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Non-Newtonianfluid flow in an eccentric annulus was studied for high polymer
aqueous solutions of CMC,HECand MC.The macroscopic relations between the pres-
sure drop and the flow rate were found to be in fairly good agreement with the results
obtained by application of the conventional variational principle.
Velocity profiles were measured by a hydrogen bubble method in which photographs
were taken of the hydrogen bubbles. The authors observed very interesting secondary
flows in the eccentric non-Newtonian fluid flow which may be due to the viscoelastic
effect of the high polymer aqueous solution. The authors could not observe such second-
ary flows for non-Newtonian fluids in a concentric annulus or Newtonian fluids in an
eccentric annulus.

The authors present an equation giving the relation between the flow rate and the
pressure drop for the flow of a non-Newtonian fluid in an eccentric annulus in terms of
the experimental data for flow in a circular tube.

Introduction

A large number of studies have investigated fluid

flow and heat transfer in a concentric annulus, while

only a limited number of studies have been carried out
on non-Newtonianfluid flow and heat transfer in an
eccentric annulus. The latter maybe important for the
case offluid flow in the die of an extruder.
N.A.Y. Piercy et al» and others10'13'15) have in-
vestigated Newtonian flow in an eccentric annulus, but
very little work has been done on non-Newtonian flow
in such a geometry. This paper presents both the theo-
retical and experimental results of flow rate, pressure
drop, and velocity profiles for non-Newtonian flow in
an eccentric annulus under steady-state conditions.

Since the basic equations for non-Newtonian fluid flow
in an eccentric annulus are non-linear partial differ-

ential equations, it is very difficult to obtain an analyti-
cal solution by classical methods. Therefore, with a few
exceptions3), one usually uses an approximate method
such as the variational method for non-Newtonian flow
problems. For example, Shechterll) presented non-

Newtonian flow in a rectangular duct, and the

authors4'7'8) presented non-Newtonian flow in ellip-

tical, triangular, and rectangular ducts.
This paper presents a comparison of the experiment-

al data with the conventional variational method
analysis for fluid flow in an eccentric annulus, using
the 3-constant Sutterby model14) as a non-Newtonian
model. The velocity profiles were measured by a hydro-
gen bubble method in which photographs were taken
of the hydrogen bubbles. The authors observed a

secondary flow in the eccentric annulus for a non-

Newtonian flow which may be due to the viscoelastic
effect of the non-Newtonianfluid. Furthermore, an
equation is given to predict the relation between flow
rate and pressure drop in an eccentric annulus in terms

of the experimental fluid flow data in a circular tube.

1. Theoretical Consideration

For mathematical simplicity, it is better to use bi-
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Fig. 1 Flow in an eccentric annulus
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polar coordinates2) as shown in Fig. 2 for the analysis
of fluid flow in an eccentric annulus. For bipolar

cylindrical coordinates, the variables (f, £, z) are re-

lated to rectangular coordinates (x,y, z) as follows:
*+ j>= tC cot((£ + iO /2)

z- z
where i isV-1 à"

Elimination off in Eq.(l) results in
{x-C cothO2+j2=C2/sinh2C (3)

For constant £, this equation describes a circle, where
the coordinates of the center are (C coth£, 0) and the
radius is C/sinh£. Therefore, the inner and outer walls
of the eccentric annuluscan be expressedby constant
values ofQ and £0, respectively, since these are circles.

As in Fig. 2
yci2= C/sinĥ^

R= CYsinhCo (5)

6= C(cothCo- cothQ

Where k, is the rat io of inner to outer radius. The

eccentric ratio is defined as follows :
e= blR (\- *) (7)

The relations between (C, Q, £0) and (R, /c, e) are

c o sh C t= [! + * - (! - K y ] 12 ,ce

c o s h C o = [ l  + * + ( l - K y V 2 e

C = R  s i n h J o

Therefore , the size of a double tube, (R, k , e) deter-

minesthe coordinatesmentionedabove.Thescale
factors in the bipolar cylindrical coordinate system are

=̂Ac= (coshC-cosf)/C= h

K= \ (12)

The equation of motion for steady laminar flow is
-CijJ -pi +pgi=PviJvj

The equation of continuity, assuming incompressible

fluid flow, is
v < ,- = 0

The rheological equation between components of the
stress tensor and the rate of deformation tensor is

Tij= - liAij (15)

For the Sutterby model
V =)oo[(arcsinhJV2II )/#V2II ]A

where

11= dijdji

dij= (vi,j+vj,i)12

Theseequationsare rewritten in the bipolar cylindrical
coordinate system in order to simplify the analysis for
flow in an eccentric annulus. The velocity components
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Fig. 2 Bipolar cylindrical coordinate

in this case are
V -Vr=O

» ,=» (£, 0 (201

The non-zero components for the rate of deformation

tensor are
« °° 4.-4 *! (21)

4.-4.-4 4
(22)

The second invariant ofdtp II is
IF= _ _ (23)

The equations of motion are

<J- component: dz,zldzJrhdpld̂ = O (24)

£ - component: drrzldz+ hdpldC,= 0 (25)

z- component :

)+£ * +£ -*

Since r$z and tqz are not functions of z, from Eqs.(24)
and (25) .

dp __ dp
dJ dC

=0 (27)

Hencep is only a function ofz. The first term in

Eq.(26) is a function of f and £5 and the rest of the
terms dependon z. The equation maybe expressed as

}3$ \ ) + dC \ h +pgz =
AP
L

Eqs.(15), (16), (21), (22), (23) and (28) are to be

solved with the boundary conditions
at C= Ci and C= Co, =̂ 0 (29)

at f= O and f= 7r, 9z>/9?= 0 (30)

It is very difficult to get an analytical solution for

these non-linear partial differential equations. Instead,
we will get an approximate solution by using the vari-
ational method.
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2. Analysis by the Variational Method

Weconsider the variational problem which has the
functional

JoJcoUo
Jp

wherethe velocity profile v mustsatisfy the boundary
conditions of Eqs.(29) and (30). Using Eqs.(15), (21)
and (22), we get the varia t ional dj of Eq.(31) as

fol lows :

w-rn. 0.ColI3?\hr 3C\h)\ 4r}*T

If the functional J takes an extremevalue, that is, if
dJ=0, the following equation is obtained.

h2
9f  dCM dF= 0 (33)

This equation corresponds to Eq.(28). Hence Eq.(31)
is the functional equivalent to the foregoing boundary
value problem. Wefollow Ritz's method12)to obtain
the velocity distribution which minimizes the J of

Eq.(31) , and sat isf ies the boundary condit ions of

Eqs.(29) and (30). We presented in a previous paper6)
a macroscopicrelation betweenflowrate and pressure
drop accurate to the first approximation which maybe
sufficient for practical usage. Weassumehere a trial
function for the velocity distribution whichhas three
undeterminedmultipliers.

V* = vl[C*/IPIvoL]

= alvT -a2v* - -W

where

,*={(C-Wcothk+ Ci-OcothQ WCi-Co)
-cosh£/2 (cosh£-cosf)
+ H fcosnf{«°«« cothCi sinhn(C-Co)1 , 3 , ..

+«°»<à" cothCo sinh«(C -C)} /sinhnCCi-Co)]
 (35)

'»*= (C- Ci)3(C- Co)3            (36)

0*= (C- W s(C- Co)8 cos£          (37)

Substitution of Eqs.(16), (23), (34) into Eq.(31),

and making use of

dJldat =O («à"= 1,2,3)

which is a condition of taking an extreme value, results
in

ToJc(< 1 /3II* -a* R#=O ('à"= 1, 2,3)

I
w h e r e

h*= Ch= coshr- cosf

IP - f(4 r (41)

V*= [arcsinhr*VII* /Wll* ]A

T* B CAP

Vo
The solut ion to the simultaneous set of equat ions,
Eq.(39) , gives the a^s as a funct ion of r* and the

model parameter A. The definite integral appearing in
Eq.(39) was numerical ly calculated using a digi tal
computer . Subst i tut ion of the %'s , obtained as men-
t ioned above, into Eq.(34) gives the veloci ty distr i -

bution. The flow rate is obtained by summingup the
velocitydistributionovera cross sectionof the duct.
Finally, the reduced flow rate Q? and the reduced
pressure drop P* are as follows:

Q*
ok

(44)

p*= {BIva) {RAP12L) =T*l2v (45)

where

v= CIR = sinhJo (46)

Fromthe above equations, the relation between pres-
sure drop and velocity distribution, and that between
pressure drop and flow rate can be obtained. Figure 3
shows an example of the velocity distribution, and

Fig. 4 shows an example of the relation between flow
rate and pressure drop. The contribution of eccentric
ratio to pressure drop is shown in Fig. 5.

3. Prediction of the Flow in an Eccentric Annulus
in Terms of Circular Tube Data

By the same procedure as presented in our previous
paper,7) we set up a useful empirical equation which
can estimate the relation between flow- rate and

pressure drop for the eccentric flow in terms ©fthe data
for the flow in a circular tube.
The reduced flow rate Q* and the reduced pressure
drop Pc* in a circular tube maybe approximately re-
lated to those of Q* and P* in an eccentric annulus by
the following equations.

Q *= G (K, e)Q * (47)

p *= F (K, e)P *

G(k, e) and F(/c, e), obtained as in the previous paper,
are given in Table 1. G and i^may be expressed within
several percent error by the following equations, which
are functions ofk, and e.

F= {1.020+0.0946a:-0.135/c2+(-0.143-0.284a:

-0.213a;2)*+(0.0871 -0.758*

-0.480*V} /(I -*)          (49)

G= {0.734-0.125£ -0.615/c2-(0.0403+0.0984a;

-0.0567a;2)*+(0.470-0.231a;

-0.247kV} (1 -k)          (50)
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Table 1 Numerical values of F(/c9 e) and G{k, e)
K e 0.0 0.2 0.4 0.6 0.8

0.2 F 1.28 1.26 1.19 1. ll 1.08

G 0.545 0.561 0.594 0.650 0.747

0.4 F 1.72 1.68 1.54 1.40 1.29

G 0.35 1 0.36 1 0.382 0.419 0.478

0.6 F 2.54 2.48 2 .25 2.01 1.82

G 0.174 0.180 0.190 0.208 0.237

0.8 F 5.01 4.88 4.39 3.90 3.47

G 0.0481 0.0496 0.052 3 0.0575 0.0649

Table 2 Sizes of eccentric annuli used in experiments
No. R [cm] b [cm] k [-] e [-]

1 0.921 0.145 0.635 0.430

2 0.757 0.194 0.526 0.541

3 0.757 0.331 0.328 0.650

4 0.757 0.203 0.526 0.565

5 0.921 0.523 0.432 1.000

6 1.387 0.466 0.359 0.524

where

0.2<a;<0.8 and 0.0<*<0.8

In the case ofe=0, these equations reduce to those
for a concentric annulus given in our previous paper.
Figure 6 shows a comparison between the P* vs. Q,*
flow curve (solid line) and the FP* vs. GQ* flow curve
(dotted line) which were obtained by the method

mentioned in the previous section and by Eqs.(47) and
(48), respectively, where tc=0A and £=0.6. For

values ofA less than 0.6, these curves agree quite well.

Under ordinary circumstances, these equations maybe
useful in estimating the relation between pressure drop
and flow rate, since high polymer solutions have thevalueofAintherangeof0.0-0.7.By these equations,

the relation between flow rate and pressure drop in an
eccentric annulus may be estimated in terms of the

experimental data for flow in a circular tube.

4. Comparison of the Experimental Data with

the Calculated Results

The experimental apparatus and the method of
measurement are almost the same as in the previous

paper7). Table 2 shows the dimensions of the eccentric

tubes used. These dimensions were determined experi-

mentally by using a Newtonian fluid of known viscosi-

ty, and agree approximately with those measured by
gauge. In order to accurately observe the velocity

profiles, the larger tubes, No. 6 in Table 2, were used.

Hydrogen bubbles were generated as tracers and
photographs were taken using a camera and strobo-

scope arrangement. The velocity profiles were observed

at the points where the clearance between the inner

and outer tubes are a maximum (0=0°), a minimum

(#=180°), and two values intermediate between the
two (0=60°, 0=120°) (see Fig. 9). A square pillar

filled with water was installed outside of the No. 6

double tubes so as to minimize the effect of refraction.

\.O
<r> n o iM i ^ s a n fi S J^ ^ ^ ^ H

O" v *
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^ v = 2 .33

Fig.3 Flow curves for Sutterby
model fluids flowing in an eccentric
annulus (* =0.6,.i?=0.4)
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Table 3 shows the Sutterby model parameters of the
high-polymer aqueous solutions used in the experi-

ment. These values were determined from the data for
flow in a circular tube (Refer to the previous paper for
details). Figure 7 shows the experimental flow rate vs.
pressure drop for 3.92 wt% HEC and 3.44 wt% CMC
aqueous solutions in the eccentric annuli Nos. 1

through 3. The solid lines in the figure represent the
results of applying the conventional variational

method. They are in good agreement with the experi-
mental data, even though they were estimated by a
trial function which has one undetermined multi-

plier.

Figure 8 shows the experimental data for 1.90 wt%
MCaqueoussolution in an eccentric annulus and in a
circular tube. The constants in the Sutterby model
were obtained by curves fitting the circular tube data.
The solid lines in the figure represent the calculated

Table 3 Model parameters of fluid used in experiments
Fluid

A[-]

B [secl Vo [g/cm-sec]
2.50wt.% CMG
3.44wt.% CMC
3.92wt.% HEG
4.50wt.% HEC
1.90wt.% MC0.600.450.300.30

0.55 0.1210.7150.3680.299

1.08 9.5271.512.1

13.173.1

values estimated by using these model parameters, and
coincide with the experimental data.

Figures 9 and 10 show a comparison of the experi-
mental velocity profiles with values calculated using
the variational method for 1.90 wt% MCaqueous
solution. Figure 9 shows the results for Re=0.0326

(point (a) in Fig. 8). The solid lines represent the

calculated values. They agree well with the experi-

mental data, as can be seen in these figures. On the
other hand, for high Reynolds numbers, that is, highly
non-Newtonianproperties, even three undetermined
multipliers in a trial function are not sufficient to esti-
mate the velocity profiles. At the sametime a relation
between such macroscopic quantities as the flow rate
and the pressure drop agree well with only one un-
determined multiplier.
The predictions of Eqs.(47) through (50) were also
compared with experimental results. If Eqs.(47)
through (50) are approximately established, the ex-
perimental data (RJP/2L) and (4QJ't:R3) for non-

Newtonian flow through eccentric annuli having differ-
ent ratios of inner and outer diameters and different

eccentric ratios can be compared with those for non-
Newtonian flow in a circular tube. Figure ll shows a
plot of (RJP/2L)IF(K9 e) versus (4Q>£3)/£(*;, e) in

terms of experimental data in an eccentric annulus. It
also shows a plot of (RJP/2L) versus {AQjnR*) for flow
in a circular tube. Each result for 2.50, 3.44 wt% CMC
and 3.92, 4.50 wt% HEG aqueous solutions may be
expressed by a single curve, and therefore Eqs.(47)
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through (50) can be used for engineering calculations.

5, Secondary Flows in an Eccentric Annulus

Another important observation is the existence of
secondary flows in an eccentric annulus. Since high-
polymer aqueous solutions exhibit normal stress effects
as well as non-Newtonian viscosity, variations in the r-
component of velocity are possible. We have investi-

gated the radial movement of hydrogen bubbles used

as tracers. The flow patterns as shown in Fig. 12 were
observed for the case of Reynolds numbers larger than

0.01. We found that the radial velocity components of

the secondary flows were always less than two percent
of the average longitudinal velocity. We also found

that no secondary flows could be observed for non-

Newtonian flow in a concentric annulus or for New-

tonian flow in an eccentric annulus. The secondary
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N e w t o n i a nm o d e lf o rH o wi n a ne c c e n t r i ca n n u l u s .

T h ep r e s s u r ed r o pf o rf l o wi n a ne c c e n t r i ca n n u l u s
d e c r e a s e sa s t h ee c c e n t r i c i t yi n c r e a s e sa t a f i x e df l o w
r a t e .F l u i d sw i t ht h es t r o n g e rn o n - N e w t o n i a np r o p e r t y

s h o wa s l o w e rr a t eo f d e c r e a s ei n p r e s s u r ed r o pa s

e c c e n t r i c i t yi n c r e a s e s .
T h ec a l c u l a t e dv a l u e sf o rt h ed e p e n d e n c eo f f l o wr a t e

o nt h ep r e s s u r ed r o pa r ei n g o o da g r e e m e n tw i t ho u r
e x p e r i m e n t a ld a t a .T h ec a l c u l a t e dv a l u e sf o rt h ev e l o c i -
t y p r o f i l e s ,o nt h eo t h e rh a n d ,s h o wo n l yf a i ra g r e e -

m e n tw i t ht h e e x p e r i m e n t a ld a t a .H o w e v e r ,g o o d
a g r e e m e n ti s o b t a i n e df o r t h e n o t - s o - s t r o n g l yn o n -

N e w t o n i a nf l u i d s .
E q s . ( 4 7 ) t h r o u g h( 5 0 ) a g r e ew e l lw i t ht h e e x p e r i -

m e n t a ld a t a .T h e s ee q u a t i o n sm a yb eu s e f u lf o re n g i -
n e e r i n gc a l c u l a t i o n ss i n c et h e r e l a t i o nb e t w e e nf l o w

r a t ea n dp r e s s u r ed r o pi n a ne c c e n t r i ca n n u l u sm a yb e
e a s i l ye s t i m a t e di n t e r m so f e x p e r i m e n t a ld a t af o rf l o w
i n a c i r c u l a rt u b es u c ha s a c a p i l l a r yv i s c o m e t e r .
S e c o n d a r yf l o w sw e r eo b s e r v e d ,a n da r ec o n s i d e r e d

t o b ed u et o v i s c o e l a s t i cp r o p e r t i e s .B u ti n t h ep r e s e n t
w o r kt h e ya r et o os m a l lt o c o n t r i b u t et o t h er e l a t i o n

b e t w e e nf l o wr a t ea n dp r e s s u r ed r o p .

A c k n o w l e d g e m e n t

T h ea u t h o r sa r eg r a t e f u lt o P r o f e s s o rR .B .B i r da n dh i sr e s e a r c h
g r o u pa t t h eU n i v e r s i t yo f W i s c o n s i nf o rt h e i rh e l p f u la d v i c e .

N o m e n c l a t u r e

A = c o n s t a n ti n S u t t e r b ym o d e l [ - ]
< 2 £ > 1 j 2 > 3= u n s p e c i f i e dp a r a m e t e ri n t r i a lf u n c t i o n[ - ]
B ' = c o n s t a n ti n S u t t e r b ym o d e l [ s e c ]
\ ) = d i s t a n c eb e t w e e nc e n t e r so fo u t e ra n d

i n n e rt u b e [ c m ]
C = c o n s t a n td e n n e db y E q . ( l ) [ c m ]
d i j = c o m p o n e n t so f r a t eo f d e f o r m a t i o nt e n s o r[ 1 / s e c ]
e = b l R ( l - K ) ,e c c e n t r i cr a t i o [ - ]

F ,F ( k ,e ) = s h i f t e r d e n n e d b y E q . ( 4 8 ) [ - ]

G , G ( / c ,e ) = s h i f t e rd e f i n e db y E q . ( 4 7 ) [ - ]
g i = c o m p o n e n t so f g r a v i t a t i o n a lf o r c e [ c m / s e c 2 ]
h = m e t r i c a lc o e f f i c i e n t s [ I / c m ]
h * å   =C h _ [ - ]

= V - i [ - ]
J = f u n c t i o n a l ,E q . ( 3 1 ) [ g e m / s e c 3 ]
L = l e n g t ho f a n n u l a rt u b e [ c m ]
P å  = p r e s s u r ed r o p [ d y n e / c m 2 ]P * = ( B I t ] o ) ( R 4 P I 2 L ) ,d i m e n s i o n l e s sp r e s s u r ed r o p [ - ]

p = p r e s s u r e [ d y n e / c m 2 ]
Q = v o l u m e t r i cf l o wr a t e [ c m 3 / s e c ]
d * = B ( 4 Q l 7 r R 3 ) ,d i m e n s i o n l e s sf l o wr a t e [ - ]
R = r a d i u so fo u t e rc y l i n d e r [ c m ]
R e = 2 R ( l - t c ) p < v >l 7 ] Q ,R e y n o l d sn u m b e r[ - ]
V = £ > / < y > ,d i m e n s i o n l e s sv e l o c i t y [ - - ]

V i = c o m p o n e n t so fv e l o c i t yv e c t o r [ c m / s e c ]
v 9v 2 = v e l o c i t yo f Z d i r e c t i o n [ c m / s e c ]
v $ ,V £ = v e l o c i t yo f $ ,C , d i r e c t i o n [ c m / s e c ]
< y >= m e a nv e l o c i t y [ c m / s e c ]
v * = v I ( C 2 J P I y } q L ) ,d i m e n s i o n l e s sv e l o c i t y [ - ]

v ^ , v f , v f = 1 s t , 2 n d ,3 r d t r i a lf u n c t i o no f v e l o c i t y [ - ]
x , j , z = r e c t a n g u l a rc o o r d i n a t e s [ c m ]

£ = b i p o l a rc y l i n d r i c a lc o o r d i n a t e [ - ]
7 ] = n o n - N e w t o n i a nv i s c o s i t y [ g / c m - s e c ]
7 ] q = z e r o - s h e a rv i s c o s i t y [ g / c m « s e c ]
r j * = T j l q o ,d i m e n s i o n l e s sv i s c o s i t y [ - ]
t c = r a t i oo fr a d i u so fi n n e rc y l i n d e rt ot h a t

o f o u t e rc y l i n d e r [ - ]
v = C / R [ - ]
f = b i p o l a rc y l i n d r i c a lc o o r d i n a t e [ - ]
p = d e n s i t y' [ g / c m 3 ]
T £ Z iT £ z= p h y s i c a lc o m p o n e n t so fe x t r as t r e s s[ d y n e / c m 2 j
T i j = c o m p o n e n t so fe x t r as t r e s st e n s o r[ d y n e / c m 2 ]
r * = ( B j V o )( C A P I L ) [ - ]

< S u b s c r i p t s>
c = =c i r c u l a rp i p e
c o n = c o n c e n t r i ca n n u l u s
e = e c c e n t r i ca n n u l u s
i = =i n n e rs u r f a c e

o - o u t e rs u r f a c e

< S p e c i a ls y m b o l s >

I I = s e c o n di n v a r i a n to f d t j ,E q . ( 1 7 ) [ 1 / s e c 2 ]
I I * = d i m e n s i o n l e s sV a r i a b l ed e n n e db y E q . ( 4 1 )[ - ]
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