non-Newtonian flow
in such a geometry. This paper presents both the theo-
retical and experimental results of flow rate, pressure
drop, and velocity profiles for non-Newtonian flow in
an eccentric annulus under steady-state conditions.
Since the basic equations for non-Newtonian fluid flow
in an eccentric annulus are non-linear partial differ-
ential equations, it is very difficult to obtain an analyti-
cal solution by classical methods. Therefore, with a few
exceptions®, one usually uses an approximate method
such as the variational method for non-Newtonian flow
problems. For example, Shechter') presented non-
Newtonian flow in a rectangular duct, and the
authors®"® presented non-Newtonian flow in ellip-
tical, triangular, and rectangular ducts.

This paper presents a comparison of the experiment-
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al data with the conventional variational method
analysis for fluid flow in an eccentric annulus, using
the 3-constant Sutterby model'¥ as a non-Newtonian
model. The velocity profiles were measured by a hydro-
gen bubble method in which photographs were taken
of the hydrogen bubbles. The authors observed a
secondary flow in the eccentric annulus for a non-
Newtonian flow which may be due to the viscoelastic
effect of the non-Newtonian fluid. Furthermore, an
equation is given to predict the relation between flow
rate and pressure drop in an eccentric annulus in terms
of the experimental fluid flow data in a circular tube.

1. Theoretical Consideration

For mathematical simplicity, it is better to use bi-
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Fig. 1 Flow in an eccentric annulus
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polar coordinates® as shown in Fig. 2 for the analysis
of fluid flow in an eccentric annulus. For bipolar
cylindrical coordinates, the variables (&, {, z) are re-
lated to rectangular coordinates (x, y, z) as follows:

x4+ ip=iC cot((§ +iC) [2) (n)
a=z )

where i is ¥/ —1 .
Elimination of & in Eq.(1) results in

(x—C coth{)24p*=C?[sinh2{ (3)

For constant ¢, this equation describes a circle, where

the coordinates of the center are (C coth?, 0) and the

radius is C/sinh{. Therefore, the inner and outer walls

of the eccentric annulus can be expressed by constant

values of {; and ,, respectively, since these are circles.
As in Fig. 2

£R=C/sinh(; 4)
R=C/sinh{, (5)
b=C (cothl,—coth{;) (6)

Where x is the ratio of inner to outer radius. The
eccentric ratio is defined as follows:

e=b|R(1—k) (7)

The relations between (C, {;, {,) and (R, «, ¢) are
cosh{;=[1+x— (1 —x)e*]/2ke (8)
coshl,=[1+x+ (1 —k)e?]/2¢ (9)
C=R sinh{, (10)

Therefore, the size of a double tube, (R, k, ¢) deter-
mines the coordinates mentioned above. The scale
factors in the bipolar cylindrical coordinate system are

he="h,=(cosh{ —cos&)|C=1h (11)
h,=1 (12)

The equation of motion for steady laminar flow is
~Tyj,5Pitpgi= Vi, (13)

The equation of continuity, assuming incompressible
fluid flow, is

vi,i:O (14‘)

The rheological equation between components of the
stress tensor and the rate of deformation tensor is

viy=—2pdy; (15)
For the Sutterby model
n=no| (arcsinhBy2IT ) /By211 14 (16)
where
I=d,;d;, (17)
dyj=(04,5405,1) |2 (18)

These equations are rewritten in the bipolar cylindrical
coordinate system in order to simplify the analysis for
flow in an eccentric annulus. The velocity components
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Fig. 2 ‘Bipolar cylindrical coordinate

in this case are
v,=0,=0 (19)
v,=0(§, {) (20)
The non-zero components for the rate of deformation
tensor are

1,0
dy=d,= o h% (2‘1 )
1, dv
d,=d,=_h__-
iz (14 2 h ac (22)
The second invariant of d;;, I is
AG) +(50)
=" = — 23
2 1(32) +(% 2
The equations of motion are
&—component: g, [0z+hopjaE=0 (24)
{ —component: gz, /0z+hop/ol=0 (25)

z—component:

35 () 2o oo

Since r,, and ., are not functions of z, from Eqs.(24)

and (25).
op _ 9p _
26 o 0 (27)

Hence p is only a function of z. The first term in
Eq.(26) is a function of & and ¢, and the rest of the
terms depend on z. The equation may be expressed as

hz%@%(%%a%(%—z)% =—g—ﬁ+pgz5 ALE( |
28

Egs.(15), (16), (21), (22), (23) and (28) are to be
solved with the boundary conditions

at {=(; and (=, 0=0 (29)

at £=0 and &=z, 0v/0§=0 (30)

It is very difficult to get an analytical solution for

these non-linear partial differential equations. Instead,

we will get an approximate solution by using the vari-
ational method.
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2. Analysis by the Variational Method

We consider the variational problem which has the

functional
T

where the velocity profile v must satisfy the boundary
conditions of Egs.(29) and (30). Using Egs.(15), (21)
and (22), we get the variational o/ of Eq.(31) as
follows:

=l e () e () ) ai?;

If the functional J takes an extreme value, that is, if
0J=0, the following equation is obtained.

(e ()T o

This equation corresponds to Eq.(28). Hence Eq.(31)
is the functional equivalent to the foregoing boundary
value problem. We follow Ritz’s method!® to obtain
the velocity distribution which minimizes the J of
Eq.(31), and satisfies the boundary conditions of
Eqs.(29) and (30). We presented in a previous paper®
a macroscopic relation between flow rate and pressure
drop accurate to the first approximation which may be
sufficient for practical usage. We assume here a trial
function for the velocity distribution which has three
undetermined multipliers.

v*=0)[C* 4Pyl
=a, 0¥ + avF +agv¥ (34)

where
vF= {(C_Co) cothf,+ (Ci‘“C)COthCo} /Q(Ci_Co)
—coshC/2(coshC—cosE)

+ Z [cosné {e~ ™ coth; sinhn({ —{,)
—}—e iz coth{, sinhn({; —{)} /sinhn({;—{o)]

(35)
o3 =(L—0)*(C—Lo)? (36)
o5 = (L—L3)*(C—Lo)? cosé (37)

Substitution of Eqs.(16), (23),
and making use of

(34) into Eq.(31),

0J[0a;=0 (1=1,2,3) (38)
which is a condition of taking an extreme value, results
in

a1/ oll* .
SOLOW< da; n*—vf‘>déd5=0 (=1,2,3)
(39)
where
I*=Ch=cosh{ —cos& (40)
404
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p* = [arcsinhr*4/IT* [o*4/TI* ]4 (42)
wo B CAP » (43)
70 L

The solution to the simultaneous set of equations,
Eq.(39), gives the a;’s as a function of ¢* and the
model parameter A. The definite integral appearing in
Eq.(39) was numerically calculated using a digital
computer. Substitution of the g;’s, obtained as men-
tioned above, into Eq.(34) gives the velocity distri-
bution. The flow rate is obtained by summing up the
velocity distribution over a cross section of the duct.

Finally, the reduced flow rate Q* and the reduced
pressure drop P* are as follows:

Q*=B(4Q |zR®) :87*”3515?”* [h**dCds  (44)

P*=(B|n,) (RAP|2L) =1* |2y (45)

where
y==C/R=sinh{, (46)

From the above equations, the relation between pres-
sure drop and velocity distribution, and that between
pressure drop and flow rate can be obtained. Figure 3
shows an example of the velocity distribution, and
Fig. 4 shows an example of the relation between flow
rate and pressure drop. The contribution of eccentric
ratio to pressure drop is shown in Fig. 5.

3. Prediction of the Flow in an Eccentric Annulus
in Terms of Circular Tube Data

By the same procedure as presented in our previous
paper,” we set up a useful empirical equation which
can estimate the relation between flow. rate and
pressure drop for the eccentric flow in terms of the data
for the flow in a circular tube.

The reduced flow rate Q* and the reduced pressure-
drop P} in a circular tube may be approximately re-
lated to those of Q* and P* in an eccentric annulus by
the following equations.

QF =G (r, e) Q% (47)
P*¥*=F (g, e)P¥ (48)
G (k, ¢) and F(k, ¢), obtained as in the previous paper,
are given in Table 1. G and F may be expressed within
several percent error by the following equations, which
are functions of ¢ and e.
F={l1 .020+0.O946x—0.135/c2—|—(%0.143—0;284x
+0.213k2)e+(0.0871 —0.758%
+0.4806%)¢%) /(1 —r) (49)

G={0.734—0.125¢—0.615x*— (0.04034-0.0984
+0.05672)e-(0.470—0.231 5
—0.24752)e?} (1—) (50)
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Table 1 Numerical values of F(x, ¢) and G (x, ¢)

K e 0.0 0.2 0.4 0.6 0.8
0.2 F 1.28 1.26 1.19 1.11 1.08
G 0.545 0.561 0.594 0.650 0.747
0.4 F 1.72 1.68 1.54 1.40 1.29
G 0.351 0.361 0.382 0.419 0.478
0.6 F 2.54 2.48 2.25 2.01 1.82
G 0.174 0.180 0.190 0.208 0.237
0.8 F 5.01 4.88 4.39 3.90 3.47
G 0.0481  0.0496  0.0523  0.0575  0.0649

Table 2 Sizes of eccentric annuli used in experiments

No. R [cm] b [cm] £ [—] e [—]
1 0.921 0.145 0.635 0.430
2 0.757 0.194 0.526 0.541
3 0.757 - 0331 0.328 0.650
4 0.757 0.203 0.526 0.565
5 0.921 0.523 0.432 ’ 1.000
6 1.387 0.466 0.359 0.524
where

02<£<08 and 0.0<e<0.38

In the case of =0, these equations reduce to those
for a concentric annulus given in our previous paper.
Figure 6 shows a comparison between the P* vs. Q*
flow curve (solid line) and the FP* vs. GQ* flow curve
(dotted line) which were obtained by the method
mentioned in the previous section and by Egs.(47) and
(48), respectively, where £=0.4 and ¢=0.6. For
values of A4 less than 0.6, these curves agree quite well.
Under ordinary circumstances, these equations may be
useful in estimating the relation between pressure drop
and flow rate, since high polymer solutions have the
value of 4 in the range of 0.0~0.7. By these equations,
the relation between flow rate and pressure drop in an
eccentric annulus may be estimated in terms of the
experimental data for flow in a circular tube.

4, Comparison of the Experimental Data with
the Calculated Results

The experimental apparatus and the method of
measurement are almost the same as in the previous
paper?. Table 2 shows the dimensions of the eccentric
tubes used. These dimensions were determined experi-
mentally by using a Newtonian fluid of known viscosi-
ty, and agree approximately with those measured by
gauge. In order to accurately observe the velocity
profiles, the larger tubes, No. 6 in Table 2, were used.
Hydrogen bubbles were generated as tracers and
photographs were taken using a camera and strobo-
scope arrangement. The velocity profiles were observed
at the points where the clearance between the inner
and outer tubes are a maximum (§=0°), a minimum
(#=180°), and two values intermediate between the
two (#=60°, §=120°) (see Fig. 9). A square pillar
filled with water was installed outside of the No. 6
double tubes so as to minimize the effect of refraction.
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Fig.3 Flow curves for Sutterby
model fluids flowing in an eccentric
annulus (x=0.6, ¢=0.4)
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Fig. 4 Iso-velocity lines, when Re=0.0326
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Solid line is prediction by variational calculation. Dashed
line is flow curve of Sutterby model fluids (4=0.55, B=
1.08, 9=73.1) flowing in a circular pipe.

Fig. 8 Flow curves for 1,90 wt.%, MC solution flow-
ing in an eccentric annulus (No. 6) and a circular pipe

Table 3 shows the Sutterby model parameters of the
high-polymer aqueous solutions used in the experi-
ment, These values were determined from the data for
flow in a circular tube (Refer to the previous paper for
details). Figure 7 shows the experimental flow rate vs.
pressure drop for 3.92 wt%, HEC and 3.44 wt%, CMC
aqueous solutions in the eccentric annuli Nos. 1
through 3. The solid lines in the figure represent the
results of applying the conventional variational
method. They are in good agreement with the experi-
mental data, even though they were estimated by a
trial function which has one undetermined multi-
plier.

Figure 8 shows the experimental data for 1.90 wt9,
MC aqueous solution in an eccentric annulus and in a
circular tube. The constants in the Sutterby model
were obtained by curves fitting the circular tube data.
The solid lines in the figure represent the calculated
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annuli (No. 1, No. 3)

Table 3 Model parameters of fluid used in experiments

Fluid A[—] B [sec] 7o [glem-sec]
2.50wt. %, CMC 0.60 0.121 9.52
3.44wt. %, CMC 0.45 0.715 71.5
3.92wt. 9%, HEC 0.30 0.368 12.1
4.50wt. %, HEC 0.30 0.299 - 13.1
1.90wt. %, MC 0.55 1.08 73.1

values estimated by using these model parameters, and
coincide with the experimental data.

Figures 9 and 10 show a comparison of the experi-
mental velocity profiles with values calculated using
the variational method for 1.90 wt% MC aqueous
solution. Figure 9 shows the results for Re=0.0326
(point {(a) in Fig. 8). The solid lines represent the
calculated values. They agree well with the experi-
mental data, as can be seen in these figures. On the
other hand, for high Reynolds numbers, that is, highly
non-Newtonian properties, even three undetermined

_multipliers in a trial function are not sufficient to esti-

mate the velocity profiles. At the same time a relation
between such macroscopic quantities as the flow rate
and the pressure drop agree well with only one un-
determined multiplier.

The predictions of Eqs.(47) through (50) were also
compared with experimental results. If Egs.(47)
through (50) are approximately established, the ex-
perimental data (R4Pj2L) and (4Q [zR®) for non-
Newtonian flow through eccentric annuli having differ-
ent ratios of inner and outer diameters and different
eccentric ratios can be compared with those for non-
Newtonian flow in a circular tube. Figure 11 shows a
plot of (RAP|2L)[F (k, ¢) versus (4Q [xR3)/G(k, €) in
terms of experimental data in an eccentric annulus. It
also shows a plot of (RAP[2L) versus (4Q [zR?) for flow
in a circular tube. Each result for 2.50, 3.44 wt9%, CMC
and 3.92, 4.50 wt9, HEC aqueous solutions may be
expressed by a single curve, and therefore Egs.(47)
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Fig. 9 Experimental dati of velocity profiles for 1.90 wt.%, MG solution flowing in an eccentric annulus (No. 6)
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Fig. 11 Comparison of Egs.(47) and (50) with experimental data for the flows in

annuli and circular pipes

through (50) can be used for engineering calculations.
5. Secondary Flows in an Eccentric Annulus

Another important observation is the existence of
secondary flows in an eccentric annulus. Since high-
polymer aqueous solutions exhibit normal stress effects
as well as non-Newtonian viscosity, variations in the 7-
component of velocity are possible. We have investi-
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gated the radial movement of hydrogen bubbles used
as tracers. The flow patterns as shown in Fig. 12 were
observed for the case of Reynolds numbers larger than
0.01. We found that the radial velocity components of
the secondary flows were always less than two percent
of the average longitudinal velocity. We also found
that no secondary flows could be observed for non-
Newtonian flow in a concentric annulus or for New-
tonian flow in an eccentric annulus. The secondary
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Fig. 12 Secondary flow in an eccentric annulus

flows observed are considered to be due to the normal
stresses exhibited by viscoelastic fluid.

6. Summary

The relationship between flow rate and pressure
drop, and velocity profiles is analyzed by the con-
ventional variational method using the Sutterby non-
Newtonian model for flow in an eccentric annulus.

The pressure drop for flow in an eccentric annulus
decreases as the eccentricity increases at a fixed flow
rate. Fluids with the stronger non-Newtonian property
show a slower rate of decrease in pressure drop as
eccentricity increases.

The calculated values for the dependence of flow rate
on the pressure drop are in good agreement with our
experimental data. The calculated values for the veloci-
ty profiles, on the other hand, show only fair agree-
ment with the experimental data. However, good
agreement is obtained for the not-so-strongly non-
Newtonian fluids.

Egs.(47) through (50) agree well with the experi-
mental data. These equations may be useful for engi-
neering calculations since the relation between flow
rate and pressure drop in an eccentric annulus may be
easily estimated in terms of experimental data for flow
in a circular tube such as a capillary viscometer.

Secondary flows were observed, and are considered
to be due to viscoelastic properties. But in the present
work they are too small to contribute to the relation
between flow rate and pressure drop.
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Nomenclature
A = constant in Sutterby model [—1
ai,1,2,3 = unspecified parameter in trial function [—]
B = constant in Sutterby model [sec}
b = distance between centers of outer and

inner tube : [cm]
C = constant defined by Eq.(1) [cm]
dij = components of rate of deformation tensor [1/sec]
e = bJ/R(1—x), eccentric ratio [—1
F, F(x, ¢) = shifter defined by Eq.(48) [—1]
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G, G (r, ¢) = shifter defined by Eq.(47) [—1

gi = components of gravitational force [cm/sec?]
h = metrical coefficients [1/cm}
h* = Ch [—]
i =41 =
J = functional, Eq.(31) [gem/secd)]
L = length of annular tube [cm]
P == pressure drop [dyne/cm?]
P* = (B[7¢)(R4P[2L), dimensionless pressure drop [—]
P == pressure [dyne/cm?]
Q = volumetric flow rate [cm3/sec]
Q* = B(4Q [=R3), dimensionless flow rate [—1
R = radius of outer cylinder [em]
Re = 2R(1—k)p<<v> (5o, Reynolds number [—]
Vv = v/ <v>>, dimensionless velocity [—]
vy = components of velocity vector [em/sec]
v, g = velocity of Z direction [em/sec]
Vg, Ut = velocity of &, { direction [em/sec]
<v> = mean velocity [cm/sec]
v* = 0/(C24P|yoL), dimensionless velocity —]
v{k s v;k, v.;k = Ist, 2nd, 3rd trial function of velocity [—1
X, Yy 2 = rectangular coordinates [cm]
¢ = bipolar cylindrical coordinate [—1
= non-Newtonian viscosity [g/cm-sec]
70 = zero-shear viscosity [g/cm-sec]
n* = 7/n¢, dimensionless viscosity [—1
[ = ratio of radius of inner cylinder to that
of outer cylinder [—]
v = C[R (—]
& = bipolar cylindrical coordinate [—1
0 = density [g/cm3]
Tes, Ttz = physical components of extra stress [dyne/cm2]
T4 = components of extra stress tensor [dyne/cm?2]
T* = (Bno)(C4P|L) (—]
< Subscripts>
¢ == circular pipe
con . = concentric annulus
e = eccentric annulus
i == inner surface
0 = outer surface
< Special symbols> :
1I = second invariant of d;;, Eq.(17) [1/sec2]
11* = dimensionless variable defined by Eq.(41) [—]
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