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Abstract. We study connected, not necessarily noetherian, regular rings of
global dimension 2.

0. Introduction

Throughout k is a field and A is a connected k-algebra; thus A =
⊕

n≥0 An

and A0 = k. The augmentation ideal is the unique maximal graded ideal m :=⊕
i>0 Ai. We call A/m the trivial module, and usually denote it by k. The (left

and right) global dimension of A is equal to the projective dimension of kA. The
algebra A is regular if it has finite global dimension, d say, and

Exti(k,A) ∼=
{
k if i = d,

0 if i 6= d.

In some papers this is called Artin-Schelter regular. In the definition we do not
assume that A is finitely generated or even locally finite, but it is proved in [9, 3.1]
that a regular ring is finitely generated. Also we do not require GKdimA < ∞ in
the definition.

Noetherian regular rings of global dimension no more than 2 are easy to classify.
Noetherian regular rings of global dimension 3 are classified and studied in [1, 2, 3,
7, 8]. Here we classify regular rings of global dimension 2 which are not necessarily
noetherian.

Theorem 0.1. A connected ring is regular of global dimension 2 if and only if it
is isomorphic to the algebra k〈x1, · · · , xn〉/(b) satisfying the following conditions:

1. n ≥ 2;
2. if the xi’s are labeled so that 1 ≤ deg x1 ≤ · · · ≤ deg xn, then deg xi+deg xn−i

is a constant for all i;
3. there is a graded algebra automorphism σ of the free algebra k〈x1, · · · , xn〉

such that b =
∑n

i=1 xiσ(xn−i).

Theorem 0.2. Let A be an algebra in Theorem 0.1. Then the following hold.

1. A is noetherian if and only if A has finite GK-dimension, if and only if n = 2.
2. A is a domain. If n > 2, then it is not an Ore domain.
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3. For every proper graded subspace W ⊂ ⊕n
i=1 kxi, the subalgebra generated

by W is free. As a consequence, if n > 2, A does not satisfy a polynomial
identity.

4. If n > 2, A does not have non-trivial normal elements.

We also study one-relator quadratic algebras. It is well-known that every one-
relator quadratic algebra is Koszul and its global dimension is either infinite if the
relation is x2 = 0 or 2 otherwise. Here are some other properties.

Theorem 0.3. Let V be a finite dimensional vector space and A a one-relator
quadratic algebra k〈V 〉/(b) for some 0 6= b ∈ V ⊗ V . Then the following hold.

1. A is noetherian if and only if dimV = 1 or dimV = 2 and b 6= xy.
2. A is a domain if and only if b 6= xy for some x, y ∈ V .
3. If A has a non-trivial normal element, then dimV = 1 or dimV = 2 and

b 6= xy.
4. If W ⊂ V is a subspace such that b 6∈ W ⊗ V , then the subalgebra k[W ] is

free.

1. Regular rings of global dimension 2

Let F = k〈x1, · · · , xn〉 be a connected graded free algebra with augmentation
ideal mF . Let {y1, · · · , yn} be another minimal graded generating set of F , namely,
{ȳ1, · · · , ȳn} is a basis of the graded vector space mF /m

2
F . Suppose that b =∑r

i=1 xiyi where 1 ≤ r ≤ n and where deg xi + deg yi = e for all 1 ≤ i ≤ r. The
integer r is called the rank of b. Define A to be the connected one-relator algebra
F/(b). Since b ∈ m2

F , A and F have the same minimal generating sets. We call F
the covering free algebra of A. For any element f in F we will use the same
letter f for the image in A. We will use =∗ for equality in the covering free algebra
F and use ordinary = for equality in A. These one-relator algebras form a special
class of what W. Dicks studied in [5]. The Hilbert series of A is defined by

HA(t) =
∑
i

dimAi t
i.

Suppose that HA(t) = q(t)/p(t) for some relatively prime polynomials with integer
coefficients and p(0) = 1 (we will see that this property holds for all algebras studied
in this paper). If every root of p(t) has absolute value 1, then A has finite Gelfand-
Kirillov dimension; otherwise A has exponential growth [9, 2.2]. If M =

⊕
i∈Z Mi

is a graded module, then the l-th degree shift of M is M(l) :=
⊕

i∈Z Mi+l.
Parts 1 and 2 of the following proposition are well-known. Since we will use

these several times later, we include a proof here.

Proposition 1.1. Let A be the connected algebra k〈x1, · · · , xn〉/(b) defined above
and r = rank b.

1. If b = ax2
1 for some non-zero scalar a, then

(a) gldimA =∞,
(b) HA(t) = (1 + tdegx1)[(1 + tdeg x1)(1−∑n

i=1 t
degxi) + t2 deg x1 ]−1.

2. If r > 1, or if r = 1 and x1, y1 are linearly independent, then
(a) gldimA = 2,
(b) HA(t) = (1−∑n

i=1 t
degxi + tdeg b)−1.

3. A is regular if and only if r = n > 1.
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Proof. 1. Note that A has no non-resolvable ambiguities in the sense of [4] and
all monomials not containing x2

1 form a basis of A, whence the right annihilator
r(x1) := {a ∈ A | x1a = 0} is equal to x1A. By using this property we see that the
minimal projective resolution of kA is

· · · −→ A(−3l) −→ A(−2l) −→
⊕
i

A(−li) −→ A −→ k −→ 0(1-1)

where l = deg x1 and the boundary map from A(−(p + 1)l) to A(−pl) is multipli-
cation by x1. Hence the statements follow from (1-1).

2. Let S be the idealizer I(bF ) := {f ∈ F | fb ∈ bF}. We claim that S = k+bF .
Suppose that fb =∗ ba for some f, a ∈ mF −{0} and write f as

∑
i xiai in F . Then

ajb =∗ yja ∀ j = 1, · · · , r;(1-2)

ajb =∗ 0 ∀ j = r + 1, · · · , n.(1-3)

Since F is a domain, aj 6=∗ 0 for j ≤ r and aj =∗ 0 for j ≥ r + 1. If aj0 ∈ k×

for some j0 ≤ r, then (1-2) shows that yj0(a
−1
j0
a) =∗ b =∗

∑r
i=1 xiyi. This cannot

happen in the free algebra F when either r ≥ 2 or r = 1 and {x1, y1} are linearly
independent. Thus we obtain a contradiction and hence ai ∈ m for all j ≤ r. Since
{y1, · · · , yn} is a minimal generating set of F , (1-2) implies that aj =∗ yjgj, so
gjb =∗ a by factoring out yj from (1-2) for all j ≤ r. Since F is a domain, gj =∗ g1

and hence

f =∗
n∑
i=1

xiai =∗
r∑

j=1

xjaj =∗
r∑

j=1

xjyjg1 =∗ bg1.

Thus S = k + bF and the eigenring (defined in [5, 2.1]) is E := S/bF ∼= k. By [5,
5.3], gldimA = gldimE+2 = 2 and by [5, 3.5] HA(t) = (1−∑n

i=1 t
degxi + tdeg b)−1.

3. We only need to consider the algebras in part 2. The minimal projective
resolution of kA is of the form

0 −→ A(−e) −→
⊕

A(−li) −→ A −→ k −→ 0(1-4)

where e = deg b and li = deg xi for all i. The boundary map ∂1 :
⊕

A(−li) −→ A
sends (a1, · · · , an) to

∑n
i=1 xiai and the boundary map ∂2 : A(−e) −→ ⊕

A(−li)
sends a to (y1a, · · · , yra, 0, · · · , 0). By definition, A is regular if and only if the dual
of (1-4), Hom((1 − 4), A) :

0←− A(e)←−
⊕

A(li)←− A←− 0(1-5)

is the minimal projective resolution of Ak(e). The boundary map from
⊕

A(li) to
A(e) sends (a1, · · · , an) to

∑r
i=1 aiyi. Hence A is regular if and only if {yi}ri=1 is a

minimal generating set of A, if and only if r = n.

Proof of Theorem 0.1. Suppose that 1, 2, 3 hold. Let yi = σ(xn−i). Then A is
regular of global dimension 2 by Proposition 1.1.3.

Conversely suppose that A is connected and regular of global dimension two. By
[9, 3.1.1], we have a minimal free resolution of kA

0 −→ A(−e) −→
n⊕
i=1

A(−li) −→ A −→ k −→ 0(1-6)
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where n is finite. The Hilbert series is HA(t) = (1 − ∑i t
li + te)−1. We may

assume that l1 ≤ l2 ≤ · · · ≤ ln. If n = 1, we obtain an algebra with infinite global
dimension (Proposition 1.1.1). Hence n ≥ 2. By [9, 3.1.4],

te

(
1−

∑
i

t−li + t−e
)

=

(
1−

∑
i

tli + te

)
,

whence li + ln−i = e for all i = 1, · · · , n. The boundary map from
⊕n

i=1 A(−li)
to A sends (a1, · · · , an) to

∑
i xiai where {xi} is the minimal set of generators

and deg xi = li, and the boundary map from A(−e) to
⊕n

i=1 A(−li) sends a to
(y1a, · · · yna) for some yi ∈ m. Consequently, A has one relation of degree e, of
form x1y1 + x2y2 + · · ·xnyn = 0. Since A is regular, the dual of (1-6) (see (1-5)) is
the projective resolution of Ak(e), so {yi}ni=1 is a minimal generating set of A. Now
any homogeneous minimal generating set for A is also a minimal generated set for F .
Thus F = k〈y1, · · · , yn〉 and σ : xi −→ yn−i defines a graded algebra automorphism
of F . Since the relation is homogeneous, we have deg yi = e − li = ln−i for all i.
Therefore A is isomorphic to F/(b) and 1, 2, 3 of Theorem 0.1 hold.

By Theorem 0.1.2, if A is generated by three elements x1, x2, x3 with deg x1 ≤
deg x2 ≤ deg x3 and deg x1 + deg x3 6= 2 deg x2, then A is not regular of global
dimension two. Noetherian regular rings of global dimension 2 are easily determined
and that is the case when n = 2 in Theorem 0.1. The following Corollary is part 1
of Theorem 0.2.

Corollary 1.2. Let A be a connected regular ring of global dimension 2, generated
by n elements (see Theorem 0.1). Then the following statements are equivalent.

1. n = 2.
2. A is noetherian.
3. GKdim(A) = 2.
4. GKdim(A) <∞.

Proof. If A is in Theorem 0.1 and n = 2, then it is easy to see that A is noetherian
of GK-dimension 2 [9, 3.5].

If A is in Theorem 0.1 (or even in Proposition 1.1) and n > 2, then it has
exponential growth, and by [9, 1.2], it is neither left nor right noetherian.

Next we prove other parts of Theorem 0.2. For simplicity, we use f̄ for the image
of f in A/m2 for all f ∈ A.

Proposition 1.3. Let A be regular of global dimension 2, generated by n elements.
Then the following statements hold.

1. A is a domain.
2. Suppose that n > 2. Let x, f and g be homogeneous elements in m − {0}

and suppose that x 6∈ m2. If fg ∈ xA (gf ∈ Ax respectively), then f ∈ xA
(f ∈ Ax respectively).

Remark 1.4. We do not have any example of a noetherian or non-noetherian regular
ring which is not a domain.

Proof. If A is a regular ring of global dimension 2 and n = 2, then it is described
in [9, 3.3], and in particular, it is a domain. In the rest of the proof we assume that
n > 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NON-NOETHERIAN REGULAR RINGS OF DIMENSION 2 1649

Since A is N-graded, A being a graded domain implies that A is a domain. Pick
a minimal generating set {xi | i = 1, · · · , n} such that x = xn. Hence it suffices to
show the following statement:

• Let f and g be homogeneous elements in m− {0}. Then
(a) fg 6= 0,
(b) fg ∈ xnA implies f ∈ xnA.

We will prove (•) by induction on m := deg f + deg g. Nothing needs to be proved
when m = 1. Now suppose that m > 1 and assume that the statement (•) holds
for all cases when deg f + deg g < m.

Case 1: m < e.
Since

⊕
i<eAi =

⊕
i<e Fi, it suffices to show that (a) and (b) hold in F . Hence

(a) follows because F is a domain and (b) follows because xn is in a minimal
generating set of F .

Case 2: m = e.
(a) If fg = 0 in A, then fg =∗ lb. Since fg 6=∗ 0, l 6= 0. Write f =∗

∑
i xiai;

we have aig =∗ lyi for all i. Passing to m/m2, we have ȳi ∈ kḡ for all i. This
contradicts the fact that {ȳi}ni=1 are linearly independent. Therefore fg 6= 0.

(b) If fg ∈ xnA, then fg =∗ lb+xnc for l ∈ k and for some c ∈ F . By expanding
f we have aig =∗ lyi for i < n and ang =∗ lyn+c. If l 6= 0, then this contradicts the
fact {ȳi}i<n are linearly independent. Hence l = 0, whence ai =∗ 0 for all i < n.
Therefore f = xnan ∈ xnA.

Case 3: m > e.
(a) If fg = 0, then, in F , we have

fg =∗
q∑

j=1

fjbgj + f0b+ bg−1(1-7)

where fi, gi ∈ mF . We always assume each term in the equation has degree m.
Write fj =∗

∑
i xifij and f =∗

∑
i xiai; we obtain

aig =∗
∑
j

fijbgj + fi0b+ yig−1 ∀ i.(1-8)

For every i, aig = yig−1 ∈ yiA. If g−1 = 0, then by induction hypothesis (a),
ai = 0 for all i, so f = 0, a contradiction. Hence g−1 6= 0, so yig−1 6= 0 by
induction hypothesis (a). This implies that ai 6= 0 for all i. We claim that ai ∈ m

(∗). If not, let ai0 ∈ k×. Thus g = zi0g−1 where zi0 = yi0a
−1
i0
∈ m − m2. For each

i, aizi0g−1 = yig−1. By induction hypothesis (a), aizi0 = yi and hence ȳi ∈ kz̄i0
for all i. This contradicts the fact that {ȳi}ni=1 are linearly independent. Thus we
proved our claim (∗). By induction hypothesis (b), ai = yiwi. Factoring out ai
from aig = yig−1 (by using induction hypothesis (a)), we obtain wig = g−1 for all
i. By induction hypothesis (a), wi = w1 and hence f =

∑
i xiyiw1 = bw1 = 0. This

contradicts f 6= 0 in A, and hence (a) follows.
(b) If 0 6= fg ∈ xnA, then fg = xnc for some c 6= 0 with deg c = m−deg xn > 0.

Similar to (1-7) we have

fg =∗
n∑

j=1

fjbgj + f0b+ bg−1 + xnc,
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and similar to (1-8), we have

aig =∗
∑
j

fijbgj + fi0b+ yig−1 ∀ i < n.(1-9)

Hence aig = yig−1 ∈ yiA for all i < n. If g−1 = 0, then by induction hypothesis
(a) ai = 0 for all i and then f = xnan ∈ xnA. Now we suppose that g−1 6= 0.
Similar to (∗), we may assume ai ∈ m for all i < n (in this case we use the fact that
{ȳi}i<n are linearly independent). Since yi ∈ m−m2, by induction hypothesis (b),
ai = yiwi for all i < n. Factoring out yi from aig = yig−1 we obtain that wig = g−1

for all i < n. By induction hypothesis (a), wi = w1 for all i < n, and hence

f =
∑
i

xiai = xnan +
∑
i<n

xiai = xnan +
∑
i<n

xiyiw1

= xnan + (b− xnyn)w1 = xn(an − ynw1) ∈ xnA.
Thus (b) follows.

Proposition 1.5. Let A be a one-relator algebra k〈x1, · · · , xn〉/(b) where b =∑
i xizi. Suppose that, for some s, zs is a right regular element. Then

∑
i6=s xiA =⊕

i6=sAi and hence the subalgebra generated by {xi | i 6= s} is free.

As a consequence, if A is a regular algebra of global dimension 2 and {xi | 1 ≤
i ≤ n} is a minimal generating set of A, then the subalgebra k[xi | i 6= s] is free for
any s.

Proof. It suffices to show that
∑

i6=s xiai = 0 implies ai = 0 in A for all i 6= s.

Suppose that
∑

i6=s xiai = 0 for some ai ∈ A. As the proof of Proposition 1.3, there
are fj and gj with fj ∈ mF such that∑

i6=s

xiai =∗
q∑

j=0

fjbgj + bg−1 =∗
q∑

j=0

n∑
i=1

xifijbgj +

n∑
i=1

xizig−1,

and hence

(1 − δis)ai = zig−1 in A.

If i = s, then zsg−1 = 0, so g−1 = 0 because zs is right regular. If i 6= s, then
ai = zig−1 = 0.

If A is regular algebra, then A is a domain [Proposition 1.3] and hence zs is a
regular element. Therefore the statement follows.

The proofs of parts 3 and 4 of the following are the same as ones of [11, 2.3]
which are stated only for quadratic algebras.

Proposition 1.6. Let A be a connected algebra and x a homogeneous element in
m− {0} satisfying the following two conditions:

(a) x is right regular and xA 6= m;
(b) if f and g are in m− {0} and fg ∈ xA, then f ∈ xA.

Then the following statements hold.

1. A is a domain.
2. A is not an Ore domain and it does not satisfy a polynomial identity.
3. If a, y are in A− {0}, then xa = ay implies that x = y and a = lxn for some

n ≥ 0 and l ∈ k×.
4. A has no non-trivial normal elements.
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Proof. 1. Let f, g be non-zero elements in A. If fg = 0, then f, g 6∈ k and fg ∈ xA.
By (b) f = xf ′ and xf ′g = 0. By (a), f ′g = 0. By induction on deg f ′, either
f ′ = 0 or g = 0, a contradiction.

2. Pick z ∈ m − xA, by (b), xA ∩ zA = {0}. Hence A is not Ore. Also the
subalgebra k[x, z] is free, hence A is not PI.

3. If xa = ay and a 6∈ k, then ay ∈ xA, and by (b), a = xa′. Hence xxa′ = xa′y,
and by (a), xa′ = a′y. The statement follows from induction on deg a.

4. If A has a non-trivial normal element, then A has a homogeneous normal
element of positive degree, say a. Hence xa = ay for some y ∈ m. By part 3,
x = y and a = lxn. Thus xn is normal. By (a), there is z ∈ m − xA and by (b)
xA ∩ zA = {0}. Therefore zxn 6= xnc for all c ∈ A and thus xn is not normal, a
contradiction.

Parts 2, 3, 4 of Theorem 0.2 follow easily from Propositions 1.3, 1.5 and 1.6.

2. One-relator quadratic algebras

In this section we will apply results from section 1 and results in [11] to one-
relator quadratic algebras. From now on V is a vector space with a basis {xi}ni=1

and A is a one-relator quadratic algebra k〈V 〉/(b) where b =
∑

ij lijxixj for some
lij ∈ k. It is well-known that A is Koszul and has global dimension 2 or infinity.
The rank of the relation b is defined to be the rank of the matrix (lij) ∈ Mn(k).
This definition of rank coincides with the definition given in section 1 when we
consider quadratic algebras. It is easy to see that the rank of b is independent of
the choices of the basis of V . If r = rank b, then there are two bases {zi} and
{yi} of V such that b =

∑
i≤r ziyi. Let bV (respectively Vb) denote the subspace

generated by {zi | i ≤ r} (respectively {yi | i ≤ r}). Then bV and Vb are only
dependent on b. If r = 1, then b = x2

1 or b = x1x2 after changing a basis.

Proposition 2.1. Let A be the algebra k〈V 〉/(b) and suppose that b = x1xs where
s is either 1 or 2. Then the following statements hold.

1. If f, g 6= 0 are in m, and fg = 0, then f ∈ Ax1 and g ∈ xsA.
2.
∑

i>1 xiA =
⊕

i>1 xiA.
3. The subalgebra generated by {xi | i > 1} is free.
4. If j > 1 and a, y are in A − {0}, then xja = ay implies that xj = y and

a = lxtj for some l ∈ k× and t ≥ 0.
5. If n > 1, then A has no non-trivial normal elements.

Proof. Since A has no non-resolvable ambiguities, all monomials not containing
x1xs form a basis of A. In particular, xi are right regular for all i > 1. Let I
denote (i1, · · · , it). For every element a ∈ F , write a =

∑
I lIxi1 · · ·xit where

(ip, ip+1) 6= (1, s) for all p. Define the support of a to be Supp(a) := {I | lI 6= 0}.
Part 1 and part 2 can be checked easily by expressing elements as sum of monomials,
part 3 is a consequence of 2.

4. As in the proof of Proposition 1.6.3, it suffices to show a = xja
′. Suppose

that this is not true. Then a = xja
′ + a0 where a0 =

∑
i1 6=j lIxi1 · · ·xit 6= 0. Since

xj is right regular, xja =
∑

I∈Supp(a) lIxjxi1 · · ·xit . Write y =
∑

w hwxw; then

we have ay =
∑

(it,w) 6=(1,s) lIhtxi1 · · ·xitxw. Comparing the monomials in xja and

ay, we obtain that, if I = (i1, · · · , it) ∈ Supp(a0), then hwxi1 · · ·xitxw = 0 for all
w. Thus (i) hw = 0 for all w 6= s and hs 6= 0 and (ii) it = 1. As a consequence
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ay = (xja
′ + a0)hsxs = hsxja

′xs. Therefore

|Supp(ay)| = |Supp(a′)| < |Supp(a)| = |Supp(xja)| = |Supp(ay)|,
a contradiction. Therefore part 4 follows.

5. If A has a non-trivial normal element, then A has a homogeneous normal
element of positive degree, say a. Let j > 1. Then xja = ay for some y of degree
1. By part 4, xj = y and a = lxtj for some l 6= 0 and t > 0. Hence xtj is normal.

But xtjx1 6= zxtj for any z, so a contradiction.

Now we are ready to prove Theorem 0.3.

Proof. 1. If n = 1, then A is k[x]/(x2), which is noetherian. If n = r = 2, then A
is a noetherian regular algebra of global dimension two (Corollary 1.2). If n = 2
and r = 1, then A is either k〈x, y〉/(x2) or k〈x, y〉/(xy); neither is noetherian. If
n > 2, then by Proposition 1.1.1(b) and 2(b), A has exponential growth and hence
it is not noetherian by [9, 1.2].

2 and 3. We discuss three cases.
Case 1: r = rank b > 2. Let Φ be the set of all subspaces of dimension no more

than rank b − 2. Then by the proof of [11, 0.1(2)] we can apply [11, 2.2] to A and
this Φ. Hence A is a domain and the following statement holds:

(∗∗) If f and g are homogeneous elements in m − {0} and if fg ∈ xA for some
x ∈ V − {0}, then f ∈ xA.

By Proposition 1.6.4, A has no non-trivial normal elements.
Case 2: r = 2 and bV 6= Vb. By [11, 2.2 and 2.3], A is a domain and the

statement (∗∗) holds for x 6∈ Vb (in this case Φ is the set of 1-dimensional subspaces
not contained in Vb). By Proposition 1.6.4, A has no non-trivial normal elements.

Case 3: r = 2 and bV = Vb. In this case b = (l11x1 + l21x2)x1 +(l12x1 + l22x2)x2

for some invertible matrix (lij)2×2. Hence A = k〈V 〉/(b) is isomorphic to a twisted
algebra Bσ where B = k〈V 〉/(x1x2 − x2x1) and σ : x1 → l12x1 + l22x2, x2 →
−(l11x1 + l21x2), xi → xi, ∀i > 2. It is easy to see that the one-relator semi-group
G := 〈x1, · · · , xn | x1x2 = x2x1〉 is ordered and B is the semi-group algebra kG.
Therefore B is a domain [6, Prop. A.II.1.4] and hence A ∼= Bσ is a domain [10,
5.2]. Now let x ∈ V − bV and f, g ∈ m− {0}. We may assume x = xn and n > 2.
If fg ∈ xnA, then fg = xnc and we have

∑
i

xiaig =∗
∑
i

xifijbgi +
2∑

i=1

xiyig−1 + xnc

in k〈V 〉, where f =
∑

i xiai. Comparing the coefficients in xn, we have ang =∗∑
j fnjbgj + c and so c = ang in A. Hence fg = xnc = xnang. Since A is a domain,

f = xnan ∈ xnA. Again we proved (∗∗) for x 6∈ Vb. By Proposition 1.6.4, A has no
non-trivial normal elements if Vb 6= V .

Combining these cases and Proposition 2.1 we prove 2 and 3.
4. If b 6∈ W ⊗ V , then there is a subspace W ′ ⊃ W of dimension n − 1 such

that b 6∈ W ′ ⊗ V . So we may assume dimW = n− 1. Hence this is a consequence
of Proposition 1.5 and part 2 when r ≥ 2. If b = x2

1, this is Proposition 2.1.2. It
remains to consider the case when b = x1x2. By changing a basis we may assume
b = x1y, W =

∑
i>1 kxi and y 6∈ kx1. By Proposition 1.5, it suffices to show that

y is a right regular element, which follows from Proposition 2.1.1.
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