PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 6, June 1998, Pages 1645–1653 S 0002-9939(98)04480-3

NON-NOETHERIAN REGULAR RINGS OF DIMENSION 2

JAMES J. ZHANG

(Communicated by Ken Goodearl)

ABSTRACT. We study connected, not necessarily noetherian, regular rings of global dimension 2.

0. INTRODUCTION

Throughout k is a field and A is a connected k-algebra; thus $A = \bigoplus_{n\geq 0} A_n$ and $A_0 = k$. The **augmentation ideal** is the unique maximal graded ideal $\mathfrak{m} := \bigoplus_{i>0} A_i$. We call A/\mathfrak{m} the **trivial module**, and usually denote it by k. The (left and right) global dimension of A is equal to the projective dimension of k_A . The algebra A is **regular** if it has finite global dimension, d say, and

$$\operatorname{Ext}^{i}(k, A) \cong \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$$

In some papers this is called Artin-Schelter regular. In the definition we do not assume that A is finitely generated or even locally finite, but it is proved in [9, 3.1] that a regular ring is finitely generated. Also we do not require $\operatorname{GKdim} A < \infty$ in the definition.

Noetherian regular rings of global dimension no more than 2 are easy to classify. Noetherian regular rings of global dimension 3 are classified and studied in [1, 2, 3, 7, 8]. Here we classify regular rings of global dimension 2 which are not necessarily noetherian.

Theorem 0.1. A connected ring is regular of global dimension 2 if and only if it is isomorphic to the algebra $k\langle x_1, \dots, x_n \rangle/(b)$ satisfying the following conditions:

- 1. $n \ge 2;$
- 2. *if the* x_i 's are labeled so that $1 \leq \deg x_1 \leq \cdots \leq \deg x_n$, then $\deg x_i + \deg x_{n-i}$ is a constant for all i;
- 3. there is a graded algebra automorphism σ of the free algebra $k\langle x_1, \cdots, x_n \rangle$ such that $b = \sum_{i=1}^n x_i \sigma(x_{n-i})$.

Theorem 0.2. Let A be an algebra in Theorem 0.1. Then the following hold.

1. A is noetherian if and only if A has finite GK-dimension, if and only if n = 2.

2. A is a domain. If n > 2, then it is not an Ore domain.

©1998 American Mathematical Society

Received by the editors December 3, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 16W50, 16E10, 16E70.

Key words and phrases. Connected algebra, global dimension, regular algebra.

This research was supported by an NSF Postdoctoral Fellowship.

JAMES J. ZHANG

- 3. For every proper graded subspace $W \subset \bigoplus_{i=1}^{n} kx_i$, the subalgebra generated by W is free. As a consequence, if n > 2, A does not satisfy a polynomial identity.
- 4. If n > 2, A does not have non-trivial normal elements.

We also study one-relator quadratic algebras. It is well-known that every one-relator quadratic algebra is Koszul and its global dimension is either infinite if the relation is $x^2 = 0$ or 2 otherwise. Here are some other properties.

Theorem 0.3. Let V be a finite dimensional vector space and A a one-relator quadratic algebra $k\langle V \rangle/(b)$ for some $0 \neq b \in V \otimes V$. Then the following hold.

- 1. A is noetherian if and only if dim V = 1 or dim V = 2 and $b \neq xy$.
- 2. A is a domain if and only if $b \neq xy$ for some $x, y \in V$.
- 3. If A has a non-trivial normal element, then dim V = 1 or dim V = 2 and $b \neq xy$.
- 4. If $W \subset V$ is a subspace such that $b \notin W \otimes V$, then the subalgebra k[W] is free.

1. Regular rings of global dimension 2

Let $F = k\langle x_1, \dots, x_n \rangle$ be a connected graded free algebra with augmentation ideal \mathfrak{m}_F . Let $\{y_1, \dots, y_n\}$ be another minimal graded generating set of F, namely, $\{\bar{y}_1, \dots, \bar{y}_n\}$ is a basis of the graded vector space $\mathfrak{m}_F/\mathfrak{m}_F^2$. Suppose that $b = \sum_{i=1}^r x_i y_i$ where $1 \leq r \leq n$ and where deg $x_i + \deg y_i = e$ for all $1 \leq i \leq r$. The integer r is called the **rank** of b. Define A to be the connected one-relator algebra F/(b). Since $b \in \mathfrak{m}_F^2$, A and F have the same minimal generating sets. We call Fthe **covering free algebra** of A. For any element f in F we will use the same letter f for the image in A. We will use $=_*$ for equality in the covering free algebra F and use ordinary = for equality in A. These one-relator algebras form a special class of what W. Dicks studied in [5]. The **Hilbert series** of A is defined by

$$H_A(t) = \sum_i \dim A_i \ t^i.$$

Suppose that $H_A(t) = q(t)/p(t)$ for some relatively prime polynomials with integer coefficients and p(0) = 1 (we will see that this property holds for all algebras studied in this paper). If every root of p(t) has absolute value 1, then A has finite Gelfand-Kirillov dimension; otherwise A has exponential growth [9, 2.2]. If $M = \bigoplus_{i \in \mathbb{Z}} M_i$ is a graded module, then the *l*-th degree shift of M is $M(l) := \bigoplus_{i \in \mathbb{Z}} M_{i+l}$.

Parts 1 and 2 of the following proposition are well-known. Since we will use these several times later, we include a proof here.

Proposition 1.1. Let A be the connected algebra $k\langle x_1, \dots, x_n \rangle/(b)$ defined above and r = rank b.

- If b = ax₁² for some non-zero scalar a, then

 (a) gldim A = ∞,
 (b) H_A(t) = (1 + t^{deg x₁})[(1 + t^{deg x₁})(1 ∑_{i=1}ⁿ t^{deg x_i}) + t<sup>2 deg x₁]⁻¹.

 If r > 1, or if r = 1 and x₁, y₁ are linearly independent, then

 (a) gldim A = 2,
 (b) H_A(t) = (1 ∑_{i=1}ⁿ t^{deg x_i} + t^{deg b})⁻¹.

 </sup>
- 3. A is regular if and only if r = n > 1.

1646

Proof. 1. Note that A has no non-resolvable ambiguities in the sense of [4] and all monomials not containing x_1^2 form a basis of A, whence the right annihilator $r(x_1) := \{a \in A \mid x_1a = 0\}$ is equal to x_1A . By using this property we see that the minimal projective resolution of k_A is

$$(1-1) \qquad \cdots \longrightarrow A(-3l) \longrightarrow A(-2l) \longrightarrow \bigoplus_{i} A(-l_{i}) \longrightarrow A \longrightarrow k \longrightarrow 0$$

where $l = \deg x_1$ and the boundary map from A(-(p+1)l) to A(-pl) is multiplication by x_1 . Hence the statements follow from (1-1).

2. Let S be the idealizer $\mathbb{I}(bF) := \{f \in F \mid fb \in bF\}$. We claim that S = k + bF. Suppose that $fb =_* ba$ for some $f, a \in \mathfrak{m}_F - \{0\}$ and write f as $\sum_i x_i a_i$ in F. Then

(1-2)
$$a_j b =_* y_j a \qquad \forall \ j = 1, \cdots, r;$$

$$(1-3) a_j b =_* 0 \forall j = r+1, \cdots, n$$

Since F is a domain, $a_j \neq_* 0$ for $j \leq r$ and $a_j =_* 0$ for $j \geq r+1$. If $a_{j_0} \in k^{\times}$ for some $j_0 \leq r$, then (1-2) shows that $y_{j_0}(a_{j_0}^{-1}a) =_* b =_* \sum_{i=1}^r x_i y_i$. This cannot happen in the free algebra F when either $r \geq 2$ or r = 1 and $\{x_1, y_1\}$ are linearly independent. Thus we obtain a contradiction and hence $a_i \in \mathfrak{m}$ for all $j \leq r$. Since $\{y_1, \cdots, y_n\}$ is a minimal generating set of F, (1-2) implies that $a_j =_* y_j g_j$, so $g_j b =_* a$ by factoring out y_j from (1-2) for all $j \leq r$. Since F is a domain, $g_j =_* g_1$ and hence

$$f =_* \sum_{i=1}^n x_i a_i =_* \sum_{j=1}^r x_j a_j =_* \sum_{j=1}^r x_j y_j g_1 =_* bg_1.$$

Thus S = k + bF and the **eigenring** (defined in [5, 2.1]) is $E := S/bF \cong k$. By [5, 5.3], gldim A = gldim E + 2 = 2 and by [5, 3.5] $H_A(t) = (1 - \sum_{i=1}^n t^{\deg x_i} + t^{\deg b})^{-1}$.

3. We only need to consider the algebras in part 2. The minimal projective resolution of k_A is of the form

$$(1-4) 0 \longrightarrow A(-e) \longrightarrow \bigoplus A(-l_i) \longrightarrow A \longrightarrow k \longrightarrow 0$$

where $e = \deg b$ and $l_i = \deg x_i$ for all *i*. The boundary map $\partial_1 : \bigoplus A(-l_i) \longrightarrow A$ sends (a_1, \dots, a_n) to $\sum_{i=1}^n x_i a_i$ and the boundary map $\partial_2 : A(-e) \longrightarrow \bigoplus A(-l_i)$ sends *a* to $(y_1 a, \dots, y_r a, 0, \dots, 0)$. By definition, *A* is regular if and only if the dual of (1-4), Hom((1 - 4), A) :

$$(1-5) 0 \longleftarrow A(e) \longleftarrow \bigoplus A(l_i) \longleftarrow A \longleftarrow 0$$

is the minimal projective resolution of $_Ak(e)$. The boundary map from $\bigoplus A(l_i)$ to A(e) sends (a_1, \dots, a_n) to $\sum_{i=1}^r a_i y_i$. Hence A is regular if and only if $\{y_i\}_{i=1}^r$ is a minimal generating set of A, if and only if r = n.

Proof of Theorem 0.1. Suppose that 1, 2, 3 hold. Let $y_i = \sigma(x_{n-i})$. Then A is regular of global dimension 2 by Proposition 1.1.3.

Conversely suppose that A is connected and regular of global dimension two. By [9, 3.1.1], we have a minimal free resolution of k_A

(1-6)
$$0 \longrightarrow A(-e) \longrightarrow \bigoplus_{i=1}^{n} A(-l_i) \longrightarrow A \longrightarrow k \longrightarrow 0$$

where *n* is finite. The Hilbert series is $H_A(t) = (1 - \sum_i t^{l_i} + t^e)^{-1}$. We may assume that $l_1 \leq l_2 \leq \cdots \leq l_n$. If n = 1, we obtain an algebra with infinite global dimension (Proposition 1.1.1). Hence $n \geq 2$. By [9, 3.1.4],

$$t^{e}\left(1-\sum_{i}t^{-l_{i}}+t^{-e}\right) = \left(1-\sum_{i}t^{l_{i}}+t^{e}\right),$$

whence $l_i + l_{n-i} = e$ for all $i = 1, \dots, n$. The boundary map from $\bigoplus_{i=1}^n A(-l_i)$ to A sends (a_1, \dots, a_n) to $\sum_i x_i a_i$ where $\{x_i\}$ is the minimal set of generators and deg $x_i = l_i$, and the boundary map from A(-e) to $\bigoplus_{i=1}^n A(-l_i)$ sends a to $(y_1 a, \dots y_n a)$ for some $y_i \in \mathfrak{m}$. Consequently, A has one relation of degree e, of form $x_1y_1 + x_2y_2 + \dots x_ny_n = 0$. Since A is regular, the dual of (1-6) (see (1-5)) is the projective resolution of $_Ak(e)$, so $\{y_i\}_{i=1}^n$ is a minimal generating set of A. Now any homogeneous minimal generating set for A is also a minimal generated set for F. Thus $F = k \langle y_1, \dots, y_n \rangle$ and $\sigma : x_i \longrightarrow y_{n-i}$ defines a graded algebra automorphism of F. Since the relation is homogeneous, we have deg $y_i = e - l_i = l_{n-i}$ for all i. Therefore A is isomorphic to F/(b) and 1, 2, 3 of Theorem 0.1 hold.

By Theorem 0.1.2, if A is generated by three elements x_1, x_2, x_3 with deg $x_1 \leq$ deg $x_2 \leq$ deg x_3 and deg $x_1 +$ deg $x_3 \neq 2$ deg x_2 , then A is not regular of global dimension two. Noetherian regular rings of global dimension 2 are easily determined and that is the case when n = 2 in Theorem 0.1. The following Corollary is part 1 of Theorem 0.2.

Corollary 1.2. Let A be a connected regular ring of global dimension 2, generated by n elements (see Theorem 0.1). Then the following statements are equivalent.

- 1. n = 2.
- 2. A is noetherian.
- 3. GKdim(A) = 2.
- 4. $\operatorname{GKdim}(A) < \infty$.

Proof. If A is in Theorem 0.1 and n = 2, then it is easy to see that A is noetherian of GK-dimension 2 [9, 3.5].

If A is in Theorem 0.1 (or even in Proposition 1.1) and n > 2, then it has exponential growth, and by [9, 1.2], it is neither left nor right noetherian.

Next we prove other parts of Theorem 0.2. For simplicity, we use \overline{f} for the image of f in A/\mathfrak{m}^2 for all $f \in A$.

Proposition 1.3. Let A be regular of global dimension 2, generated by n elements. Then the following statements hold.

- 1. A is a domain.
- 2. Suppose that n > 2. Let x, f and g be homogeneous elements in $\mathfrak{m} \{0\}$ and suppose that $x \notin \mathfrak{m}^2$. If $fg \in xA$ ($gf \in Ax$ respectively), then $f \in xA$ ($f \in Ax$ respectively).

Remark 1.4. We do not have any example of a noetherian or non-noetherian regular ring which is not a domain.

Proof. If A is a regular ring of global dimension 2 and n = 2, then it is described in [9, 3.3], and in particular, it is a domain. In the rest of the proof we assume that n > 2.

Since A is N-graded, A being a graded domain implies that A is a domain. Pick a minimal generating set $\{x_i \mid i = 1, \dots, n\}$ such that $x = x_n$. Hence it suffices to show the following statement:

- Let f and g be homogeneous elements in $\mathfrak{m} \{0\}$. Then
 - (a) $fg \neq 0$,
 - (b) $fg \in x_n A$ implies $f \in x_n A$.

We will prove (\bullet) by induction on $m := \deg f + \deg g$. Nothing needs to be proved when m = 1. Now suppose that m > 1 and assume that the statement (\bullet) holds for all cases when $\deg f + \deg g < m$.

Case 1: m < e.

Since $\bigoplus_{i < e} A_i = \bigoplus_{i < e} F_i$, it suffices to show that (a) and (b) hold in F. Hence (a) follows because F is a domain and (b) follows because x_n is in a minimal generating set of F.

Case 2: m = e.

(a) If fg = 0 in A, then $fg =_* lb$. Since $fg \neq_* 0$, $l \neq 0$. Write $f =_* \sum_i x_i a_i$; we have $a_ig =_* ly_i$ for all i. Passing to $\mathfrak{m}/\mathfrak{m}^2$, we have $\bar{y}_i \in k\bar{g}$ for all i. This contradicts the fact that $\{\bar{y}_i\}_{i=1}^n$ are linearly independent. Therefore $fg \neq 0$.

(b) If $fg \in x_n A$, then $fg =_* lb + x_n c$ for $l \in k$ and for some $c \in F$. By expanding f we have $a_ig =_* ly_i$ for i < n and $a_ng =_* ly_n + c$. If $l \neq 0$, then this contradicts the fact $\{\bar{y}_i\}_{i < n}$ are linearly independent. Hence l = 0, whence $a_i =_* 0$ for all i < n. Therefore $f = x_n a_n \in x_n A$.

Case 3: m > e.

(a) If fg = 0, then, in F, we have

(1-7)
$$fg =_* \sum_{j=1}^q f_j bg_j + f_0 b + bg_{-1}$$

where $f_i, g_i \in \mathfrak{m}_F$. We always assume each term in the equation has degree m. Write $f_j = \sum_i x_i f_{ij}$ and $f = \sum_i x_i a_i$; we obtain

(1-8)
$$a_i g =_* \sum_j f_{ij} b g_j + f_{i0} b + y_i g_{-1} \quad \forall \ i.$$

For every i, $a_i g = y_i g_{-1} \in y_i A$. If $g_{-1} = 0$, then by induction hypothesis (a), $a_i = 0$ for all i, so f = 0, a contradiction. Hence $g_{-1} \neq 0$, so $y_i g_{-1} \neq 0$ by induction hypothesis (a). This implies that $a_i \neq 0$ for all i. We claim that $a_i \in \mathfrak{m}$ (*). If not, let $a_{i_0} \in k^{\times}$. Thus $g = z_{i_0} g_{-1}$ where $z_{i_0} = y_{i_0} a_{i_0}^{-1} \in \mathfrak{m} - \mathfrak{m}^2$. For each i, $a_i z_{i_0} g_{-1} = y_i g_{-1}$. By induction hypothesis (a), $a_i z_{i_0} = y_i$ and hence $\bar{y}_i \in k \bar{z}_{i_0}$ for all i. This contradicts the fact that $\{\bar{y}_i\}_{i=1}^n$ are linearly independent. Thus we proved our claim (*). By induction hypothesis (b), $a_i = y_i w_i$. Factoring out a_i from $a_i g = y_i g_{-1}$ (by using induction hypothesis (a)), we obtain $w_i g = g_{-1}$ for all i. By induction hypothesis (a), $w_i = w_1$ and hence $f = \sum_i x_i y_i w_1 = b w_1 = 0$. This contradicts $f \neq 0$ in A, and hence (a) follows.

(b) If $0 \neq fg \in x_n A$, then $fg = x_n c$ for some $c \neq 0$ with deg $c = m - \deg x_n > 0$. Similar to (1-7) we have

$$fg =_* \sum_{j=1}^n f_j bg_j + f_0 b + bg_{-1} + x_n c,$$

and similar to (1-8), we have

(1-9)
$$a_i g =_* \sum_j f_{ij} b g_j + f_{i0} b + y_i g_{-1} \quad \forall \ i < n.$$

Hence $a_ig = y_ig_{-1} \in y_iA$ for all i < n. If $g_{-1} = 0$, then by induction hypothesis (a) $a_i = 0$ for all i and then $f = x_na_n \in x_nA$. Now we suppose that $g_{-1} \neq 0$. Similar to (*), we may assume $a_i \in \mathfrak{m}$ for all i < n (in this case we use the fact that $\{\bar{y}_i\}_{i < n}$ are linearly independent). Since $y_i \in \mathfrak{m} - \mathfrak{m}^2$, by induction hypothesis (b), $a_i = y_i w_i$ for all i < n. Factoring out y_i from $a_ig = y_ig_{-1}$ we obtain that $w_ig = g_{-1}$ for all i < n. By induction hypothesis (a), $w_i = w_1$ for all i < n, and hence

$$f = \sum_{i} x_{i}a_{i} = x_{n}a_{n} + \sum_{i < n} x_{i}a_{i} = x_{n}a_{n} + \sum_{i < n} x_{i}y_{i}w_{1}$$
$$= x_{n}a_{n} + (b - x_{n}y_{n})w_{1} = x_{n}(a_{n} - y_{n}w_{1}) \in x_{n}A.$$

Thus (b) follows.

Proposition 1.5. Let A be a one-relator algebra $k\langle x_1, \dots, x_n \rangle / (b)$ where $b = \sum_i x_i z_i$. Suppose that, for some s, z_s is a right regular element. Then $\sum_{i \neq s} x_i A = \bigoplus_{i \neq s} A_i$ and hence the subalgebra generated by $\{x_i \mid i \neq s\}$ is free.

As a consequence, if A is a regular algebra of global dimension 2 and $\{x_i \mid 1 \leq i \leq n\}$ is a minimal generating set of A, then the subalgebra $k[x_i \mid i \neq s]$ is free for any s.

Proof. It suffices to show that $\sum_{i \neq s} x_i a_i = 0$ implies $a_i = 0$ in A for all $i \neq s$. Suppose that $\sum_{i \neq s} x_i a_i = 0$ for some $a_i \in A$. As the proof of Proposition 1.3, there are f_j and g_j with $f_j \in \mathfrak{m}_F$ such that

$$\sum_{i \neq s} x_i a_i = \sum_{j=0}^q f_j b g_j + b g_{-1} = \sum_{j=0}^q \sum_{i=1}^n x_i f_{ij} b g_j + \sum_{i=1}^n x_i z_i g_{-1},$$

and hence

$$(1 - \delta_{is})a_i = z_i g_{-1} \quad \text{in} \quad A.$$

If i = s, then $z_s g_{-1} = 0$, so $g_{-1} = 0$ because z_s is right regular. If $i \neq s$, then $a_i = z_i g_{-1} = 0$.

If A is regular algebra, then A is a domain [Proposition 1.3] and hence z_s is a regular element. Therefore the statement follows.

The proofs of parts 3 and 4 of the following are the same as ones of [11, 2.3] which are stated only for quadratic algebras.

Proposition 1.6. Let A be a connected algebra and x a homogeneous element in $\mathfrak{m} - \{0\}$ satisfying the following two conditions:

- (a) x is right regular and $xA \neq \mathfrak{m}$;
- (b) if f and g are in $\mathfrak{m} \{0\}$ and $fg \in xA$, then $f \in xA$.

Then the following statements hold.

- 1. A is a domain.
- 2. A is not an Ore domain and it does not satisfy a polynomial identity.
- If a, y are in A {0}, then xa = ay implies that x = y and a = lxⁿ for some n ≥ 0 and l ∈ k[×].
- 4. A has no non-trivial normal elements.

1650

Proof. 1. Let f, g be non-zero elements in A. If fg = 0, then $f, g \notin k$ and $fg \in xA$. By (b) f = xf' and xf'g = 0. By (a), f'g = 0. By induction on deg f', either f' = 0 or g = 0, a contradiction.

2. Pick $z \in \mathfrak{m} - xA$, by (b), $xA \cap zA = \{0\}$. Hence A is not Ore. Also the subalgebra k[x, z] is free, hence A is not PI.

3. If xa = ay and $a \notin k$, then $ay \in xA$, and by (b), a = xa'. Hence xxa' = xa'y, and by (a), xa' = a'y. The statement follows from induction on deg a.

4. If A has a non-trivial normal element, then A has a homogeneous normal element of positive degree, say a. Hence xa = ay for some $y \in \mathfrak{m}$. By part 3, x = y and $a = lx^n$. Thus x^n is normal. By (a), there is $z \in \mathfrak{m} - xA$ and by (b) $xA \cap zA = \{0\}$. Therefore $zx^n \neq x^nc$ for all $c \in A$ and thus x^n is normal, a contradiction.

Parts 2, 3, 4 of Theorem 0.2 follow easily from Propositions 1.3, 1.5 and 1.6.

2. One-relator quadratic algebras

In this section we will apply results from section 1 and results in [11] to onerelator quadratic algebras. From now on V is a vector space with a basis $\{x_i\}_{i=1}^n$ and A is a one-relator quadratic algebra $k\langle V\rangle/(b)$ where $b = \sum_{ij} l_{ij} x_i x_j$ for some $l_{ij} \in k$. It is well-known that A is Koszul and has global dimension 2 or infinity. The **rank** of the relation b is defined to be the rank of the matrix $(l_{ij}) \in M_n(k)$. This definition of rank coincides with the definition given in section 1 when we consider quadratic algebras. It is easy to see that the rank of b is independent of the choices of the basis of V. If r = rank b, then there are two bases $\{z_i\}$ and $\{y_i\}$ of V such that $b = \sum_{i \leq r} z_i y_i$. Let $_bV$ (respectively V_b) denote the subspace generated by $\{z_i \mid i \leq r\}$ (respectively $\{y_i \mid i \leq r\}$). Then $_bV$ and V_b are only dependent on b. If r = 1, then $b = x_1^2$ or $b = x_1 x_2$ after changing a basis.

Proposition 2.1. Let A be the algebra $k\langle V \rangle/(b)$ and suppose that $b = x_1x_s$ where s is either 1 or 2. Then the following statements hold.

- 1. If $f, g \neq 0$ are in \mathfrak{m} , and fg = 0, then $f \in Ax_1$ and $g \in x_s A$.
- 2. $\sum_{i>1} x_i A = \bigoplus_{i>1} x_i A.$
- 3. The subalgebra generated by $\{x_i \mid i > 1\}$ is free.
- 4. If j > 1 and a, y are in $A \{0\}$, then $x_j a = ay$ implies that $x_j = y$ and $a = lx_j^t$ for some $l \in k^{\times}$ and $t \ge 0$.
- 5. If n > 1, then A has no non-trivial normal elements.

Proof. Since A has no non-resolvable ambiguities, all monomials not containing x_1x_s form a basis of A. In particular, x_i are right regular for all i > 1. Let I denote (i_1, \dots, i_t) . For every element $a \in F$, write $a = \sum_I l_I x_{i_1} \cdots x_{i_t}$ where $(i_p, i_{p+1}) \neq (1, s)$ for all p. Define the support of a to be $Supp(a) := \{I \mid l_I \neq 0\}$. Part 1 and part 2 can be checked easily by expressing elements as sum of monomials, part 3 is a consequence of 2.

4. As in the proof of Proposition 1.6.3, it suffices to show $a = x_j a'$. Suppose that this is not true. Then $a = x_j a' + a_0$ where $a_0 = \sum_{i_1 \neq j} l_I x_{i_1} \cdots x_{i_t} \neq 0$. Since x_j is right regular, $x_j a = \sum_{I \in Supp(a)} l_I x_j x_{i_1} \cdots x_{i_t}$. Write $y = \sum_w h_w x_w$; then we have $ay = \sum_{(i_t,w)\neq(1,s)} l_I h_t x_{i_1} \cdots x_{i_t} x_w$. Comparing the monomials in $x_j a$ and ay, we obtain that, if $I = (i_1, \cdots, i_t) \in Supp(a_0)$, then $h_w x_{i_1} \cdots x_{i_t} x_w = 0$ for all w. Thus (i) $h_w = 0$ for all $w \neq s$ and $h_s \neq 0$ and (ii) $i_t = 1$. As a consequence

 $ay = (x_j a' + a_0)h_s x_s = h_s x_j a' x_s$. Therefore

$$|Supp(ay)| = |Supp(a')| < |Supp(a)| = |Supp(x_ja)| = |Supp(ay)|,$$

a contradiction. Therefore part 4 follows.

5. If A has a non-trivial normal element, then A has a homogeneous normal element of positive degree, say a. Let j > 1. Then $x_j a = ay$ for some y of degree 1. By part 4, $x_j = y$ and $a = lx_j^t$ for some $l \neq 0$ and t > 0. Hence x_j^t is normal. But $x_j^t x_1 \neq z x_j^t$ for any z, so a contradiction.

Now we are ready to prove Theorem 0.3.

Proof. 1. If n = 1, then A is $k[x]/(x^2)$, which is noetherian. If n = r = 2, then A is a noetherian regular algebra of global dimension two (Corollary 1.2). If n = 2 and r = 1, then A is either $k\langle x, y \rangle/(x^2)$ or $k\langle x, y \rangle/(xy)$; neither is noetherian. If n > 2, then by Proposition 1.1.1(b) and 2(b), A has exponential growth and hence it is not noetherian by [9, 1.2].

2 and 3. We discuss three cases.

Case 1: $r = rank \ b > 2$. Let Φ be the set of all subspaces of dimension no more than $rank \ b - 2$. Then by the proof of [11, 0.1(2)] we can apply [11, 2.2] to A and this Φ . Hence A is a domain and the following statement holds:

(**) If f and g are homogeneous elements in $\mathfrak{m} - \{0\}$ and if $fg \in xA$ for some $x \in V - \{0\}$, then $f \in xA$.

By Proposition 1.6.4, A has no non-trivial normal elements.

Case 2: r = 2 and ${}_{b}V \neq V_{b}$. By [11, 2.2 and 2.3], A is a domain and the statement (**) holds for $x \notin V_{b}$ (in this case Φ is the set of 1-dimensional subspaces not contained in V_{b}). By Proposition 1.6.4, A has no non-trivial normal elements.

Case 3: r = 2 and $_bV = V_b$. In this case $b = (l_{11}x_1 + l_{21}x_2)x_1 + (l_{12}x_1 + l_{22}x_2)x_2$ for some invertible matrix $(l_{ij})_{2\times 2}$. Hence $A = k\langle V \rangle/(b)$ is isomorphic to a twisted algebra B^{σ} where $B = k\langle V \rangle/(x_1x_2 - x_2x_1)$ and $\sigma : x_1 \to l_{12}x_1 + l_{22}x_2, x_2 \to -(l_{11}x_1 + l_{21}x_2), x_i \to x_i, \forall i > 2$. It is easy to see that the one-relator semi-group $G := \langle x_1, \dots, x_n \mid x_1x_2 = x_2x_1 \rangle$ is ordered and B is the semi-group algebra kG. Therefore B is a domain [6, Prop. A.II.1.4] and hence $A \cong B^{\sigma}$ is a domain [10, 5.2]. Now let $x \in V - {}_bV$ and $f, g \in \mathfrak{m} - \{0\}$. We may assume $x = x_n$ and n > 2. If $fg \in x_n A$, then $fg = x_n c$ and we have

$$\sum_{i} x_{i} a_{i} g = \sum_{i} x_{i} f_{ij} b g_{i} + \sum_{i=1}^{2} x_{i} y_{i} g_{-1} + x_{n} c$$

in $k\langle V \rangle$, where $f = \sum_i x_i a_i$. Comparing the coefficients in x_n , we have $a_n g =_* \sum_j f_{nj} bg_j + c$ and so $c = a_n g$ in A. Hence $fg = x_n c = x_n a_n g$. Since A is a domain, $f = x_n a_n \in x_n A$. Again we proved (**) for $x \notin V_b$. By Proposition 1.6.4, A has no non-trivial normal elements if $V_b \neq V$.

Combining these cases and Proposition 2.1 we prove 2 and 3.

4. If $b \notin W \otimes V$, then there is a subspace $W' \supset W$ of dimension n-1 such that $b \notin W' \otimes V$. So we may assume dim W = n-1. Hence this is a consequence of Proposition 1.5 and part 2 when $r \geq 2$. If $b = x_1^2$, this is Proposition 2.1.2. It remains to consider the case when $b = x_1x_2$. By changing a basis we may assume $b = x_1y$, $W = \sum_{i>1} kx_i$ and $y \notin kx_1$. By Proposition 1.5, it suffices to show that y is a right regular element, which follows from Proposition 2.1.1.

1652

Acknowledgment

The author would like to thank S. P. Smith for several discussions on the subject.

References

- M. Artin and W. Schelter, Graded algebras of global dimension 3, Adv. Math., 66(1987) 171-216. MR 88k:16003
- M. Artin, J. Tate and M. van den Bergh, Some algebras related to automorphisms of elliptic curves, *The Grothendieck Festschrift, Vol.* 1, 33-85, Birkhauser, Boston 1990. MR 92e:14002
- M. Artin, J. Tate and M. van den Bergh, Modules over regular algebras of dimension 3, *Invent. Math.*, 106 (1991) 335-388. MR 93e:16055
- G. Bergman, The Diamond lemma for ring theory, Adv. Math., 29(1978), 178-216. MR 81b:16001
- W. Dicks, On the cohomology of one-relator associative algebras, J. Algebra, 97 (1985), 79-100. MR 87h:16041
- C. Năstăsescu and F. Van Oystaeyen, Graded Ring Theory, North Holland, Amsterdam, 1982. MR 84i:16002
- D. R. Stephenson, Artin-Schelter regular algebras of global dimension three, J. Algebra, 183 (1996), no. 1, 55–73. MR 97h:16053
- D. R. Stephenson, Algebras associated to elliptic curves, Trans. Amer. Math. Soc., 349 (1997), 2317–2340. CMP 97:09
- D. R. Stephenson and J. J. Zhang, Growth of graded noetherian rings, *Proc. Amer. Math. Soc.*, **125** (1997), 1593–1605. MR **97g:**16033
- J. J. Zhang, Twisted graded algebras and equivalences of graded categories, Proc. London Math. Soc., (3)72 (1996), 281-311. MR 96k:16078
- 11. J. J. Zhang, Quadratic algebras with few relations, Glasgow Math. J., to appear.

Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195

E-mail address: zhang@math.washington.edu